解析函数的孤立奇点类型判断及应用
孤立奇点的类型及判断方1

孤立奇点的类型及其判定方法摘要:本文归纳了孤立奇点的类型及其主要判定的方法.分别对函数在有限点和无限点的孤立奇点研究,得到了判定孤立奇点类型的三种方法:定义法、极限值法、极点与零点关系法.接着阐述了有两个函数的和、差、积、商所得的新函数与原函数在孤立奇点类型的关系,并且结合一下例子介绍了判定孤立奇点类型的三种方法的应用.关键词: 可去奇点 极点 本质奇点1.引言复变函数的孤立奇点是复变函数论中的重要概念.函数在孤立奇点的附近可以展示洛朗展开式,对一个函数而言,孤立奇点的个数往往不是很多的,但是这些不多的孤立奇点往往就决定着这个函数的性质了,因此,什么是孤立奇点,孤立奇点有哪些类型,怎么判定并快速的判定函数的孤立奇点的类型,对研究函数的孤立奇点去心邻域内的性质,复积分的计算等至关重要.但是函数的孤立奇点的类型往往很难判定,特别对复合函数等.这样就使得我们去探索新的方便的判定孤立奇点类型的方法.目前,已经有很多人对判定孤立奇点类型的问题做过研究了,也作出了很多成就.本文在此基础上,归纳诸多方法,旨在为判定孤立奇点类型提供参考.根据在孤立奇点某邻域的洛朗展开式判定孤立起点的类型,但是有些函数的洛朗展开式很难求出来,我们还可以根据函数在孤立奇点的极限值判定孤立奇点的类型.但是有些函数的倒函数很容易判定出倒函数的零点阶数,对于这样的函数我们可以根据极点和零点的关系判定孤立奇点的类型.本文论述的方法只是提供参考,在实际应用中应该根据孤立奇点类型的特点运用相应的方法,使得对孤立奇点的判定更加方便.2.孤立奇点的类型及判断方法 2.1孤立奇点的定义定义1 如果函数)(z f 在点a 的某一去心领域R a z a K <-<-||0:}{(即除去圆心a 的某圆)内解析,点a 是)(z f 的奇点,则称a 为)(z f 的一个孤立奇点.孤立奇点分有限孤立奇点和无穷孤立奇点.2.2 孤立奇点的类型和判断以解析函数的洛朗展式为工具,我们能够在孤立奇点的去心领域内充分研究一个解析函数的性质.如a 为函数)(z f 的孤立奇点,则)(z f 的某去心领域{}K a -内可以展成洛朗级数)(z f =∑∞-∞=-n n na z c)(.我们称非负幂部分∑∞=-0)(n nna z c为)(z f 在点a 的正则部分,而称负幂∑∞=---1)(n nn a z c 为)(z f 在点a 的主要部分.实际上非负幂部分表示在点a 的领域:||K z a R -<内的解析函数,故函数)(z f 在点a 的奇异性质完全体现在洛朗级数的负幂部分上.定义2如果)(z f 在点a 的主要部分为零,则称a 为)(z f 的可去奇点; 如果)(z f 在点a 的主要部分为有限多项,设为),0(,)()(11)1(≠-++-+-------m m m m m c a z c a z c a z c 则称a 为)(z f 的m 阶极点,一阶极点也称为单极点;如果)(z f 在点a 的主要部分为无限多项,则称a 为)(z f 的本质奇点;以下我们分别讨论三类孤立奇点的特征.如果a 为函数)(z f 可去奇点,则有),0(,)()()(2210R a z a z c a z c c z f <-<+-+-+=上式等号右边表圆:||K z a R -<内的解析函数.如果命,0)(c a f =则)(z f 在圆K 内与一个解析函数重合,也就是说,我们将)(z f 在点a 的值加以适当定义,则点a 就是)(z f 的解析点.这就是我们称a 为)(z f 的可去奇点的由来.定理1 如果a 为函数)(z f 可去奇点充要条件lim ()()z af z b →=≠∞.证明 充分性 因为a 为函数)(z f 可去奇点,则有)(z f =)0()()(2210R a z a z c a z c c <-<+-+-+ ,于是()()00lim z af z c c →=≠∞,必要性 ()()lim z af z b →=≠∞则对任给的0ε>,有δ0>,只要δ<-a z ,就有εη<-)(z f ,于是εη+<)(z f ,所以在点a 的某去心邻域{}K a -内)(z f 是以M 为界的,考虑)(z f 在点a 的主要部分+-++-+----nn a z c a z c a z )()(c 221,....)3,2,1()()(211=-=⎰Γ+--n d a f i c n n ξξξπ, 而Γ为全含于K 内的圆周ρρξ,=-a 可以充分小,n n n M M c ρπρρπ=≤+--2211,即知当1,2,n =时0n c -=,即是说)(z f 在点a 的主意部分为0,即a 为)(z f 的可去奇点.说明0=z 是sin zz的可去奇点,32sin 1()1,03!3!z z z z z z z =-+=-+<<∞,0sin lim1→=≠∞z zz.如果孤立奇点是极点时,孤立奇点的洛朗展开式的主要部分比为有限项,我们还有分级数,称为多少级极点.洛朗展开式中的负次方的项的系数必然满足一定的关系,总存在一个负最多的次数项,那么我们就把这个负多少次数的项称为函数的多少阶极点.比如,一个m 阶极点,表示洛朗展开式不是有m 个负次方的项,而是非零系数负次方的次数最大是m 次数了.定理2 如果函数)(z f 以a 为孤立奇点,则点a 是函数)(z f 的m 阶极点充要条件是下面两个条件中任意一条.① 在点a 的某一去心领域内能表成)(z f =ma z z )-()(λ其中()z λ在点a 领域内解析,且0)(≠a λ;② )(1)(z f z g =以点a 为m 阶零点(极点与零点的关系). 证明 充分性 点a 是函数)(z f 的m 阶极点,则在点a 的某去心邻域内有+-++-++-+-=-----)()()()(1011)1(a z c c az c a z c a z c z f m m m mmmm m a z z a z a z c c )()()()()1(-=-+-+=---λ,其中)(z λ显然在点a 的邻域内解析,且.0)(≠=-m c a λ所以在点a 的某去心邻域内有)()()(1)(z a z z f z g mλ-==,其中)(1z λ在点a 的某邻域内解析,且0)(1≠z λ,因此点a 位)(z g 的可去奇点,只要令()0g z =,a 就为)(z g 的m 阶零点.必要性 如果)(1)(z f z g =以点a 为m 阶零点,则在点a 的某邻域 )()()(z a z z g m ϕ-=,其中)(z ϕ在此邻域内解析,且0)(≠z ϕ,所以)(1)(1)(z a z z f mϕ⋅-=在此邻域内)(1z λ解析,在此邻域内命+-+=---)()(1)1(a z c c z m m ϕ, 则)(z f 在点a 的主要部分就是(1)111,(0),()()()m mm m m c c c c z a z a z a a ϕ------+++=≠--- 所以点a 是函数)(z f 的m 阶极点.在充分性中已经证明条件①可以推导出条件②,所以条件①可以推导出点a 是函数)(z f 的m 阶极点.定理3 函数)(z f 的孤立奇点a 为极点的充要条件是lim()z af z →=∞.证明 函数)(z f 以点a 为极点的充要条件是)(1z f 以点a 为零点(定理2),由此知定理为真.因此,若点a 为函数)(z f 的m 阶零点时,则点a 为函数1()f z 的m 阶极点;若点a 为函数)(z f 的m 阶极点,则点a 为函数1()f z 的m 阶零点.但是判断多少阶极点时要注意条件. 例如 函数21()z e f z z-=,0z =不是函数)(z f 的二阶极点,因为 231211()(),2!3!2!3!z z zf z z z z -=+++=+++所以,0z =是函数)(z f 的一阶极点.定理4 函数)(z f 的孤立奇点a 为本质奇点的充要条件是lim ()z af z →不存在. 这个可以由定理1和定理3得到证明.定理5若z a =为函数)(z f 的本质奇点,且在点a 的充分小的去心邻域内部不为零,则z a =必为)(1z f 的本质奇点. 证明:令)(1)(z f z =ϕ,有假设得z a =必为)(z ϕ的孤立奇点.若点a 为)(z ϕ的可去奇点,则点a 必为)(z f 的可去奇点或者极点,与假设矛盾;若点a 为)(z ϕ的极点,则点a 必为)(z f 的零点,与假设矛盾,故z a =必为)(z ϕ的本质奇点.2.3在∞点的孤立奇点定义3设函数)(z f 在无穷远点(去心)领域{}:||K z -∞+∞>内解析,则称点∞为)(z f 的一个孤立奇点.如果点∞为)(z f 的一个孤立奇点,令1t z =,1()()()g t f f z t==则函数()g t 某去心领域{0}:0||K t R -<<内解析,0t =就为()g t 之一孤立奇点.于是得到下面结论:(1)在对应点z 与t 上,函数)(z f 与()g t 的值相等; (2)0lim ()lim ()z t f z g t →∞→=,或两个极限都不存在.定义4 若0t =为()g t 的可去奇点,m 阶极点或本质极点,则我们相应的称z =∞为)(z f 的可去奇点,m 阶极点或本质极点.定理6 如果z =∞是函数)(z f 的可去奇点的充要条件lim ()z f z b →∞=≠∞;如果z =∞是函数)(z f 的m 阶极点的充要条件)(z f 在z =∞的某去心领域{}K -∞内能表成()()m f z z h z =其中()h z z =∞在)(z u 的领域K 内解析,且()0h z ≠或者1()()h z z f z ==∞以为m 阶零点或者lim ()z f z →∞=∞;函数)(z f 的孤立奇点∞为本质奇点的充要条件不存在lim ()z f z →∞.证明 令1t z =,1()()()g t f f z t==,再根据定理1,2,3,4可证. 综上所述①如果a 为函数)(z f 可去奇点充要条件lim ()()z af z b →=≠∞;②如果a 为函数)(z f 极点充要条件lim()z af z →=∞;③如果a 为函数)(z f 本质奇点充要条件lim ()z af z →不存在.3.复变函数中的应用定理7 若函数)(z f 在点z a =解析,点z a =为函数)(z g 的可去奇点,则点z a =也为函数)()(z g z f ±,)()(z g z f 的可去奇点;当()0f a ≠,()0g a ≠时,则z a =函数)()(z f z g ,)()(z g z f 的可去奇点. 证明 因为点z a =为)(z g 的可去奇点,所以lim ()z ag z b →=(有限复数)由)(z f 在点z a=解析知)(z f 在点z a =必连续,从而lim()()z af z f a →=,于是[]lim ()()()z af zg z f z b →±=±(有限复数),lim ()()()z af zg z bf z →=(有限复数),所以点z a =也为)()(z g z f ±,)()(z g z f 的可去奇点.因为z a =是函数)(z g 的可去奇点,则lim ()z ag z b →=(有限数),函数)(z f 在点z a =解析,所以lim()()z af z f a →=,因为()0f a ≠,所以()lim ()()z ag z bf z f z →=(有限数)所以点z a=是函数)()(z f z g 的可去奇点.同理可证点z a =是函数)()(z g z f 的可去奇点. 定理8 若函数)(z f 在点z a =解析,点z a =为函数)(z g 的m 阶极点,则点z a =也为函数)()(z g z f ±的m 阶极点;当()0f a ≠时,则点z a =也为函数的)()(z g z f ,)()(z f z g 的m 阶极点.证明:因为点z a =为)(z g 的m 阶极点,所以)(z g 在点a 的某去心邻域内能表成ma z z z g )()()(-=λ,其中)(z λ在点a 解析,且0)(≠a λ.于是()()()()()()m mz a f z z f z g z z a λ-±±=-,令)()()()(z z f a z z m λ±-=Φ则在点z a =解析,且0)()(≠±=Φa a λ所以点z a =也为)()(z g z f ±的m 阶极点.因为点z a =为)(z g 的m 阶极点,所以)(z g 在点a 的某去心邻域内能表成ma z z z g )()()(-=λ,其中)(z λ在点a 解析,且0)(≠z λ,于是()()()()()mf z z f zg z z a λ=-,这里)()()(z z f z λ=Φ在点z a =解析,且0)(≠Φa ,所以点z a =是函数)()(z g z f 的m 阶极点.同理可证点z a =是函数)()(z f z g 的m 阶极点. 定理9 若函数)(z f 在点z a =解析,点z a =为函数)(z g 的本质奇点,则点z a =也为函数)()(z g z f ±的本质奇点;当()0f a ≠时,则点z a =也为函数)()(z g z f ,)()(z f z g 的本质奇点.证明 因为函数)(z f 在点z a =解析,所以()f z b =,点z a =为函数)(z g 的本质奇点 所以lim ()z ag z →不存在,假设lim[()()]lim ()z a z ag z f z g z b →→+=+存在,则lim ()(z ag z b c →+=有限数)或者∞; lim ()(z ag z c b →=-∞有限数)或者 矛盾,所以点z a =也为函数)()(z g z f ±的本质奇点.因为点z a =为函数)(z g 的本质奇点,所以lim ()z ag z →不存在;函数)(z f 在点z a =解析,且()0f a ≠,所以lim ()()z af z f a →=,假z a =不是函数)()(zg z f 的本质奇点,则lim ()()(z af zg z b →=∞有限数)或,lim[()()]lim (=()(z az af zg z bg z f a f a →→=∞)或)相矛盾, 所以z a =是函数)()(z g z f 的本质奇点.同理可证也是)()(z f z g 的本质奇点. 定理10 若)(z f 在点a 的某去心邻域内能表示成)()()(z g z h z f =,a 为()h z 的n 阶零点,为)(z g 的m 阶零点,当m n >时,a 为)(z f 得m n -阶极点;当m n ≤时,a 为)(z f 的可去奇点.证明:0)()(,)()(,))(()(1111解析,且都不等于和z g z h a z g z g a z z h z h mn-=-=,于是,11()()()()n mh z z a f z g z --=,所以当m n >时,a 为)(z f 得m n -阶极点;当m n ≤时,a为)(z f 的可去奇点.例1 判断()2z z z f z e+=∞=点函数的孤立奇点类型.解 令z 1=ξ则得ξξ211)1(+=e f ,记函数为)(ξϕ所以点0=ξ是此函数的解析点()()⎥⎦⎤⎢⎣⎡+++=''+-='++432112112214218)()21(2)(ξξξϕξξϕξξee所以e e e 12)0(,2)0(,)0(=''-='=ϕϕϕ,()() ++-=2621ξξξϕe ,()()+∞<<⎪⎭⎫⎝⎛++-=z z z e z f 26212 ,这里∞=z 是函数)(z f 的可去奇点. 例2 求下列函数奇点的类型 ⑴z z cos sin 1+ ⑵()321iz + ⑶z 2tan ; 解:⑴4ππ-=k z () ,2,1±±=k 是原式的孤立奇点,41limsin cos z k z zππ→-=∞+,4ππ-=k z 是函数)(z f =z z cos sin +的一阶零点,所以4ππ-=k z () ,2,1±±=k 是一阶极点.⑵()i z -±=122是孤立奇点,()i z -±=122是函数()32i z +的3阶零点,所以()i z -±=122是三阶极点. ⑶π⎪⎭⎫ ⎝⎛+=21k z 是孤立奇点,π⎪⎭⎫ ⎝⎛+=21k z 是函数z z 22sin cos 的2阶零点,所以π⎪⎭⎫ ⎝⎛+=21k z 是二阶极点.例3求下列函数在扩大平面上的孤立奇点,并确定它们的类别.⑴226)1(1++z z z (2)21ze z+ (3)1111---z z ee (4)ztge1解:(1)令原式为)(z f ,则)(z f 是有理分式,显然0z =是单极点,当z i =±时,此时分子分母均为零,)1)(1(12426+-+=+z z z z ,))((1)1()1)(1()(2422242i z i z z z z z z z z z z f +-+-=++-+=, 可见z i =±也是)(z f 的一阶极点.当z =∞时))((1)1()1)(1()(2422242i z i z z z z z z z z z z f +-+-=++-+=,可见z =∞是)(z f 的一阶极点.(2)显然z i =±是)(z f 的一阶极点. 当z =∞时,令0z x =>211lim lim 0()x x x x f x e→∞→∞+==, ()()2110,lim lim x x x x z x x f x e-→∞→∞+=->==∞-,因此极限1lim()z f z →∞不存在(包括不为∞),所以,z =∞是)(1z f 的本性奇点,故z =∞是)(z f 的本质奇点.注:若lim ()z f z →∞不存在,则z =∞是)(z f 的本性奇点,这是显然的,否则若z =∞是可去奇点(正则点)或极点,则lim ()z f z →∞存在且有限,或lim ()z f z →∞=∞,矛盾.(3)显然k z =1+i k π2(0k =, ,2,1±±)是分母的零点,而分子仅有),0(10==k z 分子为零,所以k z =1+i k π2(0k =, ,2,1±±)是)(z f 的一阶极点. 当10==z z 时,令1,-==x y x z ,则()11lim lim 1yy x y ef x e ++→→==+∞-11lim ()lim 0,(),1pp x p ef x p y e -+--→→===--所以1lim ()z f z →不存在,故1=z 是)(z f 的本性奇点.又∞→k z (∞→k ),故z =∞不是孤立奇点.(4)由下列注知:函数ζe 仅有唯一的奇点∞=ζ,且它是本质奇点,于是令ztg1=ζ,则)(z f 仅为函数ζe 又由z 1cos =0知,当k z =π)12(2+k (0k =, ,1±)时,∞=ζ所以k z 是的)(z f 本质奇点.显然0z =是)(z f 的本质奇点.当z =∞时,若定义,01=∞则z =∞是)(z f 可去奇点.综上对孤立奇点的研究,要判断孤立奇点类型主要有2种方法:①根据主要部分,但有一些函数的洛朗展开式不容易求出;②函数的极限值,当极点时,无法判断极点的阶数.所以求函数的奇点类型一般方法先求函数在孤立奇点的极限值,如果我们求出的是极点,在根据极点和零点的关系求出极点的阶数.结束语本论文所论述的判定孤立奇点类型的方法只是为了判定孤立奇点的类型提供参考,在具体的判定孤立奇点类型时,可以根据函数的不同采用不同的判定方法判定孤立奇点类型.本文中的方法不一定是解题时最简便的判定孤立奇点的方法.参考文献[1]尹水仿,李寿贵,复变函数与积分变换[M],科学出版社,2009.[2]苏变萍,陈东立,复变函数与积分变换(第二版)[M], 高等教育出版社 ,2010. [3]陈宗煊,孙道椿,刘名生, 复变函数[M],科学出版社 ,2010. [4]钟玉泉, 复变函数论(第三版)[M], 高等教育出版社, 2004. [5]沈燮昌, 复变函数论基础[M], 上海科学技术出版社,1982. [6]庄圻泰, 复变函数[M], 北京大学出版社, 1984. [7]冯复科,复变函数与积分变换[M],科学出版社,2008.[8]Brown, James Ward., Complex variables and applications[M], China Machine Press , 2004.Types and Their Judgment of The Isolated SingularityAuthor :Dong Zhaolin Supervisor: Wu DaiyongAbstract :This article generalizes type and main determination way of the isolated singularity.Respectively studying function in finite number of points and infinite point of the isolated singularity, we get three to determine the method which are definition of law , limit law and poles and zeros relations act with isolated singularity type. This article describes relationship of new function which two functions and, difference, product, business receive with the original function in isolated singularity type. Combination of what the example describes the application of the three methods to determine the type of isolated singularity.Keywords: removable singularity extreme essential singularity。
4.0解析函数的孤立奇点

其中
( z ) a m a m1 ( z z 0) ( z0 ) 0
z z0
a0 ( z z0 ) m 是解析函数,且
如果z0是f(z)的极点,lim | f ( z ) | 或写作 lim f ( z )
z z0
极点的判定定理 (1)f(z)在奇点z0的去心邻域内的Laurent级数的主要 部分为有限多项; (2)f(z)在z0点的去心邻域0<|z-z0|<R内能表示为如下 ( z) 形式:
f ( z0 ) f '( z0 )
f
( m 1)
( z0 ) 0,
f
( m)
( z0 ) 0
例如:z=0,z=1分别为函数f(z)=z(z-1)3的一级与三级零点。
(2)极点的概念 如果f(z)在其孤立奇点z0的去心邻域内,Laurent级数中的主 要部分为优先多项(即有限个负幂项),即为
奇点是z=kπ (k=0,±1, ±2, …),很显然他们都是孤立 奇点,又
(sin z )'| z k cos z | z k (1) 0 1 所以z=kπ都是sin z的一级零点,从而是 的一阶 sin z 极点
k
3.本性奇点 如果f(z)在其孤立奇点z0的去心邻域的Laurent级数中 主要部分为无限多项(即含无限多个负幂项),则 称z0为f(z)的本性奇点。
2、非孤立奇点
z z0
f ( z)
( z)
二、孤立奇点的分类 奇点
z0
k k k 0 0
∞
| R
k
类型
展开 a ( z z ) ,0 | z z 式
判断孤立奇点的类型的方法

判断孤立奇点的类型的方法
咱先说说啥是孤立奇点哈。
孤立奇点呢,就是在一个函数的定义域里,有那么一个点,它周围一圈都是函数有定义的地方,就它自己有点特殊。
那怎么判断它是啥类型的孤立奇点呢?
对于可去奇点呢,就像是一个调皮但又很容易改正的小错误。
如果函数在这个奇点处的极限存在,那这个奇点就是可去奇点啦。
比如说,函数在这个点看起来好像没定义,但是只要给它补上一个合适的值,函数就能在这个点变得完美无缺,就像给一个有小缺口的漂亮花瓶补上一点泥,马上就完整了。
再说说极点。
极点就有点像一个比较严重的问题点。
如果函数在这个奇点附近,函数值会变得超级大或者超级小,而且当我们把函数写成一种分式的形式,分子分母都是解析函数的时候,分母在这个点是零,分子在这个点不是零,那这个点就是极点。
这就好比是在一个道路上突然出现了一个大坑,所有靠近它的东西都会受到很大的影响。
还有本性奇点呢。
本性奇点就像是一个完全捉摸不透的小怪兽。
函数在这个奇点附近的极限不存在,不管你怎么去研究,它都不会有一个稳定的趋向。
比如说,当你靠近这个点的时候,函数值会跳来跳去,一会儿大得不得了,一会儿又小得可怜,完全没有规律可循。
咱判断的时候啊,就像是在玩一个解谜游戏。
先看看函数在那个孤立奇点的极限存不存在,如果存在,那很可能就是可去奇点。
要是极限不存在,再看看能不能写成那种分式的形式来判断是不是极点。
要是前面两种情况都不是,那大概率就是本性奇点啦。
你看,判断孤立奇点的类型也没有那么难对不对?就像认识不同性格的小伙伴一样,只要了解了它们各自的特点,就能轻松把它们分辨出来啦。
孤立奇点判断方法

孤立奇点判断方法孤立奇点在数学和物理学中是一种特殊的点,其附近的数值或物理量发生了突变或发散现象。
判断一个点是否为孤立奇点是数学和物理学中的一个基本问题,有许多方法可以用来判断。
在数学中,通常会使用函数的极限性质来判断一个点是否为孤立奇点。
具体而言,可以通过计算函数在该点附近的极限来确定。
如果函数在该点附近的极限存在且有限,则该点不是孤立奇点;如果函数在该点附近的极限不存在或为无穷大,则该点可能是孤立奇点。
常用的方法有极限存在定理、极值判定法、洛必达法则等。
极限存在定理是判断极限存在与否的基本方法之一。
根据这个定理,对于一个函数f(x),如果它在某一点x=a的领域内存在有限的左极限和右极限,则该点的极限存在,且等于这两个极限相等。
如果函数在该点附近的极限不存在,则该点可能是一个孤立奇点。
极值判定法是判断函数是否有极限的一种方法,其基本思想是如果一个函数在某点附近有极小值和极大值,并且极小值和极大值不相等,则该点不是孤立奇点。
如果函数在该点附近没有极值或者有极值但是极小值和极大值相等,则该点可能是孤立奇点。
洛必达法则是一种通过求函数极限的方法来判断孤立奇点的方法。
这个方法适用于函数的极限形式为0/0或者∞/∞的情况。
具体而言,如果一个函数的极限形式为0/0,则可以通过对函数及其导函数同时求极限,如果两个极限都存在且有限,则该点不是孤立奇点。
如果函数的极限形式为∞/∞,则可以通过对函数及其导函数同时求极限,如果两个极限都存在且有限,则该点不是孤立奇点。
在物理学中,判断孤立奇点的方法通常与具体物理量的性质相关。
例如,在物理学中,当一个物理量的数值出现无穷大或者非常大的突变时,可以认为该点是孤立奇点。
此外,在一些物理模型中,孤立奇点也可能出现在物理量的表达式中的某些特殊点,例如分母为零的情况。
总之,判断一个点是否为孤立奇点是数学和物理学中的一个基本问题。
在数学中,可以使用函数极限的性质来判断一个点是否为孤立奇点,方法包括极限存在定理、极值判定法、洛必达法则等。
解析函数的孤立奇点

例
有理分式函数
f (z)
z
3z 2 2(z 2)
,
z 0是二级极点, z 2 是一级极点.
2020/7/9
16
由定义判别: f (z)的Laurent展开式中含有 z z0
的负幂项为有限项.
由定义的等价形式判别:在点 z0的某去心邻域内
(z)
f (z) (z z0 )m
其中 (在z) 的z邻0 域内解析, 且
k
因为 lim 1 0,
k k
(k 1, 2,)
即在 z 0 的不论怎样小的去心邻域内, 总有 f (z) 的奇点存在, 所以z 0 不是孤立奇点.
2020/7/9
3
讨论函数在孤立奇点的情况
如果点
z
为函数
0
f的(z)孤立奇点,则在点
某去z 0
心邻域
0 内z 可z设0 的Laurenf t(级z) 数展开式
当z iy 0, 有f (z) cos 1 i sin 1 无极限。
y
y
于是当z 0, f(z)无极限,也不以 为极限。
1
ez
1 zn
n0 n!
定理 若z = a为f(z)的本性奇点,且在点的充分小去心
邻域内不为零,则
z=a
亦必为φ(z)=
1 的本质奇点。 f(z)
2020/7/9
26 26
1
1 1 z 1(z),
z 2! 3!
z
(z)解析且 (0) 0
所以 z 0不是二级极点, 而是一级极点.
思考
z 0是
sin z z3
的几级极点?
注意: 不能以函数的表面形式作出结论 .
2020/7/9
5.2.15.1.2孤立奇点的分类方法

含有限个负幂项,且
m 级极点 关于 (z z0 )1 的最高幂
为 (z z0 )m
本性奇点 含无穷多个负幂项 不存在且不为
一、 可去奇点
例如 因此
设 f (z) 在 0 z z0 内解析,则 z0
是 f (z) 的可去奇点的充要条件是 lim f (z) z z0
存在且有限.
z = 0为函数 sin z 的孤立奇点,且 lim sin z 1,
z
z0 z
z = 0为函数 sin z 的可去奇点. z
证明
设 z0 为 f (z)的可去奇点,则 f (z)在 0 z z0
的极点
.
z 1
求函数 z2 1 z 23 的极点,并指出它是几 级极点.
解 z 2, z i 都是f(z)的孤立奇点
z 1 g(z)
由于
f z
z2 1
z 23
,
所以 z 2 是 f (z) 的三级极点;
同理 z i 是 f (z)的一级极点.
三、 本性奇点
设 f (z)在 0 z z0 内解析,则 z0是 f (z)的
(2) 利用定义的等价形式判断:若在 z0的某去心邻域
内,有
f
z
(z
1 z0 )m
g ( z ),
其中函数 g(z)在 z0 的邻域
内解析,且 g(z0 ) 0, 则 z0 为 f (z) 的m级极点.
(3) 利用极限判断: 若极限 lim f (z) , 则 z0 为 f (z) z z0
如果 f (z)在 z0的某去心邻域内的洛朗级数无 负幂项,则 z0 为 f (z)的可去奇点.
(2) 利用极限判断:源自若极限 lim z z0f
浅析复变函数中的孤立奇点

浅析复变函数中的孤立奇点孤立奇点是复变函数中的一种特殊情况,指的是某个点处的函数不连续且无法进行泰勒展开的点。
在实际应用中,孤立奇点经常出现在复函数的分母中,导致分母为零从而使得函数的值无法计算。
因此,了解孤立奇点及其性质对于理解复变函数的研究和应用至关重要。
首先,我们来看一个简单的例子:设$f(z)$为复变函数$\frac{1}{z}$。
此时,我们可以发现,当$z=0$时,函数$f$的值为无穷大,即$f$在$z=0$处有一个孤立奇点。
这是因为当$z$无限地接近于0时,分母会无限地接近于零,从而使得$f$的值趋向于无穷大或负无穷大。
因此,我们可以将孤立奇点定义为“使得函数无法在该点处连续的点”。
在复平面上,孤立奇点通常具有以下几个性质:1. 孤立奇点必须是函数的“独立点”。
也就是说,如果一个点是函数的“可去奇点”、“极限奇点”或“本性奇点”,那么它就不可能是孤立奇点。
2. 孤立奇点是函数的“聚点”。
也就是说,无论以任何方式接近孤立奇点,都必然会进入到“不可解析”的区域内。
3. 孤立奇点有限。
也就是说,一个复变函数的孤立奇点不能无限多。
有了这些性质,我们可以更好地理解孤立奇点的特性和行为。
例如,对于一个孤立奇点,我们可以通过求解$f$的洛朗级数来近似描述它附近的函数行为。
洛朗级数可以看做是泰勒级数在孤立奇点处的推广形式,是一种形如$\sum_{n=-\infty}^{+\infty}a_n(z-z_0)^n$的级数,其中$a_n$为常数,$z_0$为孤立奇点。
通过求解这个级数,我们可以得到$f$的近似值,并进一步研究其性质。
此外,我们还可以通过研究孤立奇点的类型来判断复变函数在该点附近的行为。
根据孤立奇点的定义,我们可以将其分为三类:可去奇点、极限奇点和本性奇点。
可去奇点指的是在该点附近可以重新定义函数使其连续的点;极限奇点指的是在该点附近函数的绝对值无限地增大或减小的点;本性奇点则是既非可去奇点也非极限奇点的孤立奇点,我们通常将这类点称为“真正的”孤立奇点。
孤立奇点和非孤立奇点的判断方法

孤立奇点和非孤立奇点的判断方法全文共四篇示例,供读者参考第一篇示例:孤立奇点和非孤立奇点是数学分析领域中的重要概念,它们在研究函数的性质和图像的特征时起着至关重要的作用。
对于数学学习者来说,了解孤立奇点和非孤立奇点的判断方法,对于深入理解复变函数、微分方程等数学领域都具有重要意义。
下面将详细介绍关于孤立奇点和非孤立奇点的判断方法。
我们先来介绍孤立奇点的判断方法。
孤立奇点是函数在某点附近出现的奇异行为。
在复变函数中,孤立奇点通常指代的是在某点附近函数不再是解析的点。
判断一个点是否为孤立奇点,可以通过以下方法来进行:1. 极限判别法:计算函数在该点附近的极限,如果极限不存在或为无穷大,则该点为孤立奇点。
2. 泰勒级数展开:对函数进行泰勒级数展开,如果展开后的级数包含了负幂次项(即有无穷多个非零项),则该点为孤立奇点。
3. 周围点的解析性:观察该点周围的函数是否在该点附近解析,如果不解析,则该点为孤立奇点。
接下来,让我们来介绍非孤立奇点的判断方法。
非孤立奇点是指函数在某点的附近呈现出的非奇异行为。
一般来说,当一个点不是孤立奇点时,它可能是可去奇点、极点或本质奇点。
判断一个点是否为非孤立奇点,可以通过以下方法来进行:1. 极限判别法:计算函数在该点附近的极限,如果极限存在并有限,则该点为非孤立奇点。
2. 函数的特殊性质:观察函数在该点附近的特殊性质,例如可积、有界等。
3. 应用奇异性定理:对于复变函数,可以根据奇异性定理来判断非孤立奇点的性质,这需要结合数学分析的相关知识来进行判断。
判断一个点是孤立奇点还是非孤立奇点需要综合运用极限判别法、泰勒级数展开、函数的特殊性质等方法。
在实际应用中,还需要根据具体函数的特点来选择合适的方法进行判断。
对于复变函数、微分方程等领域的研究者来说,掌握孤立奇点和非孤立奇点的判断方法是至关重要的。
通过深入了解和熟练运用这些方法,可以更好地理解函数的性质,为相关领域的研究工作提供重要的理论支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析函数的孤立奇点类型判断及应用摘要孤立奇点的应用在解析函数的学习和对其性质分析研究中有着重要作用,而留数计算是复变函数中经常碰到的问题。
解析函数在不同类型的孤立奇点处的计算方法不同,关键我们要先判断其类型。
本文在分析整理了相关资料的基础上,首先给出了孤立奇点的定义、分类及其类型的判别定理和相关推及引理,其中在考虑极点处的留数求法时,又根据单极点、二阶极点,m阶极点的求法不同,结合例子给出极点阶数的判断方法。
并通过有限孤立奇点的判别对解析函数无穷远点的性态进行研究,分析能否把有限孤立奇点的特征应用到无穷远点,进而探讨了孤立奇点在留数计算中的应用,使得孤立奇点的知识更加系统、全面。
关键词孤立奇点可去奇点极点本质奇点判断留数计算前言在复变函数论中,留数是非常重要的,而解析函数的孤立奇点是学习留数的基础,只有掌握了孤立奇点的相关性质,才能更好的学好留数。
目前,在相关资料中,对孤立奇点的判别及应用已较为完备,如在许多版本的《复变函数论》中对孤立奇点的判别做了详细的说明和解释,使我们对孤立奇点的了解更透彻。
但在现实中有时我们遇到的留数计算具体例子,运用定理判别会比较麻烦,还需要前后知识的衔接,这为留数计算增加了障碍。
本文就是在此基础上作进一步的探讨,将判断这一工作拿出来单独讨论,通过对论文的撰写,将把孤立奇点类型的判别及在留数运算中的应用更全面化、系统化。
此项研究内容可以对以后学习此部分内容的同学提供一定的帮助,使其对孤立奇点的理解更加清晰,应用得更加自如。
在复变函数课程上我们已学过了孤立奇点的分类及其类型的判别和其在留数计算中的应用,为对其作进一步的研究奠定了基础。
在此基础上查阅大量书籍,搜集相关资料,并对所搜集资料进行分析、研究、筛选和处理。
通过指导教师的耐心指导,已具备了研究解析函数类型的判别及其在留数计算中的应用这一课题的初步能力,并能解决现实生活中的相关例题,使理论和实践达到真正的结合和统一。
本文通过对已学知识的回顾总结,和相关资料的查阅,在老师的指导下自拟题目,将对孤立奇点的类型判别及应用进行说明,通过分析、整理、归纳、总结,对其进行更深入的研究。
正文一、孤立奇点的定义及类型(一)定义如果函数)(z f 在点a 的某一去心邻域R a z a K <-<-0:}{(即除去圆心a 的某圆)内解析,点a 是)(z f 的奇点,则称a 为)(z f 的一个孤立奇点。
如果a 为函数)(z f 的一个孤立奇点,则必存在正数 R ,使得)(z f 在点a 的去心邻域 R a z a K <-<-0:}{ 内可展成洛朗级数。
(二)孤立奇点的类型如0z 为)(z f 的孤立奇点,则)(z f 在点0z 的去心邻域 R z z z K <-<-000:}{内可展成洛朗级数0(z)(z )nnn f z c ∞=-∞=-∑。
其中称负幂部分01(z )n n n z c ∞--=-∑为)(z f 在点0z 的主要部分。
孤立奇点按函数在0z 的去心邻域内的洛朗展开式中负幂项的个数分类: 1.可去奇点:展开式中不含0z z -的负幂项;()()()201020f z c c z z c z z =+-+-+2.极点:展开式中含有限项0z z -的负幂项;()(1)21010201000()()()()()m mm m c c c f z c c z z c z z z z z z z z -----=+++++-+-+---()0,()mg z z z =- 其中()1(1)01000()()()m m m m g z c c z z c z z c z z -----=+-++-+-+在0z 解析,且()00,1,0m g z m c -≠≥≠;3.本性奇点:展开式中含无穷多项0z z -的负幂项; ()1010000()()()()m mm mc c f z c c z z c z z z z z z --=+++++-++-+--二、孤立奇点类型的判别方法(一)可去奇点如果)(z f 在0z z =的洛朗级数中不含0z z -的负幂项,则称孤立奇点0z 是)(z f 的可去奇点。
以下三个条件是等价的:(1)0z z =是)(z f 的可去奇点⇔)(z f 在0z 的洛朗级数不含0z z -的负幂项; (2)0z z =是)(z f 的可去奇点⇔0lim (z)z z f →存在;(3)0z z =是)(z f 的可去奇点⇔)(z f 在0z 的某去心邻域内有界. (二)极点如果)(z f 在0z 的洛朗级数中只有(0z z -)的有限个负幂项,则孤立奇点0z 称为极点。
若负幂的最高项为0(z z )m --,则0z 称为m 级极点。
与之等价的条件是:0z 是)(z f 的极点⇔0lim (z)z z f →=∞.零点和极点的关系: 不恒等于零的解析函数)(z f 若能表示为 0(z)(z z )(z)m f ϕ=-,其中(z)ϕ在0z 解析,且0(z )0ϕ≠,m 为一正整数,则称0z 为)(z f 的m 级零点.(1) 若)(z f 在0z 解析,则0z 为)(z f 的m 级零点的充要条件是 (n)0(z )0f =, 0,1,2,,1n m =-;(m)0(z )0f ≠.(2) 一个不恒为零的解析函数的零点是孤立的.(3) 若0z 是)(z f 的m 级极点,则0z 是1(z)f 的m 级零点.反之也成立. 下面的定理说明了怎样由m 级零点得到m 级极点. 定理1 假设(i )两个函数p 和q 在点0z 解析; (ii )0(z )0p ≠,0z 是q 的m 级零点. 则0z 是(z)(z)p q 的m 级极点. 定理2 设两个函数p 和q 在0z 解析.如果 0(z )0p ≠,0(z )0q = 和 0(z )0q '≠, 则0z 是商(z)(z)p q 的简单极点且 )()()()(Re 000z q z p z q z p sz z '==. (三)本质奇点如果)(z f 在0z 的洛朗级数中含有(0z z -)的无穷多个负幂项,则孤立奇点0z 称为本质奇点。
与之等价的条件是:0z 是)(z f 的本质奇点⇔0lim (z)z z f →不存在且不等于∞.在本质奇点的邻域内,复变函数)(z f 具有以下性质:(1)维尔斯特拉斯定理 若0z z =是)(z f 的本质奇点,则对于任一复数0ω及任给的0ε>,任意的0r >,在区域00z z r <-<中必存在一点z ',使得εω<-'0)(z f .推论 在任意一个圆环域00z z r <-<中,必存在序列{}n z ,使得0lim (z)n z z f ω→=.(2)皮卡定理 解析函数)(z f 在本质奇点0z z =的任何邻域内,能够取任意一个有限值(复数)无穷次,至多有一个值例外. (四)函数在无穷远点的性态如果)(z f 在无穷远点z =∞的去心邻域z R <<+∞内解析,则称点∞是)(z f 的孤立奇点.作变换1t z=(规定把扩充z 平面上的无穷远点z =∞映射为扩充t 平面上的点0t =),把扩充z 平面上的邻域0R z z <-<+∞映射成扩充t 平面的去心邻域10t R<<,且有)(z f =1()f t =(t)ϕ.于是,可以把在z R <<+∞上对)(z f 的研究化为在10t R<<内对(t)ϕ的研究.(1)如果0t =是(t)ϕ的可去奇点、m 级极点或本质奇点,则z =∞是)(z f 的可去奇点、m 级极点或本质奇点.(2)若)(z f 在z R <<+∞内可以展开为洛朗级数,那么,在)(z f 的洛朗级数中,如果:不含正幂项,则z =∞为)(z f 的可去奇点; 含有限个正幂项,则z =∞为)(z f 的极点; 含无穷多正幂项,则z =∞为)(z f 的本质奇点.三、留数定理及留数计算方法(一)留数定义 若0z z =是解析函数)(z f 的一个孤立奇点,)(z f 在0z 的去心邻域内解析,C 为0z 邻域内任一简单闭曲线,则称dz z f iC ⎰)(21π为)(z f 在0z 处的留数,记作]),([Re 0z z f s ,即 10)(21]),([Re -==⎰c dz z f i z z f s Cπ. 1-c 是)(z f 在以0z 为中心的圆环域内的洛朗级数中10)(--z z 项的系数.(二)留数定理 设函数)(z f 在区域D 内除有限个孤立奇点1z ,2z ,…,n z 外处处解析,C 是D 内包围诸奇点的一条简单闭曲线,则 ∑⎰==nk k Cz z f s i dz z f 1]),([Re 2)(π.利用定理,可以将求沿封闭曲线C 的积分,转化为求被积函数在C 内各孤立奇点处的留数.(三)留数的计算与极点处留数的计算规则.计算留数最基础的依据是定义 10)(21]),([Re -==⎰c dz z f iz z f s c π, C 为0z 某去心邻域内一条简单闭曲线,1-c 是以0z 为中心某邻域内洛朗级数10)(--z z 项的系数.即,可通过求积分dz z f i C⎰)(21π的值或求洛朗级数10)(--z z 项系数来计算留数,所以若0z 为)(z f 的可去奇点,则0]),([Re 0=z z f s . 若0z 为)(z f 的本质奇点,则10]),([Re -=c z z f s . 若0z 为)(z f 的极点,则有以下规则: 规则I 若0z 是)(z f 的一级极点,有)()(lim ]),([Re 000z f z z z z f s z z -=→.规则II 若0z 是)(z f 的m 级极点,有)]()[(lim )!1(1]),([Re 01100z f z z dzd m z z f s m m m z z --=--→. 规则III 当)()()(z Q z P z f =,)(z P 和)(z Q 都在0z 解析,如果0)(0≠z P ,0)(0=z Q ,0)(0≠'z Q ,则0z 为)(z f 的一级极点,且有)()(]),([Re 000z Q z P z z f s '=. 实际计算时,可以用规则,也可以用定义求洛朗级数的1-c ,或计算⎰C dz z f i)(21π.(四)若函数)(z f 在z R <<+∞解析,C 为圆环域内绕原点的任何一条正向简单闭曲线,则称积分⎰C dz z f i)(21π为)(z f 在∞点的留数,记为 ⎰--==∞C c dz z f iz f s 1)(21]),([Re π. 定理 如果函数)(z f 在扩充的复平面内只有有限个孤立奇点,则)(z f 在所有各奇点(包括∞点)的留数总和比等于零.规则IV ]0,1)1([Re ]),([Re 2zz f s z f s ⋅-=∞.以上定理和规则提供了计算复变函数沿闭曲线积分的一种方法,这些方法使用恰当的话会使计算更简便.四、孤立奇点类型的判别及其在留数计算中的应用相关例题例1 指出下列函数在零点z=0的级: (1))1(22-z ez(2))6(sin 6633-+z z z .解(1)用求导数验证:记0)0(,)1()(22=-=f e z z f z ,不难计算,0)0(,)(22)(23='++-='f e z z z z f z ,0)0(,2)2104()(224=''-++=''f e z z z f z,0)0(,)24368()(235='''++='''f e z z z z f z,24)0(,)2415611216()()4(24642=+++=f e z z z z f z )( 即 0)0(,0)0()0()0()0()4(=='''=''='=ff f f f故0=z 为函数)1(22-z e z 的四阶零点. 由泰勒展式:由展开式 )(!1!2112422+∞<+++++=z z n z z e n z 可知 )()!21()1(442222z z z z z e z z ϕ=++=- 其中)(!1!211)(222+∞<++++=-z z n z z n 在 ϕ内解析,10=)(ϕ.故0=z 为函数)1(22-z e z 的四阶零点. (2)由展开式)()!12()1(!51!31sin 3615933+∞<++-+-+-=+z n z z z z z n n可知)6(sin 6633-+z z z393615936)!12()1(!51!316z z n z z z z n n -+⎪⎪⎭⎫ ⎝⎛++-+-+-=+ )(15z z ϕ=其中 ⎪⎪⎭⎫ ⎝⎛++-++-=+ )!12()1(!71!516)(1266n z z z n nϕ 在+∞<z 内解析,0560≠=!)(ϕ.故0=z 是函数)6(sin 6633-+z z z 的15阶零点.例2 判断下列函数的奇点类型如果是极点,指出它的级数. (1)22)1(1+z z ; (2)3sin z z ; (3)1123+--z z z ;(4)zz )1ln(+; (5))1)(1(2z e z z π++; (6)11-z e ;(7))1(12-z e z ; (8)nn z z +12(n 为正整数). 解 (1)令0)1(22=+z z ,得i z z ±==,0。