优选分类变量的描述性统计
描述性统计

专题二描述性统计通过图表、数值的描述单变量、多变量分类表量、数值变量1、分类变量:频数2、数值变量:集中趋势(取决于分布形态)、离散程度(全距、四分位距(利用位置信息),方差、标准差、变异系数)、分布形态(偏度、峰度)更多关注分布的研究(histogram、pie chart)作业2:打开mtcars,保存excel格式,选cyl(gear)做条形图,饼图,(颜色,主标题,颜色)mpg分布(直方图等),语言描述图提取一个表格,drat mpr wt均值,最大,最小,四分位数,标准差,偏度峰度,小数点3位。
data<-data.frame(mtcars)datawrite.table(data,"D:/data.csv",sep=",")attach(data)barplot(cyl,border = "red",main = "bar",axes=T)table(gear)pie(gear,border="blue",main = "bingtu")hist(mpg,border = "red",axes=T)mean(mpg)mean(drat)mean(wt)summary(wt)summary(drat)summary(mpg)mydata<-function(x)c(mina=min(x),maxa=max(x),meana=mean(x),sda=sd(x))sapply(data.frame(mpg,drat,wt),mydata)多变量数值描述:相关系数、以定性数据为分组依据、图表描述(散点图矩阵(点颜色,形状),气泡图(气泡大小),)data<-data.frame(mtcars)datawrite.table(data,"C:/data.csv",sep=",")attach(data)barplot(cyl,border = "red",main = "bar",axes=T)table(gear)pie(gear,border="blue",main = "bingtu")hist(mpg,border = "red",axes=T)mean(mpg)mean(drat)mean(wt)summary(wt)summary(drat)summary(mpg)mydata<-function(x)c(mina=min(x),maxa=max(x),meana=mean(x),sda=sd(x)) sapply(data.frame(mpg,drat,wt),mydata)library(graphics)library(car)library(scatterplot3d)library(symbols)plot(wt,mpg,col=cyl)pchisq(wt,2)?histinstall.pages("vcd")library(vcd)library(grid)mosaicplot(~cyl+vs+am,data=mtcars,color=TRUE,border="red")Data assumption:interval or ratio level;linear related;bivariate normally distributed Hypothesis TestingP-value and the method of judgement:p<a。
第三单元3分类变量的统计分析

第三单元3分类变量的统计分析一、分类变量的描述统计分析分类变量的描述统计分析主要包括频数分布、频率分布和柱状图等。
1.频数分布频数(frequency)是每个类别在样本或总体中的出现次数。
频数分布(frequency distribution)是指将各个类别的频数按照从小到大的顺序列出,以显示它们的分布情况。
频数分布可以通过计算或绘制柱状图来展示。
2.百分比分布百分比(percentage)是每个类别频数与总频数的比例。
百分比分布(percentage distribution)是指将各个类别的百分比按照从小到大的顺序列出,以显示它们的分布情况。
百分比分布可以通过计算或绘制饼状图来展示。
3.柱状图柱状图(bar chart)是一种常用的展示分类变量分布情况的图形。
在柱状图中,每个类别在x轴上对应一个竖直的条形,条形的高度表示该类别的频数或百分比。
柱状图不仅可以展示各个类别的分布情况,还可以进行不同类别之间的比较。
二、分类变量的关联性分析分类变量的关联性分析可以帮助我们了解两个或多个分类变量之间的相关性。
其中常用的关联性分析方法包括卡方检验和列联表分析。
1.卡方检验卡方检验(chi-square test)是一种非参数统计方法,用于检验两个分类变量之间是否存在相关性。
卡方检验的原假设是两个变量独立无关,备择假设是两个变量相关。
通过计算卡方统计量和对应的P值,可以判断两个变量之间的关联性。
2.列联表分析列联表(contingency table)是用来描述两个或多个分类变量之间关系的表格。
通过计算每个类别的频数或百分比,并绘制列联表的热图或堆积图,可以直观地展示两个变量的关联性。
此外,通过计算列联表的卡方值和判断显著性水平,还可以进行进一步的关联性分析。
三、分类变量的预测分析分类变量的预测分析可以帮助我们根据已有数据对未知数据进行分类。
其中常用的预测分析方法包括逻辑回归和决策树。
1.逻辑回归逻辑回归(logistic regression)是一种用于建立分类模型的统计学方法。
描述分类变量资料的主要统计指标

描述分类变量资料的主要统计指标统计指标是用来描述总体现象数量特征的一些数量表现形式,通常采用频数或频率等来表示。
它是用来说明研究对象数量特征多少的一种语言,而这种数量特征,可以是数量上的也可以是质量上的。
通过统计指标的指标名称和统计指标值就可以了解到研究对象的特点。
因此,运用统计指标能够反映出研究对象的数量特征,是认识事物本质的重要手段。
一、集中趋势指标在大量分类资料中,分类变量的数值经常有很大的差别,并且这种差别可能是偶然的,也可能是由于自变量有意的取舍造成的。
因此,用什么方法对变量进行排列组合才能获得可靠的资料呢?最好的方法是利用极差,即把离中趋势最远的自变量(最大值或最小值)作为总体变量的代表值。
如果在原始分类数据的基础上再进行一次平均计算,就可以得到两个指标,即平均指标和标准差。
(一)成数(Mean)成数是反映总体各单位某一数量占总体单位总数的比重,用公式表示为:成数=n/总体单位总数其中, n是总体单位总数, m是成数的标准差。
总体内各单位成数之间的差别叫做成数的离散程度。
从实际应用上看,成数愈小则成数差愈大,即差异愈大,反之,则成数差愈小,即差异愈小。
在研究总体分布的均匀性时,可以采用成数作为研究对象的主要分析指标。
在许多实际问题中,往往可以直接得到总体成数的具体数值,而不需要进行全面调查计算,这样就可以节省人力、物力和时间,并使资料更加精确。
当然,我们也应注意到:成数受自变量变动范围的影响,当自变量变动较大时,所得到的成数可能与实际情况不符,需要重新估计,因此在分析时应注意选择成数的上下界限。
(1)成数的上限和下限①成数的上限是指超过成数下限的那部分总体单位数,它表示大于或等于该总体单位总数的一定比例的单位数。
在统计学中,把成数的上限叫做正偏态(或上限集中),把成数的下限叫做负偏态(或下限集中)。
1。
离中趋势是指各个变量的平均值在总体平均值的两侧波动,偏离中间较多,表示这一群体在数量上介于总体的中间水平和总体的最高水平之间,数量上居于两者之间的状态。
报告中的描述性统计和变量分析

报告中的描述性统计和变量分析引言:描述性统计和变量分析是数据分析的重要组成部分,它们提供了对数据集的整体情况和特征进行解释和描述的方法。
本文将介绍描述性统计和变量分析的基本概念和方法,并通过具体的示例说明其应用场景和实际价值。
第一部分:描述性统计的基本方法1.1 平均值和中位数的比较与解释平均值和中位数是描述数据集中心趋势的重要统计量。
通过比较平均值和中位数的差异,我们可以了解数据集中是否存在极端值或者数据偏离的情况,并进一步分析其原因和影响。
1.2 方差和标准差的计算与解释方差和标准差是描述数据集离散程度的统计量。
它们可以帮助我们判断数据的散布情况和数据的可靠性。
较大的方差和标准差意味着数据的波动较大,反之则表示数据的波动较小。
1.3 频率分布表的绘制与分析频率分布表是将数据按照不同取值范围进行分类并计算各个类别的频数和频率的方法。
通过绘制频率分布表,我们可以直观地了解数据分布情况,并分析数据的集中度和分散度。
第二部分:变量分析的基本方法2.1 相关分析的概念与应用相关分析用于衡量两个变量之间的关系程度,常用的方法包括皮尔逊相关系数和斯皮尔曼相关系数。
通过相关分析,我们可以了解不同变量之间是否存在显著相关性,并进一步解释其背后的原因和机制。
2.2 回归分析的基本原理与应用回归分析用于探究一个或多个自变量与一个因变量之间的关系,常用的方法包括简单线性回归和多元线性回归。
通过回归分析,我们可以预测因变量在给定自变量条件下的取值,并评估自变量对因变量的影响程度。
2.3 t检验与方差分析的原理与应用t检验和方差分析用于比较两个或多个样本之间的差异,以评估变量在不同组别或处理条件下的显著性差异。
通过t检验和方差分析,我们可以判断样本之间是否存在显著差异,并进一步分析差异的原因和影响。
结论:描述性统计和变量分析是数据分析中不可或缺的工具,它们提供了对数据集的全面理解和深入解释的方法。
在报告中进行描述性统计和变量分析,可以帮助读者快速了解数据的整体特征和变量之间的关系,提高报告的可读性和可信度。
分类变量的统计分析

分类变量的统计分析分类变量是指由有限个离散数值所组成的变量,例如性别、年级、职业等。
在统计学中,分类变量的统计分析可以帮助我们了解变量的分布、比较不同组之间的差异以及预测未来的趋势。
下面将详细介绍分类变量的统计分析方法。
1.描述统计:描述统计是对分类变量的基本统计特征进行描述和总结,包括频数、百分比和图表等。
频数是指每个类别出现的次数,百分比是指每个类别所占的比例。
通过频数和百分比可以直观地了解各个类别的分布情况,从而对整体的情况有一个直观的了解。
图表可以用来更直观地展示分类变量的分布情况,常用的图表包括饼图、柱状图和条形图等。
2.独立性检验:独立性检验用于判断两个或多个分类变量之间是否存在关联。
通常使用卡方检验进行独立性检验。
卡方检验的原假设是两个变量之间是独立的,备择假设则是两个变量之间存在关联。
通过卡方检验的结果可以判断两个变量之间是否存在显著性差异。
3.方差分析:方差分析用于比较多个分类变量之间的均值是否存在显著性差异。
方差分析将总体的方差分解为组内方差和组间方差,通过比较组间方差与组内方差的大小来判断不同组之间的均值是否显著不同。
方差分析常用于比较多个类别的平均值,例如不同年级学生的成绩差异、不同岗位员工的工资差异等。
4. 相关分析:相关分析用于判断两个分类变量之间的关系强度和方向。
常用的相关分析方法有Spearman秩相关系数和Kendall秩相关系数。
相关系数的取值范围为-1到1,当相关系数接近于1时,说明两个变量之间存在正相关关系;当相关系数接近于-1时,说明两个变量之间存在负相关关系;当相关系数接近于0时,说明两个变量之间不存在线性相关关系。
5.预测模型:分类变量的统计分析还可以用于建立预测模型,例如逻辑回归模型和决策树模型。
逻辑回归模型可以用来预测二分类变量的概率,例如预测一些人是否患有其中一种疾病。
决策树模型可以用来预测多分类变量的类别,例如预测一些植物的品种。
总之,分类变量的统计分析方法包括描述统计、独立性检验、方差分析、相关分析和预测模型等。
6.分类变量的统计描述

某一事物各组成部分的个体数 构成比 = —————————————— × 100% 同一事物各组成部分的个体总数
医学统计学
DR. 朱彩华
3. 相对比 (Relative ratio) ratio)
医学统计学
DR. 朱彩华
如:
麻疹病人
甲地 乙地 200 240
哪个地方发病严重? 哪个地方发病严重?
易感者
甲地 乙地 1000 2000
哪个地方发病严重? 哪个地方发病严重?
医学统计学
DR. 朱彩华
甲地麻疹发病率: 甲地麻疹发病率: 200/1000 × 100% = 20% 乙地麻疹发病率: 乙地麻疹发病率: 240/2000 × 100% = 12% 一、相对数的作用 1、反映某现象当时当地的实际水平; 反映某现象当时当地的实际水平; 2、便于不同资料之间的比较。 便于不同资料之间的比较。
即得年龄标准化死亡(或发病)率。 医学统计学 DR. 朱彩华
P72表7-8,其基本操作用的是第1种方法:
各年龄组标准人( 栏 各年龄组标准人(口)数(2栏) 各年龄组的预期死亡数( 、 栏 各年龄组的预期死亡数(4、6栏) 两地标化率: 两地标化率: 甲县: 甲县 p´ = 6146 / 6152992 ×10000/10万 万 = 99.9 /10万 /10万 乙县: 乙县 p´ = 5245 / 6152992 ×10000/10万 万 = 85.2 /10万 /10万 医学统计学 DR. 朱彩华
22.3
医学统计学
DR. 朱彩华
四、率的标准化
分类变量的描述性统计讲解

相对危险度(relative risk,简称RR)是指暴露于某种 危险因素的观察对象的发病的危险度与低暴露或无暴 露的观察对象的发病危险度之间的相对比值。相对危 险度常用于队列研究,可用暴露与未暴露于危险因素 的累积发病率(Pl和P0)或人时发病率(F1和F0)估计, 公式为
RR P1 或 RR F1
第三讲 分类变量的统计描述
分类变量的整理(1)
14名成人的原始数据
编号 1 2 3 4 5 6 7 8 9 10 11 12 13 14
性别 男 女 男 女 男 女 男 女 男 女 男 女 男 女
身高 175 167 187 176 167 178 174 170 167 186 182 159 167 182
OR=odds1/odds2=ad/bc
病人
表3-2 COPD病人与非病人的吸烟情况资料
有吸烟史
无吸烟史
合计
231
125
356
非病人
183
296
479
合计
414
421
835
例3-4 采用例3-1的资料,将基本数据用表3-2表示,试 计算优势与优势比。
病人有吸烟史的优势
odds1
231/ 356 125/ 356
科室 标准组出院
甲院
乙院
病 人 构 成 比 原 治 愈 率 (%) 分 配 治 愈 率 (%) 原 治 愈 率 (%) 分 配 治 愈 率 (%)
Ni/N
pi
⑴
⑵
⑶
(Ni/N)pi
pi
⑷ =⑵ ⑶
⑸
(Ni/N)pi ⑹ =⑵ ⑸
内科
0.2792
妇科
0.2907
报告中的变量分析和描述性统计

报告中的变量分析和描述性统计引言:在进行统计分析时,变量分析和描述性统计是非常重要的步骤。
变量分析帮助我们了解变量的性质和特征,而描述性统计则提供了对数据的整体概括和描述。
本文将探讨报告中的变量分析和描述性统计的各个方面。
一、变量分析的概念和目的1.1 变量的概念变量是指在研究中可以被观察或测量的属性。
它可以是定量的,如年龄、收入;也可以是定性的,如性别、职业。
了解变量的性质对分析结果的解释和应用具有重要意义。
1.2 变量分析的目的变量分析的目的是通过对变量的研究和分析,揭示其内在规律和特点。
通过对变量的分析,可以进一步理解研究主题,并为后续的统计分析提供基础。
二、变量分析的方法和技巧2.1 单变量分析单变量分析是对单个变量进行分析的方法。
常用的单变量分析方法包括频数分析、百分比分析、均值分析等。
通过单变量分析,可以了解变量的分布情况和总体特征。
2.2 多变量分析多变量分析是对多个变量之间的关系进行分析的方法。
常用的多变量分析方法包括相关分析、回归分析、因子分析等。
通过多变量分析,可以了解变量之间的相互影响和关系,进一步深入研究问题。
三、描述性统计的概念和应用3.1 描述性统计的概念描述性统计是对数据进行概括和总结的统计方法。
通过描述性统计,可以了解数据的中心趋势、分散程度和形态特征。
常用的描述性统计指标包括均值、标准差、中位数等。
3.2 描述性统计的应用描述性统计可以帮助我们对数据集的整体特征进行了解和把握。
在报告中使用描述性统计指标,可以直观地呈现数据的分布情况,从而更好地展示研究结果和结论。
四、变量分析和描述性统计的实例应用4.1 假设检验与描述性统计的结合应用假设检验是统计分析中常用的方法之一,通过对样本数据进行分析,推断总体参数的性质。
在假设检验中,借助描述性统计的指标,可以更好地理解和说明研究结果的可信度和意义。
4.2 变量分析与实证研究的关系和应用变量分析是实证研究中不可或缺的一环。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、相对危险度
危险度(risk)是医学研究中常用的一个统计指标, 常用概率(或频率)表示。如发病、患病或死亡的危险 度是指发病、患病或死亡的危险性,这种危险性用发病 率(incidence of a disease)。患病率(prevalence rate)、死亡率(death rate)表示。如吸烟者肺癌、 COPD的患病率高,也可以说吸烟是肺癌、COPD的高 危因素,吸烟者患肺癌、COPD的危险度大。
优选分类变量的描述性统计
分类变量的整理(2)
14名成人的原始数据
编号
性别
身高 婚姻状况
1
男
175
单身
2
女
167
单身
Hale Waihona Puke 3男187
单身
4
女
176
已婚
5
男
167
已婚
6
女
178
已婚
7
男
174
已婚
8
女
170
已婚
9
男
167
离异
10
女
186
离异
11
男
182
分居
12
女
159
分居
13
男
167
分居
14
女
182
分居
不同性别的婚姻状况 性别
例3-1 某医生研究了慢性阻塞性肺病(COPD)病人的吸烟情 况,自1998~2000年收治COPD病人356人,其中231人有 三十年及以上的经常吸烟史(日平均1支以上),在本院其它 科室收治的同年龄组段的非COPD病人(无其它呼吸系统疾 患)479人,其中有三十年及以上的经常吸烟史的183人,试计 算并比较两组病人的吸烟率。
相对危险度(relative risk,简称RR)是指暴露于某种 危险因素的观察对象的发病的危险度与低暴露或无暴 露的观察对象的发病危险度之间的相对比值。相对危 险度常用于队列研究,可用暴露与未暴露于危险因素 的累积发病率(Pl和P0)或人时发病率(F1和F0)估计, 公式为
RR P1 或 RR F1
患者与非患者某因素优势的比值被称作优势比(比值 比)。
OR odds1 odds2
(3 6)
回顾性研究(病例—对照研究)模式:
婚姻状况 男女
单身 2 1 已婚 2 3 离异 1 1 分居 2 2
第一节 常用的比例指标及其意义
一、率: 1. 速率(rate):与时间有关,如某年某病发病率、死亡率。 2. 比率(proportion):与时间无关,如某病治愈率。
二、比: 1. 构成比(constituent ratio):部分与全部之比 2. 相对比(relative ratio):两指标之比
表 3-2 COPD病 人 与 非 病 人 的 吸 烟 情 况 资 料
有吸烟史 无吸烟史 合计
COPD病 人
231
非病人
183
125
356
296
479
合计
414
421
835
吸烟率 64.89% 38.02% 49.58%
构 成 比 (constituent ratio)
构 成 比 = 事物内部某一部分的观察单位数 × 1 0 0 % 事物内部各部分的观察单位数总和
相 对 比 = 甲指标 乙指标
(3-3)
第二节 相对危险度与优势比
一、相对危险度(relative risk,RR): 1. 常用于流行病学的队列研究 2. 暴露组发病危险度与低暴露(或无暴露)组发病危险度之比。
二、优势比(odds ratio,OR): 1. 常用于流行病学的病例对照研究 2. 病例组某危险因素的优势与非病例组某危险因素的优势之比。
矿工与非矿工肺癌发病的危险度(R)分别为两组人群 的10肺万癌,非发矿病工率的(发P)病危。险矿度工P的0=发2病5.危48险/度10P万1=,308.39/
相对危险度 RR 32058..4389//1100万万=12.10
该资料表明,矿工肺癌发病的危险度是非矿工的12.10倍。
二、优势与优势比
一、率 某现象实际发生数与可能发生某现象的总数之比,用 以说明某现象发生的频率或强度,又称频率指标,具有概 率意义。常以百分率、千分率、万分率或十万分率表示。 计算公式为:
率 = 实际发生某现象的观察 数 可能发生某现象的观察 单位总数
×K
(3-1)
式中分子是实际发生某种事件的例数,分母是发生与未发 生 某 事 件 的 总 例 数 , K为 比 例 基 数 , 如 100%, 1000‰ ,万 / 万 , 十 万 /十 万 , 等 。
(3-2)
特 点 : 1.各 部 分 构 成 比 的 合 计 等 于 100%或 1。 2.事 物 内 部 某 一 部 分 的 构 成 比 发 生 变 化
时,其它部分的构成比也相应地发生变化。
表 3-1 吸 毒 与 非 吸 毒 人 群 职 业 构 成 对 比 分 析
吸毒组
非吸毒组
职业 学生 无业 个体 工人 司机 其它
优势(odds)与优势比(odds ratio,简称OR)也是 医学研究中常用的统计指标之一,一般用于病例-对照研 究中。某病患者(或非患者)中某种因素存在的比例P (E)与不存在的比例(1-P(E))的比值被称作优势。
odds P(E) 1 P(E)
(3 5)
odds大于1,说明某因素存在与不存在相比之下有优势; odds等于 1为势均力敌;odds小于1,说明缺乏优势。
人 数 (n) 4
183 54 53 3 13
构 成 比 (%) 1.29
59.03 17.42 17.10
0.97 4.19
人 数 (n) 23 50 27
125 2
130
构 成 比 (%) 6.44
14.01 7.56
35.01 0.56
36.42
合 计 310
100.00
357
100.00
相 对 比 (relative ratio) 为两个有关指标之比,说明一个指标 是另一个指标的几倍或百分之几。两个指 标 可 能 性 质 相 同 或 性 质 不 同 。计 算 公 式 为 :
P0
F0
(3-4)
前瞻性研究(队列研究)的模式:
暴露人群 非暴露人群
结局 结局
发病
未发病 发病
未发病
从时间上来看:
因 现在
果 将来
因素
发病 未发病 发病率
暴露人群 a
b
P1
非暴露人 c
d
P0
群
P1=a/(a+b)
p0=c/(c+d)
RR=p1/p0
例3-3 某锡矿早年用原始方法开采,自1954年起有肺癌 发病和死亡的记录,到1981年止,全公司职工肺癌发病 率为143.34/10万,其中矿工发病率308.39/10万,非 矿工发病率为25.48/10万,试计算矿工与非矿工肺癌发 病的相对危险度。