典型局部应力
应力集中的概念及其避免措施

应力集中的概念及其避免措施现今社会,由于应力集中造成构件断裂,产生疲劳,对结构安全危害大。
了解应力集中,并找出其避免措施,对人们的生活具有重大的意义。
首先,先让我们了解一下应力与应力集中的概念,应力即受力物体截面上内力的集度,即单位面积上的内力。
公式记为σ=F/S(其中,σ表示应力;ΔFj表示在j 方向的施力;ΔAi表示在i 方向的受力面积)。
材料在交变应力作用下产生的破坏称为疲劳破坏。
通常材料承受的交变应力远小于其静载下的强度极限时,破坏可能发生。
另外材料会由于截面尺寸改变而引起应力的局部增大,这种现象称为应力集中。
对于由脆性材料制成的构件,应力集中现象将一直保持到最大局部应力到达强度极限之前。
因此,在设计脆性材料构件时,应考虑应力集中的影响。
对于由塑性材料制成的构件,应力集中对其在静载荷作用下的强度则几乎无影响。
所以,在研究塑性材料构件的静强度问题时,通常不考虑应力集中的影响。
承受轴向拉伸、压缩的构件,只有在寓加力区域稍远且横截面尺寸又无剧烈变化的区域内,横截面上的应力才是均匀分布的。
然而实际工程构件中,有些零件常存在切口、切槽、油孔、螺纹等,致使这些部位上的截面尺寸发生突然变化。
如开有圆孔和带有切口的板条,当其受轴向拉伸时,在圆孔和切口附近的局部区域内,应力的数值剧烈增加,而在离开这一区域稍远的地方,应力迅速降低而趋于均匀。
这时,横截面上的应力不再均匀分布,这已为理论和实验证实。
在静荷载作用下,各种材料对应力集中的敏感程度是不同的。
像低碳钢那样的塑性材料具有屈服阶段,当孔边附近的最大应力达到屈服极限时,该处材料首先屈服,应力暂时不再增大。
如外力继续增加,增加的应力就由截面上尚未屈服的材料所承担,是截面上其他点的应力相继增大到屈服极限,该截面上的应力逐渐趋于平均,如图2-32所示。
因此,用塑性材料制作的零件,在静载荷作用下可以不考虑应力集中的影响。
而对于组织均匀的脆性材料,因材料不存在屈服,当孔边最大应力的值达到材料的强度极限时,该处首先断裂。
应力基础知识

应力的定义当材料在外力作用下不能产生位移时,它的几何形状和尺寸将发生变化,这种形变称为应变(Strain)。
材料发生形变时内部产生了大小相等但方向相反的反作用力抵抗外力,定义单位面积上的这种反作用力为应力(Stress)。
或物体由于外因(受力、湿度变化等)而变形时,在物体内各部分之间产生相互作用的内力,以抵抗这种外因的作用,并力图使物体从变形后的位置回复到变形前的位置。
在所考察的截面某一点单位面积上的内力称为应力(Stress)。
按照应力和应变的方向关系,可以将应力分为正应力σ 和切应力τ,正应力的方向与应变方向平行,而切应力的方向与应变垂直。
按照载荷(Load)作用的形式不同,应力又可以分为拉伸压缩应力、弯曲应力和扭转应力。
应力的分类同截面垂直的称为正应力或法向应力,同截面相切的称为剪应力或切应力。
应力会随着外力的增加而增长,对于某一种材料,应力的增长是有限度的,超过这一限度,材料就要破坏。
对某种材料来说,应力可能达到的这个限度称为该种材料的极限应力。
极限应力值要通过材料的力学试验来测定。
将测定的极限应力作适当降低,规定出材料能安全工作的应力最大值,这就是许用应力。
材料要想安全使用,在使用时其内的应力应低于它的极限应力,否则材料就会在使用时发生破坏。
有些材料在工作时,其所受的外力不随时间而变化,这时其内部的应力大小不变,称为静应力;还有一些材料,其所受的外力随时间呈周期性变化,这时内部的应力也随时间呈周期性变化,称为交变应力。
材料在交变应力作用下发生的破坏称为疲劳破坏。
通常材料承受的交变应力远小于其静载下的强度极限时,破坏就可能发生。
另外材料会由于截面尺寸改变而引起应力的局部增大,这种现象称为应力集中。
对于组织均匀的脆性材料,应力集中将大大降低构件的强度,这在构件的设计时应特别注意。
物体受力产生变形时,体内各点处变形程度一般并不相同。
用以描述一点处变形的程度的力学量是该点的应变。
为此可在该点处到一单元体,比较变形前后单元体大小和形状的变化。
聚合物的应力应变曲线

V
弹 性
泊淞比m m:
l l
模
横向单向单位宽度的
量
纵向单位宽度的增加
拉伸柔量:
柔
D 1
量
E
切变J 柔1量: 可压缩1 度:
G
B
不同材料的泊松比
材料名称 锌 钢 铜 铝 铅 汞
泊松比 0.21 0.25~0.35 0.31~0.34 0.32~0.36 0.45 0.50
真应力
43 2
1
1——0.2吋分 应
2——0.8吋/分
变 速
3——1.13吋/分 率 增
4——1.28吋/分 大
真应变 应变速率对PMMA真应力应变曲线的影响
(4)屈服应力依赖于温度:温度升高,屈服应力 下降。在温度达到 Tg 时,屈服应力等于0
应力
-25℃ 0℃
25℃ 50℃ 65℃
80℃
温度对醋酸纤维素应力~应变曲线的影响
拉伸强度(MPa)
1280 400 420 240 30 83 98~218 290 500 120~130 2800 1100 3500 5800
比强度
160 50 160 32 31.6 74.1 143 160 280 92.9 ~1900 ~800 ~3400 ~3700
8.1 聚合物的塑性和屈服
重点难点:应Βιβλιοθήκη -应变曲线,细颈和银纹现象的理解,
屈服判据,聚合物的增强与增韧。
本章内容
8.1 聚合物的塑性和屈服
8.1.1应力应变曲线 8.1.2 聚合物的屈服
8.2 高聚物的断裂和强度
8.2.1 脆性断裂与韧性断裂 8.2.2 聚合物的强度 8.2.3 断裂理论 8.2.4 影响聚合物强度和韧性的因素------增强与增韧 8.2.5 疲劳
应力集中手册

应力集中手册应力集中手册:为您解读和应对应力集中现象一、引言应力集中是材料工程中的重要概念,它指的是在结构中产生局部应力的现象。
应力集中会导致材料的破坏,影响结构的安全性和可靠性。
为了帮助工程师和研究人员更好地理解和解决应力集中问题,我们编写了这本应力集中手册。
二、什么是应力集中应力集中是指在结构中存在局部应力异常集中的现象。
通常,这种集中是由结构形状、应力加载方式、材料性质等因素造成的。
当应力集中超过材料的强度极限时,就会引发结构的破坏。
应力集中的常见表现形式包括孔洞、凹槽、棱角、接头等局部几何形状。
三、应力集中的危害应力集中会引起结构的局部断裂、裂纹扩展以及永久变形等问题。
这不仅降低了结构的强度和刚度,还可能导致结构的失效。
在工程实践中,应力集中是常见的结构失效原因之一。
四、应力集中的分析与计算为了准确评估和解决应力集中问题,我们需要进行应力分析和计算。
常用的方法包括有限元方法、应力集中系数法和应力分布法。
这些方法可以帮助我们定量地评估结构中的应力集中程度,并设计合适的改善措施。
五、应对应力集中问题的措施针对不同类型的应力集中问题,我们可以采取一系列的改善措施。
例如,可以通过增加结构的强度、改变结构的几何形状、优化材料的选择等方式来减轻应力集中的影响。
此外,合理的工艺控制和结构设计也可以有助于降低应力集中。
六、应力集中的实例分析本手册还包含了一些典型的应力集中实例分析,如孔洞、凹槽和接头等。
通过这些实例,读者可以更好地理解应力集中的原因、危害以及解决方法。
七、结语应力集中是一个复杂的问题,在工程实践中具有重要的意义。
这本应力集中手册旨在为工程师、设计师和研究人员提供一份全面的指南,帮助他们更好地理解和应对应力集中现象,提高结构的安全性和可靠性。
希望这本手册能为广大读者带来帮助,并在工程实践中发挥积极的作用。
塑胶件 内应力

1 内应力产生在注塑制品中,各处局部应力状态是不同的,制品变形程度将决定于应力分布。
如果制品在冷却时。
存在温度梯度,则这类应力会发展,所以这类应力又称为“成型应力”。
注塑制品的内应力包两种:一种是注塑制品成型应力,另一种是温度应力。
当熔体进入温度较低的模具时,靠近模腔壁的熔体讯速地冷却而固化,于是分子链段被“冻结”。
由于凝固的聚合物层,导热性很差,在制品厚度方向上产生较大的温度梯度。
制品心部凝固相当缓慢,以致于当浇口封闭时,制品中心的熔体单元还未凝固,这时注塑机又无法对冷却收缩进行补料。
这样制品内部收缩作用与硬皮层作用方向是相反的;心部处于静态拉伸而表层则处于静态压缩。
在熔体充模流动时,除了有体积收缩效应引起的应力外。
还有因流道,浇口出口的膨胀效应而引起的应力;前一种效应引起的应力与熔体流动方向有关,后者由于出口膨胀效应将引起在垂直于流动方向应力作用。
2 影响愉应力的工艺因素(1)向应力的影响在速冷条件下,取向会导致聚合物内应力的形成。
由于聚合物熔体的粘度高,内应力不能很快松驰,影响制品的物理性能和尺寸稳定性。
各参数对取向应力的影响a熔体温度,熔体温度高,粘度低,剪切应力降低取向度减小;另一方面由于熔体温度高会使应力松驰加快,促使解取向能力加强。
可是在不改变注塑机压力的情况下,模腔压力会增大,强剪切作用又导致取向应力的提高。
b在喷嘴封闭以前,延长保压时间,会导致取向应力增加。
c提高注射压力或保压压力,会增大取向应力,d模具温度高可保证制品缓慢冷却,起到解取向作用。
e增加制品厚度使取向应力降低,因为厚壁制品冷却时慢,粘度提高慢,应力松驰过程的时间长,所以取向应力小。
(2)对温度应力的影响如上所述由于在充模时熔体和型壁之间温度梯度很大,先凝固的外层熔体要助止后凝固的内层熔体的收缩,结果在外层产生压应力(收缩应力),内层产生拉应力(取向应力)。
如果充模后又在保压压力的作用下持续较长时间,聚合物熔体又补入模腔中,使模腔压力提高,此压力会改变由于温度不均而产生的内应力。
压力容器应力分析典型局部应力

压力容器应力分析典型局部应力
三、数值计算
应力数值计算的方法比较多,如差分法、变分法、有限单 元法和边界元法等。但目前使用最广泛的是有限单元法。
有限单元法的基本思路: 将连续体离散为有限个单元的组合体,以单元结点的参
量为基本未知量,单元内的相应参量用单元结点上的数值插 值,将一个连续体的无限自由度问题变成有限自由度的问题, 再利用整体分析求出未知量。显然,随着单元数量的增加, 解的近似程度将不断改进,如单元满足收敛要求,近似解也 最终收敛于精确解。
为边缘效应的衰减长度。故开孔系数 表示开孔 大小和壳体局部应力衰减长度的比值。
压力容器应力分析典型局部应力
随着开孔系数的增大而增大
Kt 随壁厚比t/T的增大而减小
内伸式接管的应力集中系数较小 即:增大接管和壳体的壁厚,减小接管半径,
有利于降低应力集中系数
压力容器应力分析典型局部应力
球壳带接管的应力集 中系数曲线适用范围:
压力容器应力分析典型局部应力
二、减少附件传递的局部载荷
如果对与壳体相连的附件采取一定的措施,就可以减少 附件所传递的局部载荷对壳体的影响,从而降低局部应力。 例如:
● 对管道、阀门等设备附件设置支撑或支架,可降低这些附
件的重量对壳体的影响;
● 对接管等附件加设热补偿元件可降低因热胀冷缩所产生的
热载荷。
压力容器应力分析典型局部应力
一、应力集中系数法
1、应力集中系数 ——受内压壳体与接管连接处的最大弹性应力 ——该壳体不开孔时的环向薄膜应力
通过理论计算,数据整理,得到一系列曲线。通过应力集中 系数曲线图查Kt,就可得到最大应力
压力容器应力分析

载荷
2.1.1 载荷
压力(包括内压、外压和液体静压力)
非压力载荷 载荷
重力载荷 风载荷 地震载荷 运输载荷 波动载荷 管系载荷 支座反力 吊装力
整体载荷 局部载荷
压力容器
应力、应变的变化
上述载荷中,有的是大小和/或方向随时间变化的交 变载荷,有的是大小和方向基本上不随时间变化的静载荷
压力容器交变载荷的典型实例:
分析载荷作用下压力容器的应力和变形, 是压力容器设计的重要理论基础。
●2.1 载荷分析
2.1.1 载荷 2.1.2 载荷工 况
●2.2 回转薄壳应力分析
●2.3 厚壁圆筒应力分析 ●2.4 平板应力分析 ●2.5 壳体的稳定性分析 ●2.6 典型局部应力
2.2.1 薄壳圆筒的应力 2.2.2 回转薄壳的无力矩理论 2.2.3 无力矩理论的基本方程 2.2.4 无力矩理论的应用 2.2.5 回转薄壳的不连续分析
a.正常操作工况:
容器正常操作时的载荷包括:设计压力、液体静压力、重力 载荷(包括隔热材料、衬里、内件、物料、平台、梯子、管 系及支承在容器上的其他设备重量)、风载荷和地震载荷及 其他操作时容器所承受的载荷。
b. 特殊载荷工况
特殊载荷工况包括压力试验、开停工及检修等工况。 制造完工的容器在制造厂进行压力试验时,载荷一般包括试 验压力、容器自身的重量。
有力矩理论或 弯曲理论 (静不定)
无力矩理论所讨论的问题都是围绕着中面进行的。 因壁很薄,沿壁厚方向的应力与其它应力相比很小, 其它应力不随厚度而变,因此中面上的应力和变形可 以代表薄壳的应力和变形。
二、无力矩理论与有力矩理论 平行圆
j
j
jq
Nq
q
qj
关于应力集中的概念及其避免措施的讨论

由于应力集中能使结构发生裂纹,甚至断裂,须采取措施,防止因应力集中而造成的 结构损坏,主要措施有:①改善结构外形,避免形状突变,尽可能开圆孔或椭圆孔;②结构 内必须开孔时,尽量避开高应力区,而在低应力区开孔;③根据孔边应力集中的分析成果进 行孔边局部加强。
2、实际工程中圆滑的角避免应力集中 在制作各种拉力工具时,拉脚的拐弯处应设圆角,这并不是为了美观,这是为了避免 应力集中。应力集中指由于受力构件由于几何形状、外形尺寸发生突变而引起的局部范围内 内应力显著增大的现象。应力集中会造成构件的断裂。圆角的大小应根据工具的外形尺寸决 定,太大影响工具的效应,太小工具容易断裂损坏。对于常用的较小拉制工具,圆角半径在 2-3 毫米为佳,较大在 5 毫米左右。对于特殊形状的工具根据实际情况确定。但或大或小必 须留圆角。 参考文献: 1、《材料力学Ⅰ》 主编:刘鸿文 出版社:高等教育出版社 出版时间:2004-01 第四版 2、《材料力学Ⅱ》 主编:刘鸿文 出版社:高等教育出版社 出版时间:2004-01 第四版 3、《工程力学》 作者:王彪 出版社:中国科学技术大学出版社 4、《设计中的应力集中系数》 作者:R.E.彼德逊 出版社 :中国工业出版社 出版时间:1965 年 05 月北京第 1 版 5、《建筑钢结构进展》 作者:澳门大学土木及环境工程系 中国澳门(郭伟明);香港理 工大学土木及结构工程系 中国香港(滕锦光;钟国辉) 出版时间:2007-03 6、王威,王社良,苏三庆,徐金兰 ;《钢铁材料结构构件 工作应力的检测方法及特点[J ]》; 《钢结构》;2004 年 05 期
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果对与壳体相连的附件采取一定的措施,就可以减少附 件所传递的局部载荷对壳体的影响,从而降低局部应力。
例如: ●对管道、阀门等设备附件设置支撑或支架,可降低这
些附件的重量对壳体的影响; ●对接管等附件加设热补偿元件可降低因热胀冷缩所产
生的热载荷。
2021/3/10
35
2.5 典型局部应力
应力指数是所考虑的各 应力分量与壳体在无开 孔接管时的环向应力之 比。 应力指数法已列入中国、 美国、日本等国家压力 容器分析设计标准。
见《钢制压力容器——分析设计标准》P159
2021/3/10
15
2021/3/10
16
2.6典型局部应力
二、经验公式
用无因次参量表示应力集中系数 Rodavaugh公式
2021/3/10
T
T
D
17
2.6 典型局部应力
三、数值计算
应力数值计算的方法比较多,如差分法、变分法、有限 单元法和边界元法等。但目前使用最广泛的是有限单元法。
有限单元法的基本思路:
将连续体离散为有限个单元的组合体,以单元结点的参 量为基本未知量,单元内的相应参量用单元结点上的数值插 值,将一个连续体的无限自由度问题变成有限自由度的问题, 再利用整体分析求出未知量。显然,随着单元数量的增加, 解的近似程度将不断改进,如单元满足收敛要求,近似解也 最终收敛于精确解。
2021/3/10
31
2021/3/10
32
2021/3/10
33
2.5 典型局部应力
(4)选择合适的开孔方位:
根据载荷的情况,选择适当的开孔位置、方向和形状。 如椭圆孔的长轴应与开孔处的最大应力方向平行,孔尽量开 在原来应力水平比较低的部位,以降低局部应力。
2021/3/10
34
2.5 典型局部应力
Kt 2.8(T D)0.182(D d)0.367(Tt)0.382(rt0)0.148
适用范围D 100,0.09t 4.3,0.5 r0 12.5
T
T
t
Decock 公式
22d d • t 125d D
Kt
D DT
DT
1 t d • t
T DT
适用范围1.4D240,0.048 t 2.8,0.04 d 1.0
三、尽量减少结构中的缺陷
2.6.1 概述
1、局部应力的产生
局部载荷
通过管道传递的载荷 支座反力 局部温度变化引起的载荷
不连续
材料、结构和载荷不连续处, 在局部区域产生的附加应力
2021/3/10
3
2.6 典型局部应力
材料韧性 2、局部应力的危害性与 载荷
大小 加载方式
有关
危害性
过大的局部应力使结构处于不安定状态; 在交变载荷下,易产生裂纹,可能导致 疲劳失效。
几何形状或尺寸的突然改变是产生应力集中的主要原因之一。 在结构不连续处应尽可能采用圆8
2021/3/10
29
2021/3/10
30
2.5 典型局部应力
(3)局部区域补强:
在有局部载荷作用的壳体处,适当给以补强。 例如,壳体与吊耳的连接处、卧式容器与鞍式支座 连接处,在壳体与附件之间加一块垫板,可以有效 地降低局部应力。
2021/3/10
25
2.6 典型局部应力
(1)减少两连接件的刚度差
两连接件变形不协调会引起边缘应力。 壳体的刚度与材料的弹性模量、曲率半径、壁厚等因素有关。 设法减少两连件的刚度差,是降低边缘应力的有效措施之一。
2021/3/10
26
2021/3/10
27
2.5 典型局部应力
(2)尽量采用圆弧过渡:
6
2.6 典型局部应力
一、应力集中系数法
1、应力集中系数 Kt
Kt
max
max——受内压壳体与接管连接处的最大弹性应力
——该壳体不开孔时的环向薄膜应力
通过应力集中系数曲线图查Kt,就可得到最大应力
2021/3/10
7
应力集中系数曲线
2021/3/10
8
2021/3/10
9
2.6 典型局部应力
第二章 压力容器应力分析
CHAPTER Ⅱ STRESS ANALYSIS OF PRESSURE VESSELS
第六节 典型局部应力
2021/3/10
1
2.6 典型局部应力
主要内容
2.6.1 概述 2.6.2 受内压壳体与接管连接处的局部应力 2.6.3 降低局部应力的措施
2021/3/10
2
2.6典型局部应力
应力集中系数曲线使用范围:
0.01 r
R
30
R T
0.4 150
2021/3/10
11
2021/3/10
12
2.6 典型局部应力
椭圆形封头上接管连接处的局部应力, 只要将椭圆曲率半径折算成球的半径, 就可采用球壳上接管连接处局部应力的计算方法。
2021/3/10
13
2021/3/10
14
2、应力指数法
2021/3/10
18
2021/3/10
19
2.6 典型局部应力
四、应力测试
实验应力分析方法直接测量计算部位的应力, 是验证计算结果可靠性的有效方法。
电测法 常用实验应力分析方法
光弹性法
2021/3/10
20
应力测试 电测法
2021/3/10
21
2021/3/10
22
光弹性法 ——光学应力测量方法
2021/3/10
4
2.6.2 受内压壳体与接管连接处的局部应力
由于几何形状及尺寸的突变,受内压壳体与接管连接处附 近的局部范围内会产生较高的不连续应力。
2021/3/10
5
2.6 典型局部应力
理论分析方法 工程常用方法
薄膜解 弯曲解 应力集中系数法 数值解法 实验测试法 经验公式
2021/3/10
图中 r
RT
是开孔系数,r 接管平均半径, R壳体平均半径, T壳体壁厚
RT 为边缘效应的衰减长度。 故开孔系数 表示开孔大小和壳体局部应力 衰减长度的比值
2021/3/10
10
2.6 典型局部应力
随着开孔系数的增大而增大
Kt 随壁厚比t/T的增大而减小
内伸式接管的应力集中系数较小
降低应力集中系数措施:增大接管、壳体的壁 厚;合理布置接管;在有效补强范围内补强
光弹性原理 相似理论
2021/3/10
23
2.6 典型局部应力
2.6.3 降低局部应力的措施
方法
合理的结构设计 减少附件传递的局部载荷 尽量减少结构中的缺陷
2021/3/10
24
2.6 典型局部应力
一、合理的结构设计 (1)减少两连接件的刚度差 (2)尽量采用圆弧过渡 (3)局部区域补强 (4)选择合适的开孔方位