最新3对总体特征值的估计

合集下载

张厚粲《现代心理与教育统计学》(第3版)笔记考点课后答案

张厚粲《现代心理与教育统计学》(第3版)笔记考点课后答案

张厚粲《现代心理与教育统计学》(第3版)笔记考点课后答案张厚粲著的《现代心理与教育统计学》(第4版)是我国高校采用较多的心理与教育统计学权威教材。

作为这本教材的学习辅导书,1.整理名校笔记,浓缩内容精华。

每章的复习笔记以经典教材为主并结合国内其他著名的心理与教育统计学著作对各章的重难点进行了整理,并参考了《心理统计》(第9版,理查·鲁尼恩等著,人民邮电出版社)等国外教材,因此,2.解析课后习题,提供详尽答案。

3.精选考研真题,补充难点习题。

为了强化对重要知识点的理解,第1章绪论1.1 复习笔记本章重点ü心理与教育统计的研究内容ü选择使用统计方法的基本步骤ü统计数据的基本类型ü心理与教育统计的基本概念一、统计方法在心理和教育科学研究中的作用(一)心理与教育统计的定义与性质1.心理与教育统计学是专门研究如何运用统计学原理和方法,搜集、整理、分析心理与教育科学研究中获得的随机性数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育活动规律的一门学科。

2.具体讲,就是在心理与教育研究中,通过调查、实验、测量等手段有意地获取一些数据,并将得到的数据按统计学原理和步骤加以整理、计算、绘制图表、分析、判断、推理,最后得出结论的一种研究方法。

3.统计学大致分为理论统计学(theoretical statistics)和应用统计学(applied statistics)两部分。

前者侧重统计理论与方法的数理证明,后者侧重统计理论与方法在各个实践领域中的应用。

心理与教育统计学属于应用统计学范畴,是应用统计学的一个分支。

类似的还有生物统计、社会统计、医学统计、人口统计、经济统计等。

(二)心理与教育科学研究数据的特点1.心理与教育科学研究数据与结果多用数字形式呈现2.心理与教育科学研究数据具有随机性和变异性3.心理与教育科学研究数据具有规律性4.心理与教育科学研究的目标是通过部分数据来推测总体特征(三)学习心理与教育统计应注意的事项1.学习心理与教育统计学要注意的几个问题(1)学习心理与教育统计学时,必须要克服畏难情绪。

必修3数学§80

必修3数学§80

练习3.特征值估计
1.聚中(稳定)性特征值估计 众数, 中位数, 平均数
2.离散(波动)性特征值估计 极差, 方差, 标准差
① 课本P:74 例
X甲 X 乙
② 课本P:77 例2
2 乙
注:我们一般碰到的习题大多数是:
S S
2 甲 2 甲
若是: X甲 X 乙 若是: X甲 X 乙
S S
2000
1500
(1)求该公司职员月工资的平均数,中位数,众数 (2)假设副董事长的工资从5000元提升到20000元, 董事长的工资从5500元提升到30000元,那么 新的平均数,中位数,众数又是什么
(3)你认为哪个统计量更能反映这个公司员工的工资水平? 结合问题谈一谈你的看法
解:
(1)平均数为2091元,中位数为1500元,众数为1500元 (2)平均数为3288元,中位数为1500元,众数为1500元
已知某组数据Y1,Y2,Y3,„„的平均值为μ ,标准差为σ 则在正常状态下,可以认为: ①数值Yi分布在区间(μ-σ,μ+σ)内的概率为0.6826
②数值Yi分布在区间(μ-2σ,μ+2σ)内的概率为0.9544 ③数值Yi分布在区间(μ-3σ,μ+3σ)内的概率为0.9974
即在正常状态下,可以认为:
数据Yi的取值几乎全部集中在区间(μ -3σ ,μ +3σ )内 而落在该区间之外的可能性不到3‟ 这在统计学上称为3σ 准则(三倍标准差原则), 也称3σ 原则,或3σ 规则,3σ 原理
练习3.特征值估计
1.聚中(稳定)性特征值估计 众数, 中位数, 平均数
2.离散(波动)性特征值估计 极差, 方差, 标准差 3.结构性特征值估计 频率, 3δ 原则

现代心理与教育统计学 (2)

现代心理与教育统计学 (2)

心理统计学第一章概述描述统计定义:研究如何把心理与教育科学实验或调查得来的大量数据科学的科学的加以整理概括和表述作用:使杂乱无章的数字更好的显示出事物的某些特征,有助于说明问题的实质。

具体内容:1数据分组:采用图与表的形式。

2计算数据的特征值:集中量数(平均数中数)离散量数(方差)3计算量事物间的相关关系:积差相关(2列 3列多列)推断统计定义:主要研究如何利用局部数据(样本数据)所提供的信息,依据数理统计提供的理论和方法,推论总体情形。

作用:用样本推论总体。

具体内容:1如何对假设进行检验。

2如何对总体参数特征值进行估计。

3各种非参数的统计方法。

心理与教育统计基础概念数据类型一从数据来源来划分1计数数据:计算个数或次数而获得的数据。

(都是离散数据)2测量数据:借助一定测量工具或测量标准而获得的数据。

(连续数据)二根据数据所反映的测量水平1称名数据(分类)定义:指用数字代表事物或数字对事物进行分类的数据。

特点:数字只是事物的符号,而没有任何数量意义。

统计方法:百分数次数众数列联相关卡方检验等。

(非参检验)2顺序数据(分类排序)定义:指代事物类别,能够表明不同食物的大小等级或事物具有的某种特征的程度的数据。

(年级)特点:没有相等单位没有绝对零点。

不表示事物特征的真正数量。

统计方法:中位数百分位数等级相关肯德尔和谐系数以及常规的非参数检验方法。

3等距数据(分类排序加减(相等单位))(真正应用最广泛的数据)定义:不仅能够指代物体的类别等级,而且具有相等的单位的数据。

(成绩温度)特点:真正的数量,能进行加减运算,没有绝对零点,不能进行乘除计算。

统计方法:平均数标准差积差相关 Z检验 t检验 F检验等。

4比率数据(分类排序加减法乘除法(绝对零点))定义:表明量的大小,也具有相等单位,同时具有绝对零点。

(身高反应时)特点:真正的数字,有绝对零点,可以进行加减乘除运算。

在统计中处理的数据大多是顺序数据和等距数据。

10.7总体特征值估计

10.7总体特征值估计

频率!
1 6 5 10 1 另解: x 2200 250 220 200 100 23 23 23 23 23 300
加权平均数
例2 若取值为 某校学生日睡眠时间抽样频率分布表如下,试估算该校学生 x1 , x2 ,, xn的频率分别为 p1 , p2 , , pn,
试估算哪个班的技能成绩较好。
解:分别计算两班的平均成绩得
xA 1 (67 72 93 69 86 84 45 77 88 91) 10 77.2
xB
1 (78 96 56 83 86 48 98 67 62 70) 10 74.4
例:用求和符号表示:
① ap1 ap2 ap3 apn ② a1 p1 a2 p2 a3 p3 an pn
例1 从A、B两个班中各抽10名学生参加技能测试,成绩如表
A班 67 72 93 69 86 84 45 77 88 91
B班 78 96 56 83 86 48 98 67 62 70
的日平均睡眠时间. n 则其平均数为 x x1 p1 x2 p2 xn pn xi pi
睡眠时间
6~6.5 6.5~7 7~7.5
人数
5 17 33
频率
0.05 0.17 0.33
i 1
7.5~8
8~8.5
37
6
0.37
0.06
8.5~9
合计
2
100
0.02
1
解:采用中间值进行计算,日平均睡眠时间为:
二、样本方差 方差
若一组样本数据 x1,x2, ,xn的平均数为 x,
2 2 2 1 则s x1 x x2 x xn x n 2

总体特征值估计

总体特征值估计

一知识梳理,基本概念的理解1.平均数的计算方法(1)如果有n 个数据x 1,x 2,…,x n ,那么x =n1(x 1+x 2+…+x n )叫做这n 个数据的平均数,x 读作“x 拔”.(2)当一组数据x 1,x 2,…,x n 的各个数值较大时,可将各数据同时减去一个适当的常数a ,得到x 1′=x 1-a ,x 2′=x 2-a ,…,x n ′=x n -a ,那么,x =x '+a .(3)加权平均数:如果在n 个数据中,x 1出现f 1次,x 2出现f 2次,…,x k 出现f k 次(f 1+f 2+…+f k =n ),那么x =nf x f x f x kk +++ 2211.6.方差的计算方法(1)对于一组数据x 1,x 2,…,x n ,s 2=n1[(x 1-x )2+(x 2-x )2+…+(x n -x )2]叫做这组数据的方差,而s 叫做标准差.(2)公式s 2=n1[(x 12+x 22+…+x n 2)-n x 2]. (3)当一组数据x 1,x 2,…,x n 中的各数较大时,可以将各数据减去一个适当的常数a ,得到x 1′=x 1-a ,x 2′=x 2-a ,…,x n ′=x n -a .则s 2=n1[(x 1′2+x 2′2+…+x n ′2)-n 2x ']. 2总体平均值和方差的估计人类的长期实践和理论研究都充分证明了用样本的平均数估计总体平均值,用样本方差估计总体方差是可行的,而且样本容量越大,估计就越准确. 范例解析例1、某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上,每隔1小时抽一包产品,称其重量是否合格,分别记录.抽查数据如下:甲车间:102,101,99,98,103,98,99;乙车间:110,105,94,95,109,89,98. 问(1)根据抽样是何种抽样方法?(2)估计甲乙两车间包装重量的均值与方差,并说明哪个均值的代表好?哪个车间包装重量较稳定? 例2有一个容量为100的样本,数据的分组及各组的频数如下:[12.5,15.5],6;[15.5,18.5],16;[18.5,21.5],18;[21.5,24.5],22; [24.5,27.5),20;[27.5,30.5),10;[30.5,33.5),8.(1)列出样本的频率分布表; (2)画出频率分布直方图; (3)估计数据小于30.5的概率例3、.某班40人随机分为两组,第一组18人,第二组22人,两组学生在某次数学检测中的成绩如下表:求全班的平均成绩和标准差.课堂练习1.在方差计算公式])20()20()20[(10121022212-++-+-=x x x s 中,数字10和20分别表示 () A .数据的个数和方差 B .平均数和数据的个数C .数据的个数和平均数D .数据组的方差和平均数2.从鱼塘捕得同时放养的草鱼240尾,从中任选9尾,称得每尾鱼的质量分别是1.5,1.6,1.4,1.6,1.3,1.4,1.2,1.7,1.8(单位:千克).依此估计这240尾鱼的总质量大约是______3.x 1是1x ,2x ,3x ,……,40x 的平均值,2x 为41x ,42x ,43x ,……,100x 的平均值,x 是1x ,2x ,3x ,……,100x .则x =124060100x x +4.已知一组数据x ,-1,0,3,5的方差为S 2=6.8,则x=.5.已知一组数据x 1,x 2,…,x 10的方差是2,且(x 1-3)2+(x 2-3)2+…+(x 10-3)2=380,求x . 基础练习1.已知数据12n x x x ,,,的平均数为5x =,则数据137x +,237x +,…,37n x +的平均数为. 2.若M 个数的平均数是X,N 个数的平均数是Y,则这M+N 个数的平均数是______3.数据a 1,a 2,a 3,…,a n 的方差为σ2,则数据2a 1,2a 2,2a 3,…,2a n 的方差为.4,则下列说法正确的是.①甲的样本容量小 ②乙的样本容量小 ③甲的波动较小 ④乙的波动较小5.右图是2006年中央电视台举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个4 最低分后,所剩数据的平均数和方差分别为. 课堂小结1理解样本平均数的计算方法 2理解样本方差的计算方法 课后作业 1书上2练习册。

基于最大特征值估计的C3算法及应用

基于最大特征值估计的C3算法及应用

基于最大特征值估计的C3算法及应用隋京坤;郑晓东;李艳东【摘要】The third⁃generation coherence algorithm,C3,is robust to suppress noise and posseses high resolution.However,the process of computing eigenvalues of the covariance matrix in C3 istime⁃consuming.To avoid computing all eigenvalues,this paper proposes a fast convergence algorithm based an eigenvalue estimation of real symmetric matrices to calculate the dominant eigenvalue.To control the precision of the algorithm,this paper presents an error evaluation formula.By adding traces along the boundary of the seismic datavol⁃ume,we avoid judging whether the spatial window oversteps the boundary when recursion strategy is applied in a horizontal direction. The application to real data shows that the efficiency of C3 is improved by approxinately 3 times.%第三代相干体算法( C3算法)具有分辨率高、压制噪声能力强的优点,但是该算法需要计算协方差矩阵的特征值,所以耗时较多。

总体特征值的估计

总体特征值的估计

总体特征值的估计
总体特征值是统计中一个重要的概念,是应用统计学研究中常用的一类参数,它提供了关于总体本身的全面信息,包括总体位置参数和离散程度参数,例如均值、方差、百分位数、偏度和峰度等,因此总体特征值的估计变得尤为重要。

一、总体特征值估计的重要性
总体特征值估计可以帮助了解一个总体的某些特性,如均值、方差、偏度和峰度,这些特征值的参数可以帮助研究人员了解样本数据的结构和变化特征,以及和其他总体的比较。

此外,均值、方差等特征值可以用来估计总体参数,从而为研究开展提供线索和启示。

二、均值的估计
均值是总体特征值之一,它表示样本数据的中心位置,是衡量一组数据的整体水平的重要参数。

常用的均值估计方法有:最大似然法、最小二乘法、贝叶斯估计法和蒙特卡洛估计法等。

三、方差的估计
方差也是总体特征值之一,它表示样本数据的离散程度,是衡量一组数据波动程度的重要参数。

常用的方差估计方法有:无偏样本方差估计、偏权无偏方差估计、最大似然估计和蒙特卡洛估计法等。

四、偏度和峰度的估计
偏度和峰度是总体中的重要特征值,它们分别描述了样本数据的分布偏移程度和波动程度。

常用的偏度和峰度估计方法有:最大似然估计、最小二乘估计、贝叶斯估计、正态分布模型估计等。

五、小结
总体特征值估计是统计学研究中重要的一环,是评价样本数据分布状况和总体特征值的重要参考,通常利用最大似然法、最小二乘法、贝叶斯估计法和蒙特卡洛估计法等方法估计总体的均值、方差、偏度和峰度等参数。

能够有效、准确的估计总体参数,是做出正确统计研究判断和决策的关键所在,也是实现成功研究的一大条件。

张厚粲《现代心理与教育统计学》(第3版)笔记和课后习题(含考研真题)详解

张厚粲《现代心理与教育统计学》(第3版)笔记和课后习题(含考研真题)详解

张厚粲《现代心理与教育统计学》(第3版)笔记和课后习题详解第1章绪论一、统计方法在心理和教育科学研究中的作用(一)心理与教育统计的定义与性质1.心理与教育统计学是专门研究如何运用统计学原理和方法,搜集、整理、分析心理与教育科学研究中获得的随机性数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育活动规律的一门学科。

2.具体讲,就是在心理与教育研究中,通过调查、实验、测量等手段有意地获取一些数据,并将得到的数据按统计学原理和步骤加以整理、计算、绘制图表、分析、判断、推理,最后得出结论的一种研究方法。

3.统计学大致分为理论统计学(theoretical statistics)和应用统计学(applied statistics)两部分。

前者侧重统计理论与方法的数理证明,后者侧重统计理论与方法在各个实践领域中的应用。

心理与教育统计学属于应用统计学范畴,是应用统计学的一个分支。

类似的还有生物统计、社会统计、医学统计、人口统计、经济统计等。

(二)心理与教育科学研究数据的特点1.心理与教育科学研究数据与结果多用数字形式呈现2.心理与教育科学研究数据具有随机性和变异性3.心理与教育科学研究数据具有规律性4.心理与教育科学研究的目标是通过部分数据来推测总体特征(三)学习心理与教育统计应注意的事项1.学习心理与教育统计学要注意的几个问题(1)学习心理与教育统计学时,必须要克服畏难情绪。

心理与教育统计学偏重于应用,只要有中学数学知识就具备了学好心理与教育统计学的前提。

(2)在学习时要注意重点掌握各种统计方法使用的条件。

(3)要做一定的练习。

2.应用心理与教育统计方法时要做到:(1)克服“统计无用”与“统计万能”的思想,注意科研道德。

(2)正确选用统计方法,防止误用和乱用统计。

二、心理与教育统计学的内容心理与教育统计学的研究内容,可依不同的分类标志划分为不同的类别。

(一)依据统计方法的功能进行分类,统计学可分为下述三种类别,这是由于数理统计的发展历史所决定的,也是最常见的分类方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

)、
活动设计:
进入青春期,中学生的生理、心理都产生很大的变化,性意识也随之觉醒。

他们乐意与异性同学交往。

热心与异性同学一起参与学习、讨论、班级活动等。

男生在女生面前,往往表现出健壮、刚强、宽容大度;女生在男生面前,则表现出温柔、亲切、热情,这是正常的性心理的表现。

但我们有些同学不能正确认识性心理、性意识的产生,不能正确处理与异性同学之间的关系。

有的同学在异性同学面前过分夸张地说话、做事,以引起异性同学对自己的注意;有的同学不能很好地控制自己对异性同学的好感,陷入感情的旋涡;有的同学为自己性意识的产生感到困惑,甚至以为自己变坏了,因而忧心忡忡。

……
这些,严重影响了同学的身心健康,影响同学之间的交往,影响学习和工作。

而过去,学校对学生这方面的帮助教育远远不够,学生
只能从书本或其他渠道偷偷了解有关的知识。

因此,有必要让学生从公开的渠道了解有关性意识、性道德的知识,了解青春期的性意识的特点,学会与异性同学正常交往。

教学内容:一是让学生了解青春期性意识的特点;二是懂得如何与异性同学正常交往。

教学目标:
让学生了解性意识的产生是青少年成长过程中出现的正常现象,正确对待性意识,培养正确的性道德,与异性同学正常交往。

教学难点与重点:
因青春期学生特有的羞涩,学生大多不敢公开议论这个话题,所以要事先做好部分学生的工作,让学生有思想准备,并收集资料准备上课。

1、青春期性意识产生的特点。

2、与异性同学正常交往。

教学形式:老师讲课与学生讨论发言结合
教学准备:
1、学生:请三、四个同学事先找有关男女同学交往的典型事例,有关的语录、格言,并且每人准备2分钟的说话,或谈典型事例,或谈自己的体会。

2、老师:准备有关男女同学交往的正反两方面的典型事例,有关的语录三、四条。

教学过程:
(一)故事引入(2分钟)
有一位男生,上高中以后,感到自己产生了一些奇怪的变化。

他特别喜欢坐在他后面的一个女生,每天都忍不住想回头看她几眼,听到这位女生大声的说笑声,他心里就发颤;有一种异样的感觉。

他为自己产生这种念头感到羞耻,以为自己变坏了;又怕其他同学知道后取笑自己,于是就拼命压制自己的想法,不让自己回头。

实在忍不住,就用小刀在自己手腕上划。

可是手腕上虽伤痕累累,但仍然忍不住要回头。

为此他变得精神恍惚,最后不得不请教心理医生。

心理医生会告诉这位男生什么呢?这就是我们这节课要讲的主要
内容,与异性同学正常的交往。

板书:男女同学正常交往。

在讲这个问题之前,让我们先了解青春期意识,性心理产生的特点。

(二)老师讲述青春期性意识的几个特点(5分钟)
(板书)1、好奇性。

相关文档
最新文档