2.4.1 等比数列 (1)
2_4_1等比数列(一)

2.4.1等比数列的概念和通项公式(一)学习目标:1、准确表达等比数列的定义,准确表述公比的意义。
2、理解通项公式的推导过程,并会用此公式解题,并能用方程的思想,根据条件解决相关问题。
学习重点:对等比数列的理解及通项公式的应用。
学习难点:准确使用等比数列的通项公式。
一、知识回顾1、等差数列的概念及通项公式:2、等差中项:3、等差数列求和公式 1 2 二、设问导读1、问题导入:观察下面的数列说出各自的特点。
① 1,2,4,8,…,263② 5,25,125,625,… ③ 1,-21,41,-81,… ④ 31,91,271,811,…2、等比数列定义: 叫做等比数列, 叫做等比数列的公比,用字母 表示。
3、等比数列通项公式: 三、自学检测1、等比数列{n a }中,①n a =1104n ⋅,求1a 及q 。
②2nn a = ;求1a 及q 。
解:① ②2、①等比数列{n a }中,已知3a = 45,q =-3,求5a②一个等比数列的第三项与第四项分别是12与18,求它的第一项和第二项。
解:① ②3、某中细菌在培养过程中,每20分中分裂一次,(一次分裂为2个)经过331小时,这种细菌由1个可繁殖几个?四、巩固练习1、在等比数列{}n a 中,已知127a =-,公比13q =-,那么6a 的值是 2是等比数列4,中的第 项3、在等比数列{}n a 中,已知首项为98,末项为13,公比为23,则此等比数列的项数是 4、等比数列,22,33,x x x ++中的第4项为5、在等比数列{}n a 中①2418,8 a a ==,则 1_____,_____a q == ②、574, 6 a a ==,则 9_____a = ③514215, 6 a a a a -=-=,则 3_____a =6、在等比数列{}n a 中,已知1411,216a a ==,则该数列的通项公式是 五、拓展延伸7、在8与5832之间插入5个数,使它们组成以8为首项的等比数列,则这个数列的第5项 是 。
人教课标版高中数学必修五《等比数列(第1课时)》教案(1)-新版

2.4.1等比数列第一课时一、教学目标1.核心素养通过学习等比数列提高从数学角度发现和提出、分析和解决问题的能力,锻炼数学抽象和逻辑推理能力.2.学习目标(1)由特殊到一般,理解并会判断等比数列.(2)掌握等比数列通项公式及证明.(3)应用等比数列知识解决相应问题.3.学习重点(1)等比数列定义及判断.(2)通项公式的推导.4.学习难点会用等比数列解决相应问题.二、教学设计(一)课前设计1.预习任务任务1阅读教材,思考:什么是等比数列?任务2观察等比数列,总结等比数列的规律,前后两项的比值可以是任意实数吗?任务3结合之前的探索,能写出其通项公式吗?等比数列何时递增,递减,或者变成等差数列?2.预习自测1.数列4,16,64,256…是什么数列?第五项是多少?答案:等比数列;1024.【知识点:等比数列】【解析】等比数列的通项公式是:11n n a a q -=2.在等比数列{}n a 中,472,16,a a ==则n a =________..23-n 答案:【知识点:等比数列通项公式】【解析】等比数列的通项公式是:11n n a a q -=,由题意求出n 和q 3.已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz 的值为( ) A .-3 B .±3 C .-3 3 D .±3 3 答案:C【解析】∵-1,x,y,z ,-3成等比数列,∴2y =xz =(-1)×(-3)=3,且2x y =->0,即y”的什么条件?有都”是“对任意正整数是公比,则“是首项,等比数列中n n a a n q a q a >>>+111,1,0,.4答案:充分不必要条件.【知识点:等比数列通项公式,充要条件的判断;数学思想:推理论证能力】【解析】充分不必要条件.由q >1,得1n n q q ->,又10a >得111n n a q a q -⋅>⋅即1n a +>n a 反之不然.取11n n a a q -==)21(n-,可得 1n a +>n a ,但1a =21-(二)课堂设计 1.知识回顾 (1)等差数列概念.(2)等差数列通项公式及推导. 2.问题探究问题探究一 借助等差数列的定义,类比得到等比数列定义 ●活动一 回顾旧知,夯实基础.之前我们学习了等差数列,我们是怎样定义并且判断等差数列?如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示. 数学语言表达式:1n n a a d +-= (n ∈N *,d 为常数),或1n n a a d --= (2,n d ≥为常数). ●活动二 探索规律,发现新知. 类比于等差数列,观察以下几个数列2,4,8,16,32…;1,1,1,1,1…;1,-1,1,-1,1,-1…;1,0,1,0,1,0,…;3,9,27,81,243,…;它们都有着怎样的规律 ●活动二 新旧整合,得出结论.结合活动一与活动二,能给出等比数列定义吗?如果一个数列从第2项起,每一项与它的前一项的比等于同一个非0常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示.数学语言表达式:1n n a q a -=(2,n ≥q 为非0常数),或1n naq a +=(n ∈N *,q 为非0常数).问题探究二 类比等差数列通项公式及性质,结合等比数列定义得到等比数列通项公式和性质,●活动一 温故知新,迎难而上. 回忆等差数列,写出通项公式.通项公式:()11n a a n d =+-.推广:()n m a a n m d =+-(m,n ∈N *). ●活动二 类比旧知得出新知.在等比数列中,是否只需确定某些量就可以写出通项公式?只需确定首项与公比即可得到通项公式11n n a a q -=.推广: n m n m a a q -=,公比为非0常数.●活动三 思维谨慎,扎实前进. 能否给出通项公式证明?借助定义,a na n -1=q (n ≥2,q 为非0常数),列出n -1个式子,累乘后得到通项公式. ●活动四 夯实基础,勇于探索.等差数列中,公差大于0时,数列递增;反之递减.等比数列也有相似结论吗?请归纳总结.首相大于0,公比大于1时递增;公比大于0小于1时递减;首项小于0时,公比大于0小于1时递增,公比大于1时递减;首项不等于0,公比等于1时,既是等差又是等比;公比小于0时,为摆动数列.问题探究三●活动一 初步运用 基础知识的掌握例1.在等比数列{}n a 中,253618,9,1n a a a a a +=+==,则n =________. 【知识点:等比数列通项公式】 答案:6例2.在等比数列{}n a 中, 1a <0, 若对正整数n 都有1n n a a +<,那么公比q 的取值范围是?【知识点:等比数列通项公式】答案:由1n n a a +<得1111,,01n n n n a q a q q q q --<∴>∴<< ●活动二 能力提升 通项公式性质的运用例1. 数列{}n a 是等差数列,若1351,3,5a a a +++构成公比为q 的等比数列,则q =________.【知识点:等比数列性质】 答案:1.例2.在正项等比数列{}n a 中, 1n n a a +>,28466,5a a a a ⋅=+=,则57a a =( ) A.56 B.65 C.23D.32【知识点:等比数列性质】 答案:D 3.课堂总结 【知识梳理】(1)等比数列定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个非0常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示. 数学语言表达式:1n n a q a -= (n ≥2,q 为非0常数),或1n naq a +=(n ∈N *,q 为非0常数).(2)等比数列通项公式: 11n n a a q -=;通项公式的推广: n m n m a a q -=. 【重难点突破】(1)等比数列通项公式运用时为了减少计算量可以尝试使用其推广式. (2)公比0≠q 这是必然的,不存在公比为0的等比数列,还可以理解为等比数列中,不存在数值为0的项,各项不为0的常数列既是等差数列又是等比数列;至于等比数列的增减,则可以从首项与公比的正负及范围,通过列不等式进行确定. (3)等比数列的定义中有“从第二项起”“同一个常数”的描述应与等差数列中的描述理解一致.(4)等比数列的通项公式可以用迭代法累乘法推导,其中累乘法与累加法相似,可做一做比较,便于掌握. 4.随堂检测 一、选择题1.在等比数列{}n a 中,64,852==a a ,则公比q 为( ) A .2 B .3 C .4 D .8 答案:A.解析:【知识点:等比数列的通项公式】 二、解答题1.求下列各等比数列的通项公式: (1)21-=a ,83-=a . (2)51=a ,且12+n a n a 3-=. (3)51=a ,且11+=+n na a n n . 答案:(1)n n n n n n a a )2()2)(2(22)2(11-=--=-=-=--或.(2)1)23(5--⨯=n n a .(3)na n a n 311==.解析:【知识点:等比数列通项公式】 2.求以下等比数列的第4项与第5项: (1)5,-15,45,……. (2)1.2,2.4,4.8,…….(3)213,, (328).答案:(1)1354-=a ,4055=a . (2)6.94=a ,2.195=a . (3)4a =329,5a =12827. 解析:【知识点:等比关系的确定;数学思想:推理论证能力】3.有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数. 答案:这四个数为0, 4, 8, 16或15, 9, 3, 1.解析:【知识点:等比关系的确定;数学思想:推理论证能力】 设四个数依次为x,y,12-y,16-x .依题意,有 x +(12−y )=2y ①()()21612y x y -=-②由①式得x =3y -12 ③将③式代入②式得y (16-3y +12)=(12-y )2,整理得y 2-13y +36=0,解得124,9y y ==,代入③式得120,15x x ==.从而得所求四个数为0,4,8,16或15,9,3,1. 5.(1)已知{}n a 是等比数列,且2435460,225n a a a a a a a >++=, 求53a a +.(2)c a ≠,三数c a ,1,成等差数列,22,1,c a 成等比数列,求22ca ca ++. 答案:(1) 3a +55=a . (2)3122=++c a c a .解析:【知识点:等差数列的性质,等比数列】(1)∵{}n a 是等比数列,∴()224354635225a a a a a a a a ++=+=.又0n a >, ∴355a a +=.(三)课后作业基础型自主突破 一、填空题1.已知等比数列{}n a 的公比为正数,且248522,1,a a a a ⋅==则1a = .答案: 1a =解析:【知识点:等比关系的确定;数学思想:推理论证能力】设等比数列{}n a 的公比为q ,∵ 2482a a a ⋅=211a a ==,∴ 1a =2.设数列{}n a 是首项为1,公比为-3的等比数列12345||||||a a a a a ++++=______. 答案:121.解析:【知识点:等比数列】∵数列{}n a 是首项为1,公比为-3的等比数列,∴()1113n n n a a q --==-,∴123451,3,9,27,81,a a a a a ==-==-=∴则12345||||||1392781121a a a a a ++++=++++=. 3.等比数列{}214n +的公比为 ______ . 答案:16.解析:【知识点:等比数列的通项公式】 等比数列的通项公式是:11n n a a q -=4.若1、a 、b 、c 、9成等比数列,则b = ______ . 答案:3.解析:【知识点:等比数列】利用等比数列通用公式11n n a a q -=求出相应的值421531,9,3a a q a q b ======,3b ∴=5.公比为2的等比数列{}n a 的各项都是正数,且31116,a a =,则210log a = ______ . 答案:5.解析:【知识点:等比数列通项公式,对数的运算性质】∵公比为2的等比数列{}n a 的各项都是正数,且31116,a a =,∴7a =4,∴1a •26=4,解得1a =42-,∴9495101222a a q -==⨯=,∴52102log log 25a ==. 故答案为:5.能力型师生共研 一、选择题1.在数列{}n a 中,1111,,4n n a a a +==则99a =________. A.125504B.2500C.124504D.2401 答案:B解析:【知识点:等比关系的确定;数学思想:推理论证能力】 二、填空题1.设{}n a 为公比1q >的等比数列,若2004a 和2005a 是方程24830x x ++=的两根,则=+20072006a a _________. 答案:-18解析:【知识点:等比数列,根与系数的关系】根据{}n a 为公比q >1的等比数列, 2004a 和2005a 是方程4x 2+8x +3=0的两根,可得2004a =-2005=2006+2007a =-18. 三、证明题1.已知:b 是a 与c 的等比中项,且c b a ,,同号,求证:3a b c ++等比数列答案:见解析解析:【知识点:等比数列】 由题设:ac b =2得:22333)3(333ca bc ab bc b ab b c b a abc c b a ++=++=⨯++=⨯++ ∴3,3,3abc ca bc ab c b a ++++也成等比数列.探究型多维突破一、选择题1.已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是( )A .1(0,2+B .C .D .)251,251(++- 答案:D.解析:【知识点:等比关系的确定,解三角形;数学思想:推理论证能力】 设三边:a 、qa 、2q a 、q >0则由三边关系:两短边和大于第三边a +b >c ,即 (1)当q ≥1时a +qa >2q a ,等价于解二次不等式:21q q --<0,由于方程2q q --(2)当q <1时,a 为最大边,qa +2q a >a 即得2q q --⎭故选D . 二、证明题1.设d c b a ,,,均为非零实数,()()0222222=+++-+c b d c a b d b a ,求证:c b a ,,成等比数列且公比为d答案:见解析解析:【知识点:等比关系的确定;数学思想:推理论证能力,运算求解能力,创新意识,应用意识】证明:证一:关于d 的二次方程()()0222222=+++-+c b d c a b d b a 有实根, ∴()()0442222≥+-+=∆b a c a b ,∴()022≥--ac b则必有:02=-ac b ,即ac b =2,∴c b a ,,成等比数列设公比为q ,则aq b =,2aq c =代入()()024********=+++-+q a q a d aq a aq d q a a∵()0122≠+a q ,即0222=+-q qd d ,即≠=q d证二:∵()()0222222=+++-+c b d c a b d b a ∴()()022222222=+-++-c bcd d b b abd d a∴()()022=-+-c bd b ad ,∴b ad =,且c bd =∵d c b a ,,,非零,∴d bca b == 自助餐 一、选择题1.等比数列{}n a 中,6a 和10a 是方程2620x x ++=的两根,则8a =( )A.2±B.答案:C.解析:【知识点:等比数列,根与系数的关系】等比数列{}n a 中,6a 和10a 是方程2620x x ++=的两根, 6106a a +=-,可得261082a a a ⋅==,6a 和10a 都是负数,可得8a =-2..故选:C .2.已知等比数列{}n a 的公比为正数,且248522,1,a a a a ⋅==则1a =( )A. 0.5B. 22答案:C.解析:【知识点:等比数列】设公比为q ,由已知得()22841112a q a q a q ⋅=,即q 2=2,又因为等比数列{}n a 的公比为正数,所以q =2.22=,故选C.2.等比数列{}n a 的首项为1,项数是偶数,所有的奇数项之和为85,所有的偶数项之和为170,则10a =( )A.32 64.B C.512 D.1024 答案:C.解析:【知识点:等比关系的确定;数学思想:推理论证能力】设等比数列的项数为2n ,∵所有的奇数项之和为85,所有的偶数项之和为170, ∴S 奇:S 偶=1:2.∵S 奇=1321...n a a a -+++,S 偶=242...n a a a +++=q S 奇由题意可得,q =2,∴9910112512a a q ==⨯=.故选:C .3.在等比数列{}n a 中, 11,2,32n a q a ===,则n =( )A.5B.6C.7D.8 答案:B.解析:【知识点:等比数列的通项公式】11n n a a q -=,求得n =84.等比数列{}n a 中, 385,2a a ==,则数列{}lg n a 的前10项和等于( )A.2B.5C.1050D.lg答案:B.解析:【知识点:等比数列的通项公式,对数的运算性质】由题意得,等比数列{}n a 中, 385,2a a ==,所以385610,a a a a ⋅=⋅=,由等比数列的性质得, ()551231056...10a a a a a a ⋅⋅⋅=⋅=,所以数列{}lg n a 的前10项和1210l g l g ...l g 5n S a a a =+++=,故选:B . 6.数列{}n a 的首项1,数列{}n b 为等比数列且1n n na b a +=,若10112b b ⋅=,则21a =( ) A.20 B.512 C.1013 D.1024 答案.D.解析:【知识点:等比数列的通项公式】由1n n n a b a +=可知202120232121,,,a a b a a b a a b === ,所以202123122021a a a a a a b b b ⋅⋅⋅=⋅⋅⋅ ,又数列{}n b 为等比数列,所以1202191011b b b b b b ===L ,于是有121102a a =,即110212a a =,又11=a ,所以102421021==a ,故答案选D. 二、填空题1.已知数列{}n a 为等比数列,且5a =4,9a =64,则7a =____________. 答案:16.解析:【知识点:等比数列的通项公式】11n n a a q -=,由已知条件求出通项公式1124n n a -=⋅,所以716a =.2.数列{}n a 中, 112,n n a a a cn +==+(c 是常数,n =1,2,3,…),且123,,a a a 成公比不为1的等比数列.则c 的值是 ______ .答案:2.解析:【知识点:等比数列】∵112,n n a a a cn +==+,∴232,23,a c a c =+=+又∵123,,a a a 成公比不为1的等比数列,∴()()22c 223c +=+,即c 2-2c=0解得c=2,或c=0,故答案为23.若公比不为1的等比数列{}n a 满足()21213•13log a a a ⋯=,等差数列{}n b 满足77b a =,则1213b b b +⋯+的值为 ______ . 答案:26.解析:【知识点:等比数列通项公式,等差数列前n 项和】 ∵公比不为1的等比数列{a n }满足()21213•13log a a a ⋯=,∴()()()13212132727•1313log a a a log a log a ⋯===,解得7772,2,a b a ===,由等差数列的性质可得777121372,2,...1326a b a b b b b ===+++==,故答案为:26 三、解答题1.在等比数列{}n a 中, 5142-=15,-=6a a a a ,求3a 和q . 答案:见解析解析:【知识点:等比数列通项公式】,6=-,15=-}中中在等比数列{2415a a a a a n 答案:.4=,1=时,2=q 当31a a2.设{}n a 是一个公差为d (d ≠0)的等差数列,它的前10项和10110S =且124,,a a a 成等比数列,求数列{}n a 的通项公式. 答案: n a =2n .解析:【知识点:等差数列前n 项和,等比数列】∵124,,a a a 成等比数列,∴2214a a a =又∵{an}是等差数列,∴2141,3a a d a a d =+=+, ∴()()21113a d a a d +=+,即222111123a a d d a a d ++=+,化简可得1a d =,∵101101092110S a d =+⨯=,∴11045110a d +=.又∵1a d =,∴55d =110,∴d =2, ∴()112n a a n d n =+-=3.已知数列{}n a 的奇数项成等差数列,偶数项成等比数列,公差与公比均为2,并且2415798,a a a a a a a +=++=. (1)求数列{}n a 的通项公式;(2)求使得1212m m m m m m a a a a a a ++++⋅⋅=++成立的所有正整数m 的值. 答案:见解析解析:【知识点:等比数列,等比数列通项公式】31517142622,4,6,2,4a a a a a a a a a a =+=+=+==Q 2415798,a a a a a a a +=++=2211212124,2642a a a a a a a a ∴+=+++++=++121,2a a ∴==∴na =⎩⎨⎧为奇数为偶数n n n n,,22; (2)∵1212m m m m m m a a a a a a ++++⋅⋅=++成立, ∴由上面可以知数列{}n a 为:1,2,3,4,5,8,7,16,9,… 当m =1时等式成立,即1+2+3=-6=1×2×3;等式成立. 当m =2时等式成立,即2×3×4≠2+3+4;等式不成立. 当m =3、4时等式不成立; 当m ≥5时,∵12m m m a a a ++⋅⋅为偶数, 12m m m a a a ++++为奇数, ∴可得m 取其它值时,不成立, ∴m =1时成立.。
2.4.1等比数列

2.4.1等比数列教学目的:1.掌握等比数列的定义.2.理解等比数列的通项公式及推导 学习重点:等比数列的定义及通项公式学习难点:灵活应用定义式及通项公式解决相关问题 课堂过程:一、复习引入:首先回忆一下前几节课所学主要内容:1.等差数列的定义: n a -1-n a =d ,(n ≥2,n ∈N +)2.等差数列的通项公式:d n a a n )1(1-+= (=n a d m n a m )(-+或n a =pn+q (p 、q 是常数))3.几种计算公差d 的方法:d=n a -1-n a =11--n a a n =mn a a mn --4.等差中项:,,2b a ba A ⇔+=成等差数列 5.等差数列的性质: m+n=p+q ⇒q p n m a a a a +=+ (m, n, p, q ∈N )6.数列的前n 项和n S :2)(1n n a a n S +=,2)1(1dn n na S n -+= n )2da (n 2d S 12n -+=,当d ≠0,是一个常数项为零的二次式 7.n S 是等差数列前n 项和,则k k k k k S S S S S 232,,-- 仍成等差数列前面我们已经研究了一类特殊的数列—等差数列,今天我们一起研究第二类新的数列——等比数列二、讲解新课:下面我们来看这样几个数列,看其又有何共同特点? 1,2,4,8,16,…,263; ① 5,25,125,625,…; ②1,-81,41,21-,…; ③ 对于数列①,n a =12-n ;1-n na a =2(n ≥2) 对于数列②,n a =n5 ;1-n na a =5(n ≥2)对于数列③,n a =1)1(+-n ·121-n ;211-=-n n a a (n ≥2) 共同特点:从第二项起,第一项与前一项的比都等于同一个常数1.等比数列:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q 表示(q ≠0),即:1-n na a =q (q ≠0) 1︒“从第二项起”与“前一项”之比为常数(q) {n a }成等比数列⇔nn a a 1+=q (+∈N n ,q ≠0 2︒ 隐含:任一项00≠≠q a n 且“n a ≠0”是数列{n a }成等比数列的必要非充分条件. 3︒ q= 1时,{a n }为常数2.等比数列的通项公式1: )0(111≠⋅⋅=-q a q a a n n由等比数列的定义,有:q a a 12=;21123)(q a q q a q a a ===; 312134)(q a q q a q a a ===;… … … … … … …)0(1111≠⋅⋅==--q a q a q a a n n n3.等比数列的通项公式2: )0(11≠⋅⋅=-q a q a a m m n4.既是等差又是等比数列的数列:非零常数列.等比数列的图象1(1)数列:1,2,4,8,16,…1234567891024681012141618200●●●●●等比数列的图象2(2)数列:7123456789101234568910●●●●,81,41,21,1,2,4,8●●●等比数列的图象3(1)数列:4,4,4,4,4,4,4,…71234567891012345689100●●●●●●●●●●等比中项观察如下的两个数之间,插入一个什么数后者三个数就会成为一个等比数列:(1)1,,9 (2)-1,,-4(3)-12,,-3 (4)1,,1±3±2±6±1如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项。
【优化方案】2012高中数学 第2章2.4.1等比数列的概念及通项公式课件 新人教A版必修5

2.用函数的观点看等比数列的通项公式 . - 等比数列{a 的通项公式 等比数列 n}的通项公式 an=a1qn 1, 还可以改写 a1 n 当 > , ≠ = 为 an= q q .当 q>0,且 q≠1 时,y=qx 是一个指 a1 n 数函数, 数函数,而 y= q ·q 是一个不为 0 的常数与指数 = 函数的积.因此等比数列{a 的图象是函数 = 函数的积.因此等比数列 n}的图象是函数 y= a1 x ·q 图象上的一些孤立的点. 图象上的一些孤立的点. q
例3
已知数列{a 满足 满足a 已知数列 n}满足 1=1,an+1=2an+1. , +
(1)求证:数列{an+1}是等比数列; 求证:数列 是等比数列; 求证 是等比数列 (2)求数列 n}的通项公式. 求数列{a 的通项公式 的通项公式. 求数列 【思路点拨】 思路点拨】 将递推公式变形, 将递推公式变形,然后利用等比 数列的定义判定. 数列的定义判定. 证明: 【解】 (1)证明:因为 an+1=2an+1, 证明 , 所以 an+1+1=2(an+1). = . , ≠ , ≠ 由 a1=1,知 a1+1≠0,可得 an+1≠0. an+1+1 * 所以 =2(n∈N ). ∈ . an+1 所以数列{a 是等比数列. 所以数列 n+1}是等比数列. 是等比数列
2. 4.1 等 比 数 列 的 概 念 及 通 项 公 式
课前自主学案
课堂互动讲练
知能优化训练
课前自主学案
温故夯基 1.如果一个数列从__________起,每一项与它 .如果一个数列从 第二项 起 的前一项的差都等于__________, 的前一项的差都等于 同一常数 ,那么这个数列 叫做等差数列. 叫做等差数列. a1+(n-1)d 是关 - 2.等差数列的通项公式:an=___________是关 .等差数列的通项公式: 的一次函数式(或常函数 于n的一次函数式 或常函数 . 的一次函数式 或常函数).
高中数学 第二章 数列 2.4.1 等比数列的概念及通项公式练习 新人教A版必修5-新人教A版高一必

第1课时等比数列的概念及通项公式课后篇巩固探究A组1.若a,b,c成等差数列,则一定()A.是等差数列B.是等比数列C.既是等差数列也是等比数列D.既不是等差数列也不是等比数列解析因为a,b,c成等差数列,所以2b=a+c,于是,所以一定是等比数列.答案B2.在等比数列{a n}中,a2 017=-8a2 014,则公比q等于()A.2B.-2C.±2D.解析由a2 017=-8a2 014,得a1q2 016=-8a1q2 013,所以q3=-8,故q=-2.答案B3.在等比数列{a n}中,a n>0,且a2=1-a1,a4=9-a3,则a4+a5的值为()A.16B.27C.36D.81解析由a2=1-a1,a4=9-a3,得a1+a2=1,a4+a3=9.设公比为q,则q2==9.因为a n>0,所以q=3,于是a4+a5=(a1+a2)q3=27.答案B4.已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则a2=()A.-4B.-6C.-8D.-10解析∵a4=a1+6,a3=a1+4,a1,a3,a4成等比数列,∴=a1·a4,即(a1+4)2=a1·(a1+6),解得a1=-8,∴a2=a1+2=-6.故选B.答案B5.已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则S n=()A.2n-1B.C.D.解析由S n=2a n+1,得S n=2(S n+1-S n),即2S n+1=3S n,.又S1=a1=1,所以S n=,故选B.答案B6.已知等比数列{a n},a3=3,a10=384,则该数列的通项a n=.解析设公比为q.∵=q7==27,∴q=2.∴a n=a3q n-3=3·2n-3.答案3·2n-37.在数列{a n}中,已知a1=3,且对任意正整数n都有2a n+1-a n=0,则a n=.解析由2a n+1-a n=0,得,所以数列{a n}是等比数列,公比为.因为a1=3,所以a n=3·.答案3·8.在等比数列{a n}中,若a1=,q=2,则a4与a8的等比中项是.解析依题意,得a6=a1q5=×25=4,而a4与a8的等比中项是±a6,故a4与a8的等比中项是±4.答案±49.导学号04994040已知数列{a n}是等差数列,且a2=3,a4+3a5=56.若log2b n=a n.(1)求证:数列{b n}是等比数列;(2)求数列{b n}的通项公式.(1)证明由log2b n=a n,得b n=.因为数列{a n}是等差数列,不妨设公差为d,则=2d,2d是与n无关的常数,所以数列{b n}是等比数列.(2)解由已知,得解得于是b1=2-1=,公比q=2d=24=16,所以数列{b n}的通项公式b n=·16n-1.10.已知数列{a n}满足a1=,且a n+1=a n+(n∈N*).(1)求证:是等比数列;(2)求数列{a n}的通项公式.(1)证明∵a n+1=a n+,∴a n+1-a n+.∴.∴是首项为,公比为的等比数列.(2)解∵a n-,∴a n=.B组1.若a,b,c成等差数列,而a+1,b,c和a,b,c+2都分别成等比数列,则b的值为()A.16B.15C.14D.12解析依题意,得解得答案D2.在等比数列{a n}中,a1=1,公比|q|≠1.若a m=a1a2a3a4a5,则m等于()A.9B.10C.11D.12解析∵a m=a1a2a3a4a5=q·q2·q3·q4=q10=1×q10,∴m=11.答案C3.已知等比数列{a n},各项都是正数,且a1,a3,2a2成等差数列,则=()A.3+2B.1-C.1+D.3-2解析由a1,a3,2a2成等差数列,得a3=a1+2a2.在等比数列{a n}中,有a1q2=a1+2a1q,即q2=1+2q,得q=1+或1-(舍去),所以=q2=(1+)2=3+2.答案A4.已知-7,a1,a2,-1四个实数成等差数列,-4,b1,b2,b3,-1五个实数成等比数列,则=. 解析由题意,得a2-a1==2,=(-4)×(-1)=4.又b2是等比数列中的第3项,所以b2与第1项同号,即b2=-2,所以=-1.答案-15.已知一个等比数列的各项均为正数,且它的任何一项都等于它的后面两项的和,则它的公比q=.解析依题意,得a n=a n+1+a n+2,所以a n=a n q+a n q2.因为a n>0,所以q2+q-1=0,解得q=(q=舍去).答案6.若数列a1,,…,,…是首项为1,公比为-的等比数列,则a5=.解析由题意,得=(-)n-1(n≥2),所以=-=(-)2,=(-)3,=(-)4,将上面的四个式子两边分别相乘,得=(-)1+2+3+4=32.又a1=1,所以a5=32.答案327.已知数列{a n}满足S n=4a n-1(n∈N*),求证:数列{a n}是等比数列,并求出其通项公式.解依题意,得当n≥2时,S n-1=4a n-1-1,所以a n=S n-S n-1=(4a n-1)-(4a n-1-1),即3a n=4a n-1,所以,故数列{a n}是公比为的等比数列.因为S1=4a1-1,即a1=4a1-1,所以a1=,故数列{a n}的通项公式是a n=.8.导学号04994041已知数列{a n}的前n项和S n=2a n+1,(1)求证:{a n}是等比数列,并求出其通项公式;(2)设b n=a n+1+2a n,求证:数列{b n}是等比数列.证明(1)∵S n=2a n+1,∴S n+1=2a n+1+1,S n+1-S n=a n+1=(2a n+1+1)-(2a n+1)=2a n+1-2a n,∴a n+1=2a n.由已知及上式可知a n≠0.∴由=2知{a n}是等比数列.由a1=S1=2a1+1,得a1=-1,∴a n=-2n-1.(2)由(1)知,a n=-2n-1,∴b n=a n+1+2a n=-2n-2×2n-1=-2×2n=-2n+1=-4×2n-1.∴数列{b n}是等比数列.。
高中数学必修五第二章数列2.4.1

(2)设等比数列{bn}的公比为q,则b2=8,b3=16,
所以q= b3
b2
=2,b1=4,bn=2n+1,
b6=26+1=128.由2(n+1)=128得n=63.
所以b6与数列{an}的第63项相等.
【方法技巧】等比数列通项公式的求法 (1)根据已知条件,建立关于a1,q的方程组,求出a1,q后 再求an,这是常规方法. (2)充分利用各项之间的关系,直接求出q后,再求a1,最 后求an,这种方法带有一定的技巧性,能简化运算.
则
a
2 3
=-1×(-9)=9,解得a3=±3,
设数列的公比为q,
因为a3=-1×q2<0,故a3=-3. 答案:-3
=
1 3
(an-1)-
1 3
(an-1-1),
得
an a n1
1,又a1=-
2
1 2
,
所以{an}是首项为- 1 ,公比为- 1 的等比数列.
2
2
【延伸探究】
1.将本例的条件改为“a1=
7 8
,且an+1=
1 2
a
n+
1 3
”,求证
数列
{a n
2} 3
是等比数列.
【证明】因为an+1=
(1)已知an=128,a1=4,q=2,求n.
(2)已知an=625,n=4,q=5,求a1.
(3)a3=2,a2+a4=
20 3
,求通项公式an.
【解析】(1)因为an=a1qn-1, 所以4·2n-1=128,
所以2n-1=32,所以n-1=5,n=6.
(2)a1=
2.4.1等比数列

阶 段 三
2.4
等比数列 等比数列
学 业 分 层 测 评
第 1 课时
阶 段 二
1.理解等比数列的定义.重点 2.掌握等比数列的通项公式及其应用.重点、难点 3.熟练掌握等比数列的判定方法.易错点
[基础· 初探]
教材整理 1
等比数列的定义
阅读教材 P48~P49 倒数第一行,完成下列问题. 1.等比数列的概念 (1)文字语言: 如果一个数列从第 2 项起,每一项与它的前一项的比等于 同一常数 ,那 么这个数列就叫做等比数列,这个常数叫做等比数列的 公比,通常用字母 q 表 示(q≠0).
1.已知数列{an}是首项为 2,公差为-1 的等差数列,令 bn
1 =2an,求证数列{bn}是等比数列,并求其通项公式.
2.等比数列与指数函数的关系
a1 n · q a1 x q 等比数列的通项公式可整理为 an= ,而 y= q · q (q≠1)是一个不为 0
a1 a1 n x 的常数 q 与指数函数 q 的乘积,从图象上看,表示数列{ q · q }中的各项的点
a1 x · q q 是函数 y= 的图象上的 孤立 点.
[小组合作型]
等比数列的判断与证明
(1)下列数列是等比数.-1,1,-1,1,-1,„ C.0,2,4,6,8,10,„ D.a1,a2,a3,a4,„ )
(2)已知数列{an}的前 n 项和 Sn=2-an,求证:数列{an}是等比数列. 【导学 号:05920034】 【精彩点拨】 (1)利用等比数列的定义判定. (2)先利用 Sn 与 an 的关系,探求 an,然后利用等比数列的定义判定.
【答案】 (1)× (2)√ (3)× (4)×
教材整理 2
示范教案(等比数列概念及通项公式)

⽰范教案(等⽐数列概念及通项公式)2.4等⽐数列2.4.1等⽐数列的概念及通项公式从容说课本节内容先由师⽣共同分析⽇常⽣活中的实际问题来引出等⽐数列的概念,再由教师引导学⽣与等差数列类⽐探索等⽐数列的通项公式,并将等⽐数列的通项公式与指数函数进⾏联系,体会等⽐数列与指数函数的关系,既让学⽣感受到等⽐数列是现实⽣活中⼤量存在的数列模型,也让学⽣经历了从实际问题抽象出数列模型的过程.教学中应充分利⽤信息和多媒体技术,给学⽣以较多的感受,激发学⽣学习的积极性和思维的主动性.准备丰富的阅读材料,为学⽣提供⾃主学习的可能,进⽽达到更好的理解和巩固课堂所学知识的⽬的.教学重点1.等⽐数列的概念;2.等⽐数列的通项公式.教学难点1.在具体问题中抽象出数列的模型和数列的等⽐关系;2.等⽐数列与指数函数的关系.教具准备多媒体课件、投影胶⽚、投影仪等三维⽬标⼀、知识与技能1.了解现实⽣活中存在着⼀类特殊的数列;2.理解等⽐数列的概念,探索并掌握等⽐数列的通项公式;3.能在具体的问题情境中,发现数列的等⽐关系,并能⽤有关的知识解决相应的实际问题;4.体会等⽐数列与指数函数的关系.⼆、过程与⽅法1.采⽤观察、思考、类⽐、归纳、探究、得出结论的⽅法进⾏教学;2.发挥学⽣的主体作⽤,作好探究性活动;3.密切联系实际,激发学⽣学习的积极性.三、情感态度与价值观1.通过⽣活中的⼤量实例,⿎励学⽣积极思考,激发学⽣对知识的探究精神和严肃认真的科学态度,培养学⽣的类⽐、归纳的能⼒;2.通过对有关实际问题的解决,体现数学与实际⽣活的密切联系,激发学⽣学习的兴趣.教学过程导⼊新课师现实⽣活中,有许多成倍增长的实例.如,将⼀张报纸对折、对折、再对折、…,对折了三次,⼿中的报纸的层数就成了8层,对折了5次就成了32层.你能举出类似的例⼦吗?⽣⼀粒种⼦繁殖出第⼆代120粒种⼦,⽤第⼆代的120粒种⼦可以繁殖出第三代120×120粒种⼦,⽤第三代的120×120粒种⼦可以繁殖出第四代120×120×120粒种⼦,…师⾮常好的⼀个例⼦!现实⽣活中,我们会遇到许多这类的事例.教师出⽰多媒体课件⼀:某种细胞分裂的模型.师细胞分裂的个数也是与我们上述提出的问题类似的实例.细胞分裂有什么规律,将每次分裂后细胞的个数写成⼀个数列,你能写出这个数列吗?⽣通过观察和画草图,发现细胞分裂的规律,并记录每次分裂所得到的细胞数,从⽽得到每次细胞分裂所得到的细胞数组成下⾯的数列:1,2,4,8,…①教师出⽰投影胶⽚1:“⼀尺之棰,⽇取其半,万世不竭.”师这是《庄⼦·天下篇》中的⼀个论述,能解释这个论述的含义吗?⽣思考、讨论,⽤现代语⾔叙述.师 (⽤现代语⾔叙述后)如果把“⼀尺之棰”看成单位“1”,那么得到的数列是什么样的呢?⽣发现等⽐关系,写出⼀个⽆穷等⽐数列:1,21,41,81,161,… ②教师出⽰投影胶⽚2:计算机病毒传播问题.⼀种计算机病毒,可以查找计算机中的地址簿,通过邮件进⾏传播.如果把病毒制造者发送病毒称为第⼀轮,邮件接收者发送病毒称为第⼆轮,依此类推.假设每⼀轮每⼀台计算机都感染20台计算机,那么在不重复的情况下,这种病毒感染的计算机数构成⼀个什么样的数列呢?师 (读题后)这种病毒每⼀轮传播的计算机数构成的数列是怎样的呢?引导学⽣发现“病毒制造者发送病毒称为第⼀轮”“每⼀轮感染20台计算机”中蕴涵的等⽐关系.⽣发现等⽐关系,写出⼀个⽆穷等⽐数列:1,20,202,203,204,… ③教师出⽰多媒体课件⼆:银⾏存款利息问题.师介绍“复利”的背景:“复利”是我国现⾏定期储蓄中的⼀种⽀付利息的⽅式,即把前⼀期的利息和本⾦加在⼀起算作本⾦,再计算下⼀期的利息,也就是通常说的“利滚利”.我国现⾏定期储蓄中的⾃动转存业务实际上就是按复利⽀付利息的.给出计算本利和的公式:本利和=本⾦×(1+本⾦)n ,这⾥n 为存期.⽣列出5年内各年末的本利和,并说明计算过程.师⽣合作讨论得出“时间”“年初本⾦”“年末本利和”三个量之间的对应关系,并写出:各年末本利和(单位:元)组成了下⾯数列:10 000×1.019 8,10 000×1.019 82,10 000×1.019 83,10 000×1.019 84,10 000×1.019 85. ④师回忆数列的等差关系和等差数列的定义,观察上⾯的数列①②③④,说说它们有什么共同特点?师引导学⽣类⽐等差关系和等差数列的概念,发现等⽐关系.引⼊课题:板书课题 2.4等⽐数列的概念及通项公式推进新课[合作探究]师从上⾯的数列①②③④中我们发现了它们的共同特点是:具有等⽐关系.如果我们将具有这样特点的数列称之为等⽐数列,那么你能给等⽐数列下⼀个什么样的定义呢?⽣回忆等差数列的定义,并进⾏类⽐,说出:⼀般地,如果把⼀个数列,从第2项起,每⼀项与它前⼀项的⽐等于同⼀个常数,那么这个数列叫做等⽐数列.[教师精讲]师同学们概括得很好,这就是等⽐数列( geometric seque n ce)的定义.有些书籍把等⽐数列的英⽂缩写记作G .P.(Geometric Progressio n ).我们今后也常⽤G.P.这个缩写表⽰等⽐数列.定义中的这个常数叫做等⽐数列的公⽐(commo n r a tio),公⽐通常⽤字母q 表⽰(q≠0). 请同学们想⼀想,为什么q≠0呢?⽣独⽴思考、合作交流、⾃主探究.师假设q=0,数列的第⼆项就应该是0,那么作第⼀项后⾯的任⼀项与它的前⼀项的⽐时就出现什么了呢?⽣分母为0了.师对了,问题就出在这⾥了,所以,必须q≠0.师那么,等⽐数列的⾸项能不能为0呢?⽣等⽐数列的⾸项不能为0.师是的,等⽐数列的⾸项和公⽐都不能为0,等⽐数列中的任⼀项都不会是0. [合作探究]师类⽐等差中项的概念,请同学们⾃⼰给出等⽐中项的概念.⽣如果在a 与b 中间插⼊⼀个数G ,使a 、G 、b 成等⽐数列,那么G 叫做a 、b 的等⽐中项.师想⼀想,这时a 、b 的符号有什么特点呢?你能⽤a 、b 表⽰G 吗?⽣⼀起探究,a 、b 是同号的Gb a G ,G=±ab ,G 2=ab . 师观察学⽣所得到的a 、b 、G 的关系式,并给予肯定.补充练习:与等差数列⼀样,等⽐数列也具有⼀定的对称性,对于等差数列来说,与数列中任⼀项等距离的两项之和等于该项的2倍,即a n -k +a n +k =2a n .对于等⽐数列来说,有什么类似的性质呢?⽣独⽴探究,得出:等⽐数列有类似的性质:a n -k ·a n +k =a n 2.[合作探究]探究:(1)⼀个数列a 1,a 2,a 3,…,a n ,…(a 1≠0)是等差数列,同时还能不能是等⽐数列呢?(2)写出两个⾸项为1的等⽐数列的前5项,⽐较这两个数列是否相同?写出两个公⽐为2的等⽐数列的前5项,⽐较这两个数列是否相同?(3)任⼀项a n 及公⽐q 相同,则这两个数列相同吗?(4)任意两项a m 、a n 相同,这两个数列相同吗?(5)若两个等⽐数列相同,需要什么条件?师引导学⽣探究,并给出(1)的答案,(2)(3)(4)可留给学⽣回答.⽣探究并分组讨论上述问题的解答办法,并交流(1)的解答.[教师精讲]概括总结对上述问题的探究,得出:(1)中,既是等差数列⼜是等⽐数列的数列是存在的,每⼀个⾮零常数列都是公差为0,公⽐为1的既是等差数列⼜是等⽐数列的数列.概括学⽣对(2)(3)(4)的解答.(2)中,⾸项为1,⽽公⽐不同的等⽐数列是不会相同的;公⽐为2,⽽⾸项不同的等⽐数列也是不会相同的.(3)中,是指两个数列中的任⼀对应项与公⽐都相同,可得出这两个数列相同;(4)中,是指两个数列中的任意两个对应项都相同,可以得出这两个数列相同;(5)中,结论是:若两个数列相同,需要“⾸项和公⽐都相同”.(探究的⽬的是为了说明⾸项和公⽐是决定⼀个等⽐数列的必要条件;为等⽐数列的通项公式的推导做准备)[合作探究]师回顾等差数列的通项公式的推导过程,你能推导出等⽐数列的通项公式吗?⽣推导等⽐数列的通项公式.[⽅法引导]师让学⽣与等差数列的推导过程类⽐,并引导学⽣采⽤不完全归纳法得出等⽐数列的通项公式.具体的,设等⽐数列{a n }⾸项为a 1,公⽐为q ,根据等⽐数列的定义,我们有: a 2=a 1q,a 3=a 2q=a 1q 2,…,a n =a n -1q=a 1q n -1,即a n =a 1q n -1.师根据等⽐数列的定义,我们还可以写出q a a a a a a a a n n =====-1342312..., 进⽽有a n =a n -1q=a n -2q 2=a n -3q 3=…=a 1q n -1.亦得a n =a 1q n -1.师观察⼀下上式,每⼀道式⼦⾥,项的下标与q 的指数,你能发现有什么共同的特征吗?⽣把a n 看成a n q 0,那么,每⼀道式⼦⾥,项的下标与q 的指数的和都是n .师⾮常正确,这⾥不仅给出了⼀个由a n 倒推到a n 与a 1,q 的关系,从⽽得出通项公式的过程,⽽且其中还蕴含了等⽐数列的基本性质,在后⾯我们研究等⽐数列的基本性质时将会再提到这组关系式.师请同学们围绕根据等⽐数列的定义写出的式⼦q a a a a a a a a n n =====-1342312...,再思考. 如果我们把上⾯的式⼦改写成q a a q a a q a a q a a n n ====-1342312,...,,,. 那么我们就有了n -1个等式,将这n -1个等式两边分别乘到⼀起(叠乘),得到的结果是11-=n n q a a ,于是,得a n =a 1q n -1. 师这不⼜是⼀个推导等⽐数列通项公式的⽅法吗?师在上述⽅法中,前两种⽅法采⽤的是不完全归纳法,严格的,还需给出证明.第三种⽅法没有涉及不完全归纳法,是⼀个完美的推导过程,不再需要证明.师让学⽣说出公式中⾸项a 1和公⽐q 的限制条件.⽣ a 1,q 都不能为0.[知识拓展]师前⾯实例中也有“细胞分裂”“计算机病毒传播”“复利计算”的练习和习题,那⾥是⽤什么⽅法解决问题的呢?教师出⽰多媒体课件三:前⾯实例中关于“细胞分裂”“计算机病毒传播”“复利计算”的练习或习题.某种储蓄按复利计算成本利息,若本⾦为a 元,每期利率为r ,设存期是x,本利和为y 元.(1)写出本利和y 随存期x 变化的函数关系式;(2)如果存⼊本⾦1 000元,每期利率为2.25%,试计算5期后的本利和.师前⾯实例中关于“细胞分裂”“计算机病毒传播”“复利计算”的问题是⽤函数的知识和⽅法解决问题的.⽣⽐较两种⽅法,思考它们的异同.[教师精讲]通过⽤不同的数学知识解决类似的数学问题,从中发现等⽐数列和指数函数可以联系起来.(1)在同⼀平⾯直⾓坐标系中,画出通项公式为a n =2 n -1的数列的图象和函数y=2x-1的图象,你发现了什么?(2)在同⼀平⾯直⾓坐标系中,画出通项公式为1)21(-=n n a 的数列的图象和函数y=(21)x-1的图象,你⼜发现了什么?⽣借助信息技术或⽤描点作图画出上述两组图象,然后交流、讨论、归纳出⼆者之间的关系.师出⽰多媒体课件四:借助信息技术作出的上述两组图象.观察它们之间的关系,得出结论:等⽐数列是特殊的指数函数,等⽐数列的图象是⼀些孤⽴的点.师请同学们从定义、通项公式、与函数的联系3个⾓度类⽐等差数列与等⽐数列,并填充下列表格:【例1】某种放射性物质不断变化为其他物质,每经过⼀年,剩留的这种物质是原来的84%,这种物质的半衰期为多长(精确到1年)?师从中能抽象出⼀个数列的模型,并且该数列具有等⽐关系.【例2】根据右图中的框图,写出所打印数列的前5项,并建⽴数列的递推公式,这个数列是等⽐数列吗?师将打印出来的数依次记为a 1(即A ),a 2,a 3,….可知a 1=1;a 2=a 1×21;a 3=a 2×21.于是,可得递推公式 ??==-)1(21,111>n a a a n n . 由于211=-n n a a ,因此,这个数列是等⽐数列. ⽣算出这个数列的各项,求出这个数列的通项公式.练习:1.⼀个等⽐数列的第3项和第4项分别是12和18,求它的第1项和第2项.师启发、引导学⽣列⽅程求未知量.⽣探究、交流、列式、求解.2.课本第59页练习第1、2题.课堂⼩结本节学习了如下内容:1.等⽐数列的定义.2.等⽐数列的通项公式.3.等⽐数列与指数函数的联系.布置作业课本第60页习题2.4 A 组第1、2题.板书设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由此得到: an a1qn1
即为等比数列通项公式 .
分析2:根据等比数列的定义: an q (n 2) an1
an qan1 q(qan2 ) q2an2
q2 (qan3 ) q3an3
1.教材第53页 习题2.4 A组 1~8 2.教辅课时作业第18页 2.4.1(一) 3.教辅第35页 ~第37页内容 4.预习教辅第37页 ~39页内容
思考:
(1) 等比数列中有为0的项吗? (2) 公比为1的数列是什么数列? (3) 既是等差数列又是等比数列的数列
存在吗? (4) 常数列都是等比数列吗?
问:若已知等比数列{an}的首项 a1 ,公比 q , 能确定这个数列吗?
分析1:根据等比数列的定义:从第二项起每一
项都等于它的前一项乘以公比 q ,所以
16 3
与8。
想一想:由一个等比数列 {an} 中的任意两项 an , am 是否可以确定这个等比数列的通项公式?
由 an a1qn1 得,am a1qm1 ,
an am
a1q n 1 a1q m1
qnm ,
an amqnm .
(这是等比数列通项公式的推广形式 )
例1 一个等比数列的第3项与第4项分别是12与18,
这与已知 p q矛盾. ∴数列{an+bn}不是等比数列.
课题练习:教材52页练习
小结
本节课学习的主要内容有:
等比数列的定义 an 等比数列的通项公a式n1
q (n 2) an a1qn1
等比数列的性质
an amqnm
理解等比数列的通项公式的推导思想:
探索法、迭代法、迭乘法
课后作业
(2)求证:数列{an}是等比数列.
(1)解:
Q
Sn
1 3
(an
1)
,
S1
1 3
(a1
1)
,
即
a1
1 3
(a1
1) ,
a1
1. 2
又
S2
1 3
(a2
1)
,
即
a1
a2
1 3
(a2
1) ,Βιβλιοθήκη a21. 4例2. 已知数列{an}的前n项和为 Sn ,
Sn
1 3
(an
1)
,
(1)求 a1 , a2 ;
y a1 q x 是一个不为 0 的常数与指数函数的积,
q
等比数列{an } 的图象是函数y
a1 q
qx
图象上一
群 孤 立 的 点.
an
等 比 数 列an
1 2
2n
的 图 象:
10
9 8 7
an
1 2
2n
6 5 4
等比数列图象 是函数 y 1 2x
3
图象上一群2孤立的点
2
1
O 1234567
数列{bn}的首项为 b1 ,公比为 q ,则
an1 bn1 an bn
a1pn b1qn a1 pn1 b1qn1
( pq)n ( pq)n1
pq
,
{an bn}是一个以 pq 为公比的等比数列。
思考:数列{an+bn}是等比数列?
思考:数列{an+bn}是等比数列?
证明: 假设数列{an+bn}是等比数列,则
定义:如果一个数列从第2项起,每一项
与它的前一项 的比都等于同一个常数。那
么这个数列就叫做等比数列. 这个常数
叫做等比数列的公比,公比通常用 q表示
(q≠0 ).
即 an1 q . an
说明:(1) 因为等比数列每一项都可能作分母,
所以每一项均不为0,因此 q≠0 . (2) 当q<0时,数列是摆动数列.
a2 a1
b2 b1
a3 a2
b3 b2
(a2 b2 )2 (a1 b1 )(a3 b3 ) (a1 p b1q)2 (a1 b1 )(a1 p2 b1q2 )
2a1b1 pq a1b1 p2 a1b1q2
2 pq p2 q2 (a1 0 , b1 0)
( p q)2 0 p q
等比数列通项公式 :
an a1qn1
例如:1,2, 4,8,…, 263 .
首项 a1=1 ,公比 q=2 ,
通项公式 an=1×2n-1= 2n-1 (n≤64)
即
an
1 2
2n
(n
64)
.
从函数的角度来看等比数列通项公式:
an
a1q n1
a1 q
qn
.
当 q 0,且 q 1 时,y q x 是一个指数函数,
(2)求证:数列{an}是等比数列.
(2)证明:
当n=1时,a1
1. 2
当n≥2时, an Sn Sn1
1 3
(an
1)
1 3
(an1
1)
1 3
an
1 3
an1
2 3
an
1 3
an1
an 1 .
an1
2
∴数列{an}是首项为
1 ,公比为 2
1 2
的等比数列.
例例32. 已知{an}、{bn} 是项数相同的等比数列, 求证 {an bn}是等比数列。 证明: 设数列{an}的首项为 a1 ,公比为 p ;
n
想一想:如果在a与b中间插入一个数G,使a, G, b
成等比数列,那么G应满足什么条件?
由a,G,b成等比数列,得
G b , G2 ab 即 G ab. aG
反过来,如果 G ab (ab 0),即 G2 ab (ab 0)
则 G b ,a,G, b成等比数列. aG
结论:a,G,b 成等比数列 G2 ab (ab 0)
2.4.1 等比数列 (1)
请你观察:
1, 2, 4, 8, 16, …,263;
①
1, 1 , 1 , 1 ;
②
248
1, 20, 202, 203, … ;
③
1.0198, 1.01982, 1.01983, … . ④
问:上面数列有什么共同特点?
答: 从第2项起,每一项与它的前一
项的比都等于同一个常数。
(迭代法)
qn1a1 (当n=1时等式也成立)
an a1qn1
分析2:根据等比数列的定义:
a2 a1
q
(1)
a3 a2
q
(2)
a4
a3
q
an an1
q
(3) (n 1)
(迭乘法)
将a2上 a面3 na4 a1 a2 a3
1L个等 aa式nn12相 乘aann得1 : q1aaa4nqn1n21L个a4q31nqq1n1
当q>0时,数列单调性不定.
an1 q an
当 q>1,a1>0,或 0<q<1,a1<0 时,数列是递增数列. 当 q>1,a1<0,或 0<q<1,a1>0 时,数列是递减数列.
当q=1时,数列是常数数列.
对比
等差数列定义:an1 an d (d R)
当 d = 0 时,数列是常数列; 当 d > 0 时,数列是递增数列; 当 d < 0 时,数列是递减数列.
求它的第1项与第 2 项。
解法2: a3 12 ,a4 18 ,
q
a4 a3
18 12
3 2
.
由 an amqnm 得:
a1
a3 q13
12
(
3 2
)2
16 3
,
a2
a1q
16 3
3 2
8.
例2. 已知数列{an}的前n项和为 Sn ,
Sn
1 3
(an
1)
,
(1)求 a1 , a2 ;
例1 一个等比数列的第3项与第4项分别是12与18,
求它的第1项与第 2 项。
解:设此等比数列的首项为a1 ,公比为q ,则
a3 12 a4 18
即
a1q a1q
2 3
12 18
① ②
解得
a1
16 3
,q
3, 2
16 3
a2
a1q
3
8. 2
答:这个数列它的第1 项与第 2 项 分别是
等比中项:
如果a,G ,b成等比数列,那么 G叫做a与b的等比中项,且 G2 ab (ab 0).
由此得,在等比数列a1 , a2 , a3 , a4 , a5 , … an , …中,
an2 an1 an1(n 2) 结论:
an1 an
an (n 2) an1
{an } 是等比数列 an2 an1 an1 (an 0, n 2)