八年级下册数学复习专题
人教版八年级数学下册期末复习专题在直角坐标系中求几何图形的面积(含答案)

人教版八年级数学下册期末复习专题训练——在直角坐标系中求几何图形的面积1.如图,四边形是矩形,点,在坐标轴上,是由绕点顺时针旋转得到的,点在轴上,直线交轴于点,交于点,线段=2,=4(1)求直线的解析式.(2)求的面积.2.直线a:y=x+2和直线b:y=﹣x+4相交于点A,分别与x轴相交于点B和点C,与y轴相交于点D和点E.(1)在同一坐标系中画出函数图象;(2)求△ABC的面积;(3)求四边形ADOC的面积;(4)观察图象直接写出不等式x+2≤﹣x+4的解集和不等式﹣x+4≤0的解集.3.如果两个一次函数y=k1x+b1和y=k2x+b2满足k1=k2,b1≠b2,那么称这两个一次函数为“平行一次函数”.已知函数y=﹣2x+4的图象与x轴、y轴分别交于A、B两点,一次函数y=kx+b 与y=﹣2x+4是“平行一次函数”(1)若函数y=kx+b的图象过点(3,1),求b的值;(2)若函数y=kx+b的图象与两坐标轴围成的面积是△AOB面积的,求y=kx+b的解析式.4.如图,10个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这10个正方形分成面积相等的两部分,求该直线l的解析式5.如图1,直线3=xy分别与y轴、x轴交于点A、点B,点C的坐标为(-3,0),D -3+3为直线AB上一动点,连接CD交y轴于点E(1) 点B的坐标为__________,不等式+-x的解集为___________3>33(2) 若S△COE=S△ADE,求点D的坐标(3) 如图2,以CD为边作菱形CDFG,且∠CDF=60°.当点D运动时,点G在一条定直线上运动,请求出这条定直线的解析式.6.在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.7.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x﹣5上时,求线段BC扫过的面积8.已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接EF,若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;9. 如图,已知直线343+=x y 与坐标轴交于B,C 两点,点A 是x 轴正半轴上一点,并且15=∆ABC S .点F 是线段AB 上一动点(不与端点重合),过点F 作FE ∥x 轴,交BC 于E.(1) 求AB 所在直线的解析式;(2) 若FD ⊥x 轴于D,且点D 的坐标为)0,(m ,请用含m 的代数式,表示DF 与EF 的长;(3) 在x 轴上是否存在一点P,使得△PEF 为等腰直角三角形,若存在,请直接写出点P 的坐标,若不存在,请说明理由.10.如图,在平面直角坐标系xOy 中,直线y=﹣2x +a 与y 轴交于点C (0,6),与x 轴交于点B .(1)求这条直线的解析式;(2)直线AD 与(1)中所求的直线相交于点D (﹣1,n ),点A 的坐标为(﹣3,0).①求n 的值及直线AD 的解析式; ②求△ABD 的面积;③点M 是直线y=﹣2x+a 上的一点(不与点B 重合),且点M 的横坐标为m ,求△ABM 的面积S 与m 之间的关系式.11.已知一次函数的图象经过(1,1)和(﹣1,﹣5).(1)求这个一次函数的表达式;(2)求这个一次函数的图象与x 轴、y 轴的交点坐标,并求出该图象与两坐标轴围成的三角形的面积.12.如图,边长为5的正方形OABC的顶点0在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是0A边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AG交于点P.(1)求证:CE=EP;(2)若点E的坐标为(3,O),在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,求出点M的坐标:若不存在,说明理由.13.已知一次函数的图象经过(1,1)和(﹣1,﹣5).(1)求这个一次函数的表达式;(2)求这个一次函数的图象与x轴、y轴的交点坐标,并求出该图象与两坐标轴围成的三角形的面积.14.直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).(1)求直线AB的解析式;(2)若直线AB上一点C在第一象限且点C的坐标为(2,2),求△BOC的面积.15.在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图,直线y=-2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为-1.①求点B的坐标及k的值;②直线y=-2x+1、直线y=kx+4与y轴所围成的△ABC的面积等于____________;(2)直线y=kx+4(k≠0)与x轴交于点E(x0,0),若-2<x0<-1,求k的取值范围.16.如图,己知直线l:y=x+1(k≠0)的图象与x轴、y轴交于A、B两点.(1)直接写出A、B两点的坐标;(2)若P是x轴上的一个动点,求出当△PAB是等腰三角形时P的坐标;(3)在y轴上有点C(0,3),点D在直线l上.若△ACD面积等于4.请直接写出D的坐标.17.如图①所示,正方形ABCD的边长为6 cm,动点P从点A出发,在正方形的边上沿A→B →C→D运动,设运动的时间为t(s),三角形APD的面积为S(cm2),S与t的函数图象如图②所示,请回答下列问题:(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,三角形APD的面积S的最大值为________cm2;(2)求出点P在CD上运动时S与t之间的函数解析式;(3)当t为何值时,三角形APD的面积为10 cm2?18.已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF ⊥y轴于点F,连接EF,若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;答案:1. (1)OC=4,BC=2,B(-2,4),.设解析式为,.(2),.直线,.当,,,.2.(1)依照题意画出图形,如图所示.(2)令y=x+2中y=0,则x+2=0,解得:x=﹣2,∴点B(﹣2,0);令y=﹣x+4中y=0,则﹣x+4=0,解得:x=4,∴点C(4,0);联立两直线解析式得:,解得:,∴点A (1,3).S △ABC =BC•y A =×[4﹣(﹣2)]×3=9.(3)令y=x +2中x=0,则y=2,∴点D (0,2).S 四边形ADOC =S △ABC ﹣S △DBO =9﹣×2×2=7.(4)观察函数图形,发现:当x <1时,直线a 在直线b 的下方,∴不等式x +2≤﹣x +4的解集为x ≤1;当x >4时,直线b 在x 轴的下方,∴不等式﹣x +4≤0的解集为x ≥4.3.(1)∵一次函数y=kx +b 与y=﹣2x +4是“平行一次函数”,∴k=﹣2,即y=﹣2x +b . ∵函数y=kx +b 的图象过点(3,1),∴1=﹣2×3+b ,∴b=7.(2)在y=﹣2x +4中,令x=0,得y=4,令y=0,得x=2,∴A (2,0),B (0,4),∴S △AOB =OA•OB=4.由(1)知k=﹣2,则直线y=﹣2x +b 与两坐标轴交点的坐标为(,0),(0,b ),于是有|b |•||=4×=1,∴b=±2,即y=kx +b 的解析式为y=﹣2x +2或y=﹣2x ﹣2.4.设直线l 和10个正方形的最上面交点为A ,过A 作AB ⊥OB 于B ,过A 作AC ⊥OC 于C , ∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l将这10个正方形分成面积相等的两部分,∴两边分别是5,∴三角形ABO 面积是7,∴OB•AB=7,∴AB=,∴OC=AB=,由此可知直线l 经过(,3),设直线方程为y=kx (k ≠0),则3=k ,解得k=∴直线l 解析式为y=x .故答案为:y=x .5.(1) (3,0)、x <3(2) ∵S △COE =S △ADE ∴S △AOB =S △CBD 即33321621⨯⨯=⨯⨯D y ,y D =233 当y =233时,23233333==+-x x ,∴D (23323,) (3) 连接CF ∵∠CDF =60°∴△CDF 为等边三角形连接AC ∵AB =AC =BC =6∴△ABC 为等边三角形∴△CAF ≌△CBD (SAS )∴∠CAF =∠ACB =60°∴AF ∥x 轴设D (m ,333+-m )过点D 作DH ⊥x 轴于H ∴BH =3-m ,DB =6-2m =AF∴F (2m -6,33)由平移可知:G (m -9,m 3-)令⎪⎩⎪⎨⎧-=-=m y m x 39∴点G 在直线393--=x y 上6. (1)设直线的解析式为y=kx +b ,把A (﹣1,5),B (3,﹣3)代入,可得:{533=+--=+b k b k ,解得:,所以直线解析式为:y=﹣2x +3,把P (﹣2,a )代入y=﹣2x +3中,得:a=7; (2)由(1)得点P 的坐标为(﹣2,7),令x=0,则y=3,所以直线与y 轴的交点坐标为(0,3),所以△OPD 的面积=.7.∵点A 、B 的坐标分别为(2,0)、(8,0),∴AB=6,∵∠CAB=90°,BC=10, ∴CA==8,∴C 点纵坐标为:8,∵将△ABC 沿x 轴向右平移,当点C 落在直线y=x ﹣5上时,∴y=8时,8=x ﹣5,解得:x=13,即A 点向右平移13﹣2=11个单位, ∴线段BC 扫过的面积为:11×8=88.故选:B .8.(1)令x=0,则y=8,∴B (0,8),令y=0,则﹣2x +8=0,∴x=4,∴A (4,0), (2)∵点P (m ,n )为线段AB 上的一个动点,∴﹣2m +8=n ,∵A (4,0),∴OA=4,∴0<m <4∴S △PAO =OA ×PE=×4×n=2(﹣2m +8)=﹣4m +16,(0<m <4) )3,0(30343)1(,9B y x x y 即时,中,当在==+= ∴OB=3同理OC=4 ∵15)(21=⋅+OB OA OC ,153)4(21=⨯+⨯OA ∴OA=6 即点A 的坐标为(6,0) 设AB 所在直线的解析式为y=kx+b⎩⎨⎧⎩⎨⎧=+=-==213063k b b k b 解得则∴AB 所在直线的解析式为 (2)在中,当,即DF= 在中,当m x m y 32,321-=+-=时 mm m EF 35)32(=--= (3)10.(1)∵直线y=﹣2x +a 与y 轴交于点C (0,6),∴a=6,∴该直线解析式为y=﹣2x +6 (2)①∵点D (﹣1,n )在直线BC 上,∴n=﹣2×(﹣1)+6=8,∴点D (﹣1,8)设直线AD 的解析式为y=kx +b ,将点A (﹣3,0)、D (﹣1,8)代入y=kx +b 中,得:,解得:,∴直线AD 的解析式为y=4x +12.②令y=﹣2x +6中y=0,则﹣2x +6=0,解得:x=3,∴点B (3,0).∵A (﹣3,0)、D (﹣1,8),∴AB=6.S △ABD =AB•y D =×6×8=24.③∵点M 在直线y=-2x+6上,∴M (m ,-2m+6),时,即S=6m-18.11. (1)设函数解析式为y=kx +b , 由题意将两点代入得:{15=+-=+-b k b k ,解得:{32=-=k b .∴一次函数的解析式为:y=3x ﹣2;(2)令y=0,得x=32,令x=0,得y=﹣2, 3232221=⨯⨯=∴s 12.(1)在OC 上截取OK =OE .连接EK .∵OC =OA ,∠1=90°,∠OEK =∠OKE =45°,∵AP 为矩形外角平分线,∴∠BAP =45°∴∠EKC =∠PAE =135°.∴CK =EA .∵EC ⊥EP ,∴∠3=∠4.∴△EKC ≌△PAE . ∴EC =EP (2)y 轴上存在点M ,使得四边形BMEP 是平行四边形.如图,过点B 作BM ∥PE 交y 轴于点M ,∴∠5=∠CEP =90°,∴∠6=∠ 4.在△BCM 和△COE 中,⎪⎩⎪⎨⎧∠=∠=∠=∠,,,46C O E B C M OC BC ∴△BCM ≌△COE ,∴BM =CE 而CE =EP ,∴BM =EP .由于BM ∥EP ,∴四边形BMEP是平行四边形由△BCM ≌△COE 可得CM =OE =3,∴OM =CO -CM =2.故点M 的坐标为(0,2).13.(1)设函数解析式为y=kx +b ,由题意将两点代入得:,解得:.∴一次函数的解析式为:y=3x ﹣2;(2)令y=0,得x=,令x=0,得y=﹣2,∴S=×2×=.14.(1)设直线AB 的解析式为y =kx +b(k ≠0).将A(1,0),B(0,-2)代入解析式,得⎩⎪⎨⎪⎧k +b =0,b =-2.解得⎩⎪⎨⎪⎧k =2,b =-2.∴直线AB 的解析式为y =2x -2.(2)S △BOC =12×2×2=2.15.(1)32 当x =-1时,y =-2×(-1)+1=3,∴B(-1,3).将B(-1,3)代入y =kx +4,得k =1.(2)y =kx +4与x 轴的交点为(-4k ,0),∵-2<x 0<-1,∴-2<-4k<-1,(1)解得2<k<4.16.(1)当y=0时,x+1=0,解得x=﹣2,则A(﹣2,0),当x=0时,y=x+1=1,则B(0,1);(2)AB==,当AP=AB时,P点坐标为(﹣,0)或(,0);当BP=BA时,P点坐标为(2,0);当PA=PB时,作AB的垂直平分线交x轴于P,连结PB,如图1,则PA=PB,设P(t,0),则OA=t+2,OB=t+2,在Rt△OBP中,12+t2=(t+2)2,解得t=﹣,此时P点坐标为(﹣,0);(3)如图2,设D(x,x+1),当x>0时,∵S△ABC+S△BCD=S△ACD,∴•2•2+•2•x=4,解得x=2,此时D点坐标为(2,2);当x<0时,∵S△BCD﹣S△ABC=S△ACD,∴•2•(﹣x)﹣•2•2=4,解得x=﹣6,此时D点坐标为(﹣6,﹣2),综上所述,D点坐标为(2,2)或(﹣6,﹣2).故答案为(﹣2,0),(0,1);(2,2)或(﹣6,﹣2).17.略18.(1)令x=0,则y=8,∴B(0,8),令y=0,则﹣2x+8=0,∴x=4,∴A(4,0),(2)∵点P(m,n)为线段AB上的一个动点,∴﹣2m+8=n,∵A(4,0),∴OA=4,∴0<m<4∴S△PAO=OA×PE=×4×n=2(﹣2m+8)=﹣4m+16,(0<m<4)。
人教版八年级数学下册专题复习提升训练20

专题复习提升训练卷20.2数据的波动程度-20-21人教版八年级数学下册一、选择题1、数据201,202,198,199,200的方差与极差分别是( )A .1,4B .2,2C .2,4D .4,22、在统计中,样本的方差可以近似地反映总体的( )A .平均状态B .分布规律C .波动大小D .极差3、已知A 样本的数据如下:72,73,76,76,77,78,78,78,B 样本的数据恰好是A 样本数据每个都加2,则A 、B 两个样本的下列统计量对应相同的是( ) A .平均数B .方差C .中位数D .众数4、对于两组数据A ,B ,如果20.5A S =,22.1B S =,10B x =,10A x =,则( )A .这两组数据的波动相同B .数据B 的波动小一些C .它们的平均水平不一样D .数据A 的波动小一些5、已知:一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,方差是13, 那么另一组数据3x 1﹣2,3x 2﹣2,3x 3﹣2,3x 4﹣2,3x 5﹣2的平均数和方差分别是( ) A .2,13B .2,1C .4,23D .4,36、甲、乙、丙、丁四人进行射击测试,他们在相同条件下各射击10次,成绩(单位:环)统计如表:如果从这四人中,选出一位成绩较好且状态稳定的选手参加比赛,那么应选( ) A .甲B .乙C .丙D .丁7、一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的鞋销售量如下表:店主决定在下次进货时增加一些23.5cm 尺码的女鞋,影响店主决策的统计量是( ) A .平均数B .中位数C .众数D .方差8、已知一组数据:-1,x ,0,1,-2的平均数是0,那么,这组数据的方差是( )A .1B .2C .4D .109、一组数1、2、2、3、3、a 、b 的众数为2,平均数为2,则这组数据的方差为( )A .17B .27C .37D .4710、已知:一组数据-1,2,-1,5,3,4,关于这组数据,下列说法错误的是( )A .平均数是2B .众数和中位数分别是-1和2.5C .方差是16 D二、填空题11、需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,﹣2,+1,0,+2,﹣3,0,+1,则这组数据的方差是 . 12、已知求方差的算式()()()()222221 6.8 5.7 3.2 4.34s x x x x ⎡⎤=-+-+-+-⎢⎥⎣⎦,则其中的x =____13、已知一组数据x 1,x 2,…,x n 的方差是s 2,则新的一组数据ax 1+1,ax 2+1,…,ax n +1(a 为常数,a≠0)的方差是 .(用含a ,s 2的代数式表示)14、如果一组数据5、8、a 、7、4的平均数是a ,那么这组数据的方差为 . 15、下表是甲,乙两名同学近五次测试成绩统计表:根据上表数据可知,成绩最稳定的同学是____.16、某地农业科技部门积极助力家乡农产品的改良与推广,为了解甲、乙两种新品橙子的质量,进行了抽样调查在相同条件下,随机抽取了甲、乙各25份样品,对大小甜度等各方面进行了综合测评,并对数据进行收集、整理、描述和分析,下面给出了部分信息. a .测评分数(百分制)如下:甲:77,79,80,80,85,86,86,87,88,89,89,90,91,91,91,91,91,92,93,95,95,96,97,98,98乙:69,79,79,79,86,87,87,89,89,90,90,90,90,90,91,92,92,92,94,95,96,96,97,98,98b .按如下分组整理、描述这两组样本数据: 测评分数x 个数 品种 60≤x <7070≤x <8080≤x <9090≤x ≤100甲 0 2 9 14 乙13516c .甲、乙两种橙子测评分数的平均数、众数、中位数如下表所示:品种平均数众数中位数甲89.4m91乙89.490n根据以上信息,回答下列问题(1)写出表中m,n的值(2)记甲种橙子测评分数的方差为s12,乙种橙子测评分数的方差为s22,则s12,s22的大小关系为;(3)根据抽样调查情况,可以推断种橙子的质量较好,理由为.(至少从两个不同的角度说明推断的合理性)17、2022年将在北京——张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市.某队要从两名选手中选取一名参加比赛,为此对这两名队员进行了五次测试,测试成绩如图所示,_____________选手的成绩更稳定.18、2020年新冠疫情来势汹汹,我国采取了有力的防疫措施,控制住了疫情的蔓延.甲,乙两个学校各有400名学生,在复学前期,为了解学生对疫情防控知识的掌握情况,进行了抽样调查,过程如下,请补充完整.(1)收集数据: 从甲、乙两校各随机抽取20名学生进行了相关知识的网上测试,测试成绩如下:甲98 98 92 92 92 92 92 89 89 85 84 84 83 83 79 79 78 78 69 58乙99 96 96 96 96 96 96 94 92 89 88 85 80 78 72 72 71 65 58 55(2)整理、描述数据: 根据上面得到的两组样本数据,绘制了频数分布直方图:(3)分析数据: 两组样本数据的平均数、众数、中位数、方差如表所示:平均数众数中位数方差甲校84.7 92 m 88.91乙校83.7 n 88.5 184.01(说明:成绩80分及以上为优良,60﹣79分为合格,60分以下为不合格)(4)得出结论a.估计甲学校掌握疫情防控知识优良的学生人数约为;b.可以推断出学校的学生掌握疫情防控知识的水平较高,理由为.三、解答题19、从甲、乙两厂生产的同一种零件中各抽取5个,量得它们的尺寸(单位:mm)如下:甲厂生产的零件尺寸9.02 9.01 9 8.98 8.99乙厂生产的零件尺寸9.01 8.97 9.02 8.99 9.01(1)分别计算从甲、乙两厂抽取的5个零件的平均尺寸;(2)分别计算从甲、乙两厂抽取的5个零件的方差,根据计算结果,你认为哪个厂生产的零件更符合规格.(零件的规定尺寸为9mm)20、某校为了了解初中学生每天的睡眠时间(单位为小时),随机调查了该校的部分初中学生,根据调查结果,绘制出如图统计图.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为人,扇形统计图中的m=,条形统计图中的n=;(2)求统计调查的初中学生每天睡眠时间的平均数和方差.21、甲、乙两名同学进入八年级后某科6次考试成绩如图所示:平均数方差中位数众数甲7575乙33.370(1)请根据图填写上表;(2)从平均数和方差结合看,你认为谁的成绩稳定性更好些?22、某商店1~6周销售甲、乙两种品牌冰箱的数量如表(表Ⅰ)所示(单位:台):第1周第2周第3周第4周第5周第6周甲9101091210乙1312711107现根据表Ⅰ数据进行统计得到表Ⅱ:平均数中位数众数甲10乙107(1)填空:根据表Ⅰ的数据补全表Ⅱ;(2)老师计算了乙品牌冰箱销量的方差:2=[(13﹣10)2+(12﹣10)2+(7﹣10)2+(11﹣10)2+(10﹣10)2+(7﹣10)2]=(台2).S乙请你计算甲品牌冰箱销量的方差,根据计算结果,建议商家可多采购哪一种品牌冰箱?为什么?23、在发生某公共卫生事件期间,某专业机构认为该事件在一段时间内没有发生大规模群体感染的标志是:“连续14天,每天新增疑似病例不超过7人”.已知在过去14天,甲、乙两地新增疑似病例数据信息如下:甲地:总体平均数为2,方差为2;乙地:中位数为3,众数为4和5.请你运用统计知识对数据分析并判断:甲、乙两地是否会发生大规模群体感染?请说明理由.(方差公式:24、某校拟派一名跳高运动员参加校际比赛,对甲、乙两名同学进行了8次跳高选拔比赛,他们的原始成绩(单位:cm)如下表:学生/成第1次第2次第3次第4次第5次第6次第7次第8次绩/次数甲169 165 168 169 172 173 169 167乙161 174 172 162 163 172 172 176两名同学的8次跳高成绩数据分析如下表:学生/成绩/名称平均数(单位:cm)中位数(单位:cm)众数(单位:cm)方差(单位:cm2)甲 a b c 5.75乙169 172 172 31.25根据图表信息回答下列问题:(1)a=,b=,c=;(2)这两名同学中,的成绩更为稳定;(填甲或乙)(3)若预测跳高165就可能获得冠军,该校为了获取跳高比赛冠军,你认为应该选择同学参赛,理由是:;(4)若预测跳高170方可夺得冠军,该校为了获取跳高比赛冠军,你认为应该选择同学参赛,班由是:.25、为帮助学生了解“预防新型冠状病毒”的有关知识,学校组织了一次线上知识培训,培训结束后进行测试.试题的满分为20分.为了解学生的成绩情况,从七、八年级学生中各随机抽取了20名学生的成绩进行了整理、描述和分析.下面给出了部分信息:抽取的20名七年级学生成绩是:20,20,20,20,19,19,19,19,18,18,18,18,18,18,18,17,16,16,15,14.抽取的40名学生成绩统计表性别七年级八年级平均分18 18众数 a b中位数18 c方差 2.7 2.7根据以上信息,解答下列问题:(1)直接写出表中a,b,c的值:a=,b=,c=.(2)在这次测试中,你认为是七年级学生成绩好,还是八年级学生成绩好?请说明理由.(3)若九年级随机抽取20名学生的成绩的方差为2.5,则年级成绩更稳定(填“七”或“八”或“九”).专题复习提升训练卷20.3数据的波动程度-20-21人教版八年级数学下册(解析)一、选择题1、数据201,202,198,199,200的方差与极差分别是()A .1,4B .2,2C .2,4D .4,2【答案】C【分析】极差=数据最大值-数据最小值,求出数据的平均数,后套用方差公式计算即可. 【详解】∵最大数据为202,最小数据为198,∴极差=202-198=4;∵1200(12210)5x =++--+=200, ∴2222221[(201200)(202200)(198200)(199200)(200200)]5S =-+-+-+-+-=2,故选C.2、在统计中,样本的方差可以近似地反映总体的( )A .平均状态B .分布规律C .波动大小D .极差【答案】C【分析】方差是用来衡量一组数据波动大小的量,所以样本的方差可以近似地反映总体的波动大小. 【详解】解:根据方差的意义知,方差是用来衡量一组数据波动大小的量,故选C .3、已知A 样本的数据如下:72,73,76,76,77,78,78,78,B 样本的数据恰好是A 样本数据每个都加2,则A 、B 两个样本的下列统计量对应相同的是( ) A .平均数 B .方差C .中位数D .众数【答案】B【分析】根据样本A ,B 中数据之间的关系,结合众数,平均数,中位数和方差的定义即可得到结论. 【详解】设样本A 中的数据为xi ,则样本B 中的数据为yi=xi +2,则样本数据B 中的众数和平均数以及中位数和A 中的众数,平均数,中位数相差2, 只有方差没有发生变化.4、对于两组数据A ,B ,如果20.5A S =,22.1B S =,10B x =,10A x =,则( )A .这两组数据的波动相同B .数据B 的波动小一些C .它们的平均水平不一样D .数据A 的波动小一些【答案】D【分析】根据方差的定义,方差越小数据越稳定.【详解】解:∵S A 2=0.5<S B 2=2.1,10A B x x ==, ∴数据A 组的波动小一些.故选:D .5、已知:一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,方差是13, 那么另一组数据3x 1﹣2,3x 2﹣2,3x 3﹣2,3x 4﹣2,3x 5﹣2的平均数和方差分别是( ) A .2,13B .2,1C .4,23D .4,3【答案】D【分析】本题可将平均数和方差公式中的x 换成3x-2,再化简进行计算. 【详解】解:∵x 1,x 2,…,x 5的平均数是2,则x 1+x 2+…+x 5=2×5=10. ∴数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数是:15x '=[(3x 1-2)+(3x 2-2)+(3x 3-2)+(3x 4-2)+(3x 5-2)] =15[3×(x 1+x 2+…+x 5)-10] =4,S′2=15×[(3x 1-2-4)2+(3x 2-2-4)2+…+(3x 5-2-4)2],=15×[(3x 1-6)2+…+(3x 5-6)2] =9×15[(x 1-2)2+(x 2-2)2+…+(x 5-2)2] =3. 故选:D .6、甲、乙、丙、丁四人进行射击测试,他们在相同条件下各射击10次,成绩(单位:环)统计如表:如果从这四人中,选出一位成绩较好且状态稳定的选手参加比赛,那么应选( ) A .甲 B .乙C .丙D .丁【答案】A【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵甲与丁的平均分最高,甲的方差比丁的方差小,最稳定,∴应选甲. 故选:A .7、一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的鞋销售量如下表:店主决定在下次进货时增加一些23.5cm 尺码的女鞋,影响店主决策的统计量是( ) A .平均数 B .中位数C .众数D .方差【答案】C【分析】根据题意,店主最关注的应该是最畅销的尺码,即影响店主决策的统计量是众数. 【详解】解:由表格可知:尺码为23.5cm 的女鞋最畅销,即销售量最多∴影响店主决策的统计量是众数故选C .8、已知一组数据:-1,x ,0,1,-2的平均数是0,那么,这组数据的方差是( )A .1B .2C .4D .10【答案】B【分析】先根据平均数求出x 的值,再根据方差公式列出算式,进行计算即可求出这组数据的方差. 【详解】解:∵数据:-1,x ,0,1,-2的平均数是0,∴(-1+x+0+1-2)÷5=0,解得x=2, ∴这组数据的方差是: S 2=15[(-1-0)2+(2-0)2+(0-0)2+(1-0)2+(-2-0)2]=2; 故选:B .9、一组数1、2、2、3、3、a 、b 的众数为2,平均数为2,则这组数据的方差为( )A .17B .27C .37D .47【答案】D【分析】利用这组数据的平均数可求出+a b 的值,再利用这组数据的众数是2,可具体确定这组数据,最后即可求出其方差.【详解】∵这组数据的平均数为2,∴1223327a b++++++=,∴3a b +=.又∵这组数据的众数是2, ∴12a b ==,或21a b ==,. ∴这组数据为1、1、2、2、2、3、3.∴这组数据方差为222142(12)3(22)2(32)77⎡⎤⨯-+⨯-+⨯-=⎣⎦. 故选:D .10、已知:一组数据-1,2,-1,5,3,4,关于这组数据,下列说法错误的是( )A .平均数是2B .众数和中位数分别是-1和2.5C .方差是16D .标准差是433【答案】C【分析】分别求出这组数据的平均数、众数、中位数、方差和标准差即可进行判断. 【详解】解:(-1+2+-1+5+3+4)÷6=2,所以平均数是2,故A 选项不符合要求; 众数是-1,中位数是(2+3)÷2=2.5,故B 选项不符合要求; ()()()()()()2222222116=12221252324263S ⎡⎤⨯--+-+--+-+-+-=⎣⎦,故C 选项符合要求;43=3S ,故D 选项不符合要求. 故选:C二、填空题11、需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,﹣2,+1,0,+2,﹣3,0,+1,则这组数据的方差是 .解:平均数=,方差==2.5,故答案为:2.512、已知求方差的算式()()()()222221 6.8 5.7 3.2 4.34s x x x x ⎡⎤=-+-+-+-⎢⎥⎣⎦,则其中的x =____ 【答案】5【分析】由方差公式可得原数据为:6.8,5.7,3.2,4.3,求它们的平均数即可得到答案.【详解】解:由题意得:()116.8 5.7 3.2 4.3205,44x =+++=⨯= 故答案为:5.13、已知一组数据x 1,x 2,…,x n 的方差是s 2,则新的一组数据ax 1+1,ax 2+1,…,ax n +1(a 为常数,a≠0)的方差是 .(用含a ,s 2的代数式表示) 【答案】a 2s 2【分析】由于一组数据x 1、x 2、x 3…的方差是s 2,而一组新数据ax 1+1,ax 2+1、ax 3+1…ax n +1中和原来的数据比较可以得到它们之间的联系,由此可以确定一组新数据ax 1+1,ax 2+1、ax 3+1…ax n +1的方差. 【详解】解:∵一组数据x 1、x 2、x 3…x n 的方差是s 2,∴一组新数据ax 1+1,ax 2+1、ax 3+1…ax n +1的方差是a 2•s 2.故答案为a 2s 2.14、如果一组数据5、8、a 、7、4的平均数是a ,那么这组数据的方差为 . 解:根据题意知=a ,解得a =6,所以这组数据为5、8、6、7、4,则这组数据的方差为×[(5﹣6)2+(8﹣6)2+(6﹣6)2+(7﹣6)2+(4﹣6)2]=2, 故答案为:2.15、下表是甲,乙两名同学近五次测试成绩统计表:根据上表数据可知,成绩最稳定的同学是____.【答案】乙【分析】根据平均数的计算公式先求出甲和乙同学的平均数,再代入方差公式求出甲和乙同学的方差,然后根据方差的意义即可得出答案.【详解】解:甲同学的平均数是:15(98+93+96+91+97)=95(分),甲同学的方差是:15[(98-95)2+(93-95)2+(96-95)2+(91-95)2+(97-95)2]=6.8,乙同学的平均数是:15(96+97+93+95+94)=95(分),乙同学的方差是:15[(96-95)2+(97-95)2+(93-95)2+(95-95)2+(94-95)2]=2,∵6.8>2,∴方差小的为乙,∴成绩比较稳定的同学是乙.故答案为:乙.16、某地农业科技部门积极助力家乡农产品的改良与推广,为了解甲、乙两种新品橙子的质量,进行了抽样调查在相同条件下,随机抽取了甲、乙各25份样品,对大小甜度等各方面进行了综合测评,并对数据进行收集、整理、描述和分析,下面给出了部分信息.a.测评分数(百分制)如下:甲:77,79,80,80,85,86,86,87,88,89,89,90,91,91,91,91,91,92,93,95,95,96,97,98,98乙:69,79,79,79,86,87,87,89,89,90,90,90,90,90,91,92,92,92,94,95,96,96,97,98,98b.按如下分组整理、描述这两组样本数据:60≤x<7070≤x<8080≤x<9090≤x≤100测评分数x个数品种甲02914乙13516 c.甲、乙两种橙子测评分数的平均数、众数、中位数如下表所示:品种平均数众数中位数甲89.4m91乙89.490n根据以上信息,回答下列问题(1)写出表中m,n的值(2)记甲种橙子测评分数的方差为s12,乙种橙子测评分数的方差为s22,则s12,s22的大小关系为;(3)根据抽样调查情况,可以推断种橙子的质量较好,理由为.(至少从两个不同的角度说明推断的合理性)解:(1)甲品种橙子测评成绩出现次数最多的是91分,所以众数是91,即m=91,将乙品种橙子的测评成绩从小到大排列处在中间位置的一个数是90,因此中位数是90,即n=90,答:m=91,n﹣90;(2)由甲、乙两种橙子的测评成绩的大小波动情况,直观可得s12<s22,故答案为:<;(3)甲品种较好,理由为:甲品种橙子的中位数、众数均比乙品种的高.故答案为:甲,甲品种橙子的中位数、众数均比乙品种的高.17、2022年将在北京——张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市.某队要从两名选手中选取一名参加比赛,为此对这两名队员进行了五次测试,测试成绩如图所示,_____________选手的成绩更稳定.【答案】A【分析】根据方差的定义,方差越小数据越稳定.【详解】解:根据统计图可得出:S A2<S B2,则A选手的成绩更稳定,故答案为:A.18、2020年新冠疫情来势汹汹,我国采取了有力的防疫措施,控制住了疫情的蔓延.甲,乙两个学校各有400名学生,在复学前期,为了解学生对疫情防控知识的掌握情况,进行了抽样调查,过程如下,请补充完整.(1)收集数据: 从甲、乙两校各随机抽取20名学生进行了相关知识的网上测试,测试成绩如下:甲98 98 92 92 92 92 92 89 89 85 84 84 83 83 79 79 78 78 69 58乙99 96 96 96 96 96 96 94 92 89 88 85 80 78 72 72 71 65 58 55(2)整理、描述数据: 根据上面得到的两组样本数据,绘制了频数分布直方图:(3)分析数据: 两组样本数据的平均数、众数、中位数、方差如表所示:(说明:成绩80分及以上为优良,60﹣79分为合格,60分以下为不合格) (4)得出结论a .估计甲学校掌握疫情防控知识优良的学生人数约为 ;b .可以推断出 学校的学生掌握疫情防控知识的水平较高,理由为 . 【答案】(3)m =84.5,n =96;(4)a .280人;b .乙,乙校的中位数大于甲校的中位数. 【分析】(3)根据(1)中的数据,可以得到中位数m 和众数n 的值;(4)a .根据(1)中的数据和(3)中的说明,由样本估算总体,可以得到甲学校掌握疫情防控知识优良的学生人数;b .根据(3)中表格中的数据,由中位数可以得到哪所学校的学生掌握疫情防控知识的水平较高,理由见详解.【详解】解:(3)甲校的中位数m =(85+84)÷2=84.5, 乙校的众数是n =96; 故答案为:84.5,96(4)a .成绩80分及以上为优良,根据样本数据计算甲学校掌握疫情防控知识优良的学生人数约为:400×1420=280(人), 故答案为:280; b .可以推断出乙学校的学生掌握疫情防控知识的水平较高,理由为乙校的中位数大于甲校的中位数,故答案为:乙,乙校的中位数大于甲校的中位数.三、解答题19、从甲、乙两厂生产的同一种零件中各抽取5个,量得它们的尺寸(单位:mm )如下:甲厂生产的零件尺寸 9.02 9.01 9 8.98 8.99乙厂生产的零件尺寸 9.01 8.97 9.02 8.99 9.01(1)分别计算从甲、乙两厂抽取的5个零件的平均尺寸;(2)分别计算从甲、乙两厂抽取的5个零件的方差,根据计算结果,你认为哪个厂生产的零件更符合规格.(零件的规定尺寸为9mm )【答案】(1)甲,乙两厂生产的零件的平均尺寸都为9mm ;(2)20.0002,S =甲20.00032S =乙,甲厂生产的零件更符合规格.【分析】(1)利用平均数公式直接计算即可得到答案;(2)由方差的计算公式直接计算甲,乙的方差,再根据方差越小,零件越符合规格,从而可得答案. 【详解】解:(1)()119.029.0198.988.99459,55x =++++=⨯=甲 ()119.018.979.028.999.01459,55x =++++=⨯=乙 所以:甲,乙两厂生产的零件的平均尺寸都为9mm(2)()()()()()222222119.0299.019998.9898.9990.0010.0002,55S ⎡⎤=-+-+-+-+-=⨯=⎣⎦甲 ()()()()()222222119.0198.9799.0298.9999.0190.00160.00032,55S ⎡⎤=-+-+-+-+-=⨯=⎣⎦乙由0.00032>0.0002,2S ∴甲<2,S 乙 所以甲厂生产的零件更符合规格.20、某校为了了解初中学生每天的睡眠时间(单位为小时),随机调查了该校的部分初中学生,根据调查结果,绘制出如图统计图.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为人,扇形统计图中的m=,条形统计图中的n=;(2)求统计调查的初中学生每天睡眠时间的平均数和方差.【答案】(1)40,25,15;(2)平均数:7,方差:1.15【分析】(1)根据5h的人数和所占的百分比,可以求得本次接受调查的初中学生人数,然后即可计算出m和n的值;(2)根据统计图中的数据,可以得到平均数,计算出方差.【详解】解:(1)本次接受调查的初中学生有:4÷10%=40(人),m%=10÷40×100%=25%,即m=25,n=40×37.5%=15,故答案为:40,25,15;(2)由条形统计图可得,x=140×(5×4+6×8+7×15+8×10+9×3)=7,s2=140[(5﹣7)2×4+(6﹣7)2×8+(7﹣7)2×15+(8﹣7)2×10+(9﹣7)2×3]=1.15.21、甲、乙两名同学进入八年级后某科6次考试成绩如图所示:平均数方差中位数众数甲7575乙33.370(1)请根据图填写上表;(2)从平均数和方差结合看,你认为谁的成绩稳定性更好些?【解答】解:(1)乙的平均数:=(85+70+70+75+70+80)=75分,S=[(60﹣75)2+(65﹣75)2+(75﹣75)2+(75﹣75)2+(80﹣75)2+(95﹣75)2]=125,乙的中位数为:(70+75)÷2=72.5,甲的众数75,乙的众数为70,填写表格如下:平均数方差中位数众数甲751257575乙7533.372.570故答案为:75,125,72.5,75;(2)从平均数上看甲、乙两人的成绩相同,但乙的方差较小,说明乙的成绩比较稳定,单从是否稳定上看,乙的成绩较稳定.22、某商店1~6周销售甲、乙两种品牌冰箱的数量如表(表Ⅰ)所示(单位:台):第1周第2周第3周第4周第5周第6周甲9101091210乙1312711107现根据表Ⅰ数据进行统计得到表Ⅱ:平均数中位数众数甲10乙107(1)填空:根据表Ⅰ的数据补全表Ⅱ;(2)老师计算了乙品牌冰箱销量的方差:2=[(13﹣10)2+(12﹣10)2+(7﹣10)2+(11﹣10)2+(10﹣10)2+(7﹣10)2]=(台2).S乙请你计算甲品牌冰箱销量的方差,根据计算结果,建议商家可多采购哪一种品牌冰箱?为什么?解:(1)甲品牌销售数量从小到大排列为:9、9、10、10、10、12,所以甲品牌销售数量的平均数为=10(台),众数为10台,乙品牌销售数量从小到大排列为7、7、10、11、12、13,所以乙品牌销售数量的中位数为=10.5(台),补全表格如下:平均数中位数众数甲101010乙1010.57故答案为:10、10、10.5;(2)建议商家可多采购甲品牌冰箱,2=,∵甲品牌冰箱销量的方差=×[(9﹣10)2×2+(10﹣10)2×3+(12﹣10)2]=1,S乙2,∴<S乙∴甲品牌冰箱的销售量比较稳定,建议商家可多采购甲品牌冰箱.23、在发生某公共卫生事件期间,某专业机构认为该事件在一段时间内没有发生大规模群体感染的标志是:“连续14天,每天新增疑似病例不超过7人”.已知在过去14天,甲、乙两地新增疑似病例数据信息如下:甲地:总体平均数为2,方差为2;乙地:中位数为3,众数为4和5.请你运用统计知识对数据分析并判断:甲、乙两地是否会发生大规模群体感染?请说明理由.(方差公式:【解答】解:①甲地不会发生大规模群体感染,理由如下:由题意可知:样本容量n=14,平均数为2,方差为2,则由方差计算公式得:28=[(x1﹣2)2+(x2﹣2)2+…+(x14﹣2)2],若甲地14天中存在某一天新增疑似病例不超过7人,则最少为8人,由于(8﹣2)2=36>28,所以没有一天新增疑似病例超过7人,故甲地不会发生大规模群体感染;②乙地不会发生大规模群体感染,理由如下:由于样本容量n=14,所以中位数为中间两个数(即第7,8个数)的平均数,因为中位数为3,众数为4和5.所以第7,8个数可能为2,4或3,3两种情况,且4和5的个数只能都是三个,若中间两个数为2和4,则前面7个数只能取0,1,2这三个数,从而有一个数至少出现三次,于是这个数也是众数,不合题意;若中间两个数都是3,因为众数为4和5,所以较大的六个数恰好是4和5各有三个,故这14个数只能是:0,0,1,1,2,2,3,3,4,4,4,5,5,5,所以乙地不会发生大规模群体感染.24、某校拟派一名跳高运动员参加校际比赛,对甲、乙两名同学进行了8次跳高选拔比赛,他们的原始成绩(单位:cm)如下表:两名同学的8次跳高成绩数据分析如下表:根据图表信息回答下列问题:(1)a=,b=,c=;(2)这两名同学中,的成绩更为稳定;(填甲或乙)(3)若预测跳高165就可能获得冠军,该校为了获取跳高比赛冠军,你认为应该选择同学参赛,理由是:;(4)若预测跳高170方可夺得冠军,该校为了获取跳高比赛冠军,你认为应该选择同学参赛,班由是:.【答案】(1)169,169,169;(2)甲;(3)甲,成绩在1.65或1.65米以上的次数甲多;(4)乙,成绩在1.70或1.70米以上的次数乙多【分析】(1)利用平均数、众数及中位数的定义分别求得a、b、c的值即可;(2)方差越大,波动性越大,成绩越不稳定,反之也成立;(3)比较一下甲、乙两名跳高运动员进行了8次选拔比赛的成绩,看谁的成绩在1.65或1.65米以上的次数多,就选哪位运动员参赛;若成绩在1.70米可获得冠军,看谁的成绩在1.70或1.70米以上的次数多,就选哪位运动员参赛.【详解】(1)a=18(169+165+168+169+172+173+169+167)=169;b=12(169+169)=169;∵169出现了3次,最多,∴c=169, 故答案为169,169,169;(2)∵甲的方差小于乙的方差,∴甲的成绩更稳定,故答案为甲;(3)若跳高1.65米就获得冠军,那么成绩在1.65或1.65米以上的次数甲多,则选择甲;故答案为甲,成绩在1.65或1.65米以上的次数甲多;(4)若跳高1.70米就获得冠军,那么成绩在1.70或1.70米以上的次数乙多,则选择乙.故答案为乙,成绩在1.70或1.70米以上的次数乙多.25、为帮助学生了解“预防新型冠状病毒”的有关知识,学校组织了一次线上知识培训,培训结束后进行测试.试题的满分为20分.为了解学生的成绩情况,从七、八年级学生中各随机抽取了20名学生的成绩进行了整理、描述和分析.下面给出了部分信息:抽取的20名七年级学生成绩是:20,20,20,20,19,19,19,19,18,18,18,18,18,18,18,17,16,16,15,14.抽取的40名学生成绩统计表根据以上信息,解答下列问题:(1)直接写出表中a,b,c的值:a=,b=,c=.(2)在这次测试中,你认为是七年级学生成绩好,还是八年级学生成绩好?请说明理由.(3)若九年级随机抽取20名学生的成绩的方差为2.5,则年级成绩更稳定(填“七”或“八”或“九”).【答案】(1)18,19,18.5;(2)八年级成绩好,见解析;(3)九【分析】(1)根据众数和中位数的定义解决问题;(2)利用两年级成绩的平均数、方差都相同,则通过比较中位数的大小比较成绩;(3)根据方差的意义求解即可.【详解】解:(1)七年级20名学生成绩的众数a=18,八年级成绩的众数b=19,中位数c=18+192=18.5;(2)八年级的成绩好,∵七年级与八年级成绩的平均分和方差相等,而八年级的中位数大于七年级的中位数,即八年级高分人数稍多,∴八年级的成绩好;(3)∵七、八、九年级成绩的方差分别为2.7、2.7、2.5,∴九年级成绩的方差最小,∴九年级成绩更稳定,故答案为:九.。
人教版八年级数学下册专题复习18

∴∠ABO=60°,∴∠BAE=30°,∴AE BE=3cm,∴BE cm,
故答案为: .
15、如图,已知▱ABCD,下列条件:①AC=BD;②AB=AD;③∠1=∠2;④AB⊥BC中,能说明▱ABCD是矩形的有①④(填写序号).
∴∠E=∠DAE,
又∵BD=CE,
∴CE=CA,
∴∠E=∠CAE,
∵∠CAD=∠CAE+∠DAE,
∴∠E+∠E=40°,即∠E=20°.
故选:A.
6、如图,▱ABCD中的对角线AC,BD相交于点O,点E.F在BD上,且BE═DF,连接AE,EC,CF,FA,下列条件能判定四边形AECF为矩形的是( )
18、如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若BE=1,
AE=2,则AC=.
19、如图,点E,F,G,H分别是BD,BC,AC,AD的中点:下列结论:①EH=EF;②当AB=CD,EG平分∠HGF;③当AB⊥CD时,四边形EFGH是矩形;其中正确的结论序号是.
∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,
∵AC=4,BC=3,∴AB=5,∴PC的最小值为: =2.4.
∴线段EF长的最小值为2.4.故选:B.
10、如图,在矩形ABCD中,点A的坐标是(1,0),点C的坐标是(﹣2,4),则BD的长是( )
A. B.5C.3 D.4
C、AC⊥BE时,四边形AECF为菱形;故选项C不符合题意;
D、AE=AF时,四边形AECF为菱形;故选项D不符合题意;
故选:B.
7、如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为(D)
八年级数学下册《一次函数》期末专题复习

八年级数学下册《一次函数》期末专题复习【基础知识回顾】一、 一次函数的定义: 一般的:如果y= ( )即y 叫x 的一次函数特别的:当b=时,一次函数就变为y=kx(k ≠0),这时y 叫x 的 【名师提醒:正比例函数是一次函数,反之不一定成立,是有当b=0时,它才是正比例函数】 二、一次函数的图象及性质:1、一次函数y=kx+b 的图象是经过点(0,b )(-,0)的一条正比例函数y= kx 的图象是经过点 和 的一条直线 【名师提醒:图为一次函数的图象是一条直线,所以画函数图象只取 个特殊的点,过这两个点画一条直线即可】 2、正比例函数y= kx(k ≠0当k >0时,其图象过 、 象限,时y 随x 的增大而 当k<0时,其图象过 、 象限,时y 随x 的增大而3、 一次函数y= kx+b ,图象及函数性质 ①、k >0 b >0过 象限k >0 b<0过 象限 k<0 b >0过 象限 k<0 b >0过 象限4、若直线y= k 1x+ b 1与l1y= k 2x+ b 2平行,则k 1 k 2,若k 1≠k 2,则l 1与l 2【名师提醒:y 随x 的变化情况,只取决于 的符号与 无关,而直线的平移,只改变 的值 的值不变】 三、用待定系数法求一次函数解析式:关键:确定一次函数y= kx+ b 中的字母 与 的值 步骤:1、设一次函数表达式2、将x ,y 的对应值或点的坐标代入表达式3、解关于系数的方程或方程组4、将所求的系数代入等设函数表达式中四、一次函数与一元一次方程,一元一次不等式和二元一次方程组1、一次函数与一元一次方程:一般地将x= 或y 解一元一次方程求直线与坐标轴的交点坐标,代入y= kx+ b 中。
2、一次函数与一元一次不等式:kx+ b>0或kx+ b<0即一次函数图象位于x 轴上方或下方时相应的x 的取值范围,反之也成立。
八年级下册数学 一元二次方程根与系数的关系复习专题(附答案)

八年级下册数学 一元二次方程根与系数的关系复习专题(附答案)一、单选题1.已知关于x 的一元二次方程ax 2+bx+c=0的根为2和3,则关于x 的一元二次方程ax 2-bx-c=0的根为( ). A. -2,-3 B. -6,1 C. 2,-3 D. -1,62.一元二次方程ax 2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是( )A. 有两个正根B. 有两个负根C. 有一正根一负根且正根绝对值大D. 有一正根一负根且负根绝对值大3.已知一元二次方程a(x-x 1)(x-x 2)=0(a≠0,x 1≠x 2)与一元一次方程dx+e=0有一个公共解x=x 1 , 若一元二次方程a(x-x 1)(x-x 2)+(dx+e)=0有两个相等的实数根,则( )A. a(x 1-x 2)=dB. a(x 2-x 1)=dC. a(x 1-x 2)²=dD. a(x 2-x 1)=d4.已知方程x 2-2x-5=0,有下列判断:①x 1+x 2=-2;②x 1•x 2=-5;③方程有实数根;④方程没有实数根;则下列选项正确的是( )A. ①②B. ①②③C. ②③D. ①②④ 5.若x 1 , x 2是一元二次方程x 2﹣2x ﹣3=0的两个根,则x 1x 2的值是( )A. -2B. -3C. 2D. 36.已知A ,B 是两个锐角,且满足 sin 2A +cos 2B =54t , cos 2A +sin 2B =34t 2 ,则实数t 所有可能值的和为( ) A. - 83 B. - 53 C. 1 D. 113 7.下列各式计算正确的是( )A. a 3⋅a 2=a 6B. a 5+a 5=a 10C. (−2a 3)3=−8a 9D. (a −1)2=a 2−1 8.若多项式2x 2+3y+3的值为8,则多项式6x 2+9y+8的值为( )A. 1B. 11C. 15D. 239.已知实数a ,b 分别满足a 2−6a +4=0,b 2−6b +4=0 , 且a≠b ,则b a +a b 的值是( )A. 7B. -7C. 11D. -1110.已知实数 m 、n 满足 x 2−7x +2=0 ,则 n m +m n 的值是( )A. 452B. 152C. 152 或2D. 452 或2 二、填空题11.已知关于x 的方程x²-mx+2m-1=0的两个实数根的平方和为7,那么m 的值是________12.设m 、n 是方程x 2+x-1001=0的两个实数根,则m 2+2m+n 的值为________。
人教版八年级下册数学专题复习及练习(含解析):轴对称

专题13.1 轴对称知识点1:轴对称图形1.定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线就是它的对称轴。
这时我们就说这个图形关于这条直线(或轴)对称.2.两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称. 这条直线叫做对称轴,折叠后互相重合的点是对应点,叫做对称点.3.轴对称图形和轴对称的区别:轴对称图形是一个图形,轴对称是两个图形。
4.轴对称和全等的关系:轴对称一定是全等图形,但全等图形不一定是轴对称。
知识点2:轴对称的性质(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
也就是不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.知识点3:线段的垂直平分线1.定义:经过线段中点并且垂直于这条线段的直线,叫这条线段的垂直平分线.2.线段垂直平分线的性质:(1)线段垂直平分线上的点与这条线段两个端点的距离相等.(2)与一条线段两个端点距离相等的点在这条线段的垂直平分线上.【例题1】若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()A B C D【例题2】下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【例题3】如图,直线MN是四边形AMBN的对称轴,点P时直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM【例题4】如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.一、选择题1.下列图形中,是轴对称图形的是()A B C D2.下列图形一定是轴对称图形的是()A.直角三角形B.平行四边形C.直角梯形D.正方形3.下列图案属于轴对称图形的是()A B C D4.下列图形中,是轴对称图形的是()A B C D二、解答题5.如图所示的是一个在19×16的点阵图上画出的“中国结”,点阵的每行及每列之间的距离都是1,请你画出“中国结”的对称轴,并直接写出阴影部分的面积。
人教版八年级数学下册期末复习专题训练——图形变换(含详解)

人教版八年级数学下册期末复习专题训练——图形变换一.典例讲解:例题:已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连接AF和CE.(1)求证:四边形AFCE是菱形;(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长.解:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO,由折叠的性质可得:OA=OC,AC⊥EF,在△AOE和△COF中,∵,∴△AOE≌△COF(ASA),∴AE=CF,∴四边形AFCE是平行四边形,∵AC⊥EF,∴四边形AFCE是菱形;(2)∵四边形AFCE是菱形,∴AF=AE=10cm,∵四边形ABCD是矩形,∴∠B=90°,∴S△ABF=AB•BF=24cm2,∴AB•BF=48(cm2),∴AB2+BF2=(AB+BF)2﹣2AB•BF=(AB+BF)2﹣2×48=AF2=100(cm2),∴AB+BF=14(cm)∴△ABF的周长为:AB+BF+AF=14+10=24(cm二.对应训练:1.如图所示,矩形纸片ABCD中,已知AD=8,如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边于对角线AC重合,点B落在点F处,且EF=3,求AB的长2.如图,一块矩形纸片的宽CD为2cm,点E在AB上,如果沿图中的EC对折,B点刚好落在AD上,此时∠BCE=15°,求BC的长3.如图,直线y=﹣x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM 折叠,使点B恰好落在x轴上的点B′处.求:(1)点B′的坐标;(2)直线AM所对应的函数关系式.4.如图,直线l与坐标轴分别交于A、B两点,∠BAO=45°,点A坐标为(8,0).动点P从点O出发,沿折线段OBA运动,到点A停止;同时动点Q也从点O出发,沿线段OA运动,到点A停止;它们的运动速度均为每秒1个单位长度.(1)求直线AB的函数关系式;(2)若点A、B、O与平面内点E组成的图形是平行四边形,请直接写出点E的坐标;(3)在运动过程中,当P、Q的距离为2时,求点P的坐标.5.已知,如图,矩形ABCD边AB=6,BC=8,再沿EF折叠,使D点与B点重合,C点的对应点为G,将△BEF绕着点B顺时针旋转,旋转角为a(0°<a<180°),记旋转这程中的三角形为△BE′F′,在旋转过程中设直线E′F′与射钱EF、射线ED分别交于点M、N,当EN=MN时,求FM的长6.如图,在平面直角坐标系xOy中,直线y=﹣x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长和点C的坐标;(2)求直线CD的解析式.7.如图,把一张长方形纸条ABCD沿AF折叠.已知∠ADB=25°,AE∥BD,求∠BAF8.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限内,对角线BD与x轴平行,直线y=x+3与x轴、y轴分别交于点E,F.将菱形ABCD 沿x轴向左平移m(m>0)个单位,当点D落在△EOF的内部时(不包括三角形的边),求m的取值范围.9.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明;(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.10.如图,在▱ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B恰好与点C重合,求折痕AE的长11.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,求BC的长.12.如图,矩形ABCD的长为8,宽为6,现将矩形沿对角线BD折叠,C点到达C′处,C′B交AD于E.(1)判断△EBD的形状,并说明理由;(2)求DE的长.13.如图,已知正方形纸片ABCD,M,N分别是AD、BC的中点,把BC边向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,求∠PBQ.14.已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连结AF和CE.(1)求证:四边形AFCE是菱形.(2)若AE=10cm,△ABF的面积为24cm2.求△ABF的周长.15.如图,长方形纸片ABCD中,AB=3cm,BC=4cm,现将A,C重合,使纸片折叠压平,设折痕为EF,试确定重叠部分△AEF的面积.16.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.答案;二.对应训练:1.略2.略3.(1)y=﹣x+8,令x=0,则y=8,令y=0,则x=6,∴A(6,0),B(0,8),∴OA=6,OB=8 AB=10,∵A B'=AB=10,∴O B'=10﹣6=4,∴B'的坐标为:(﹣4,0).(2)设OM=m,则B'M=BM=8﹣m,在Rt△OMB'中,m2+42=(8﹣m)2,解得:m=3,∴M的坐标为:(0,3),设直线AM的解析式为y=kx+b,则,解得:,故直线AM的解析式为:y=﹣x+3.4.(1)∵∠BAO=45°,∠AOB=90°,∴△AOB为等腰直角三角形,即OA=OB=8,∴B(0,8),设直线AB解析式为y=kx+b,将A(8,0)与B(0,8)代入得:,解得:k=﹣1,b=8,则直线AB解析式为y=﹣x+8;(2)如图所示:当四边形AOBE1为平行四边形时,E1坐标为(8,8);当四边形ABE2O为平行四边形时,E2坐标为(﹣8,8);当四边形ABOE3为平行四边形时,E3坐标为(8,﹣8);(3)当P在OB上时,连接PQ,由PQ=2,在Rt△POQ中,OP=OQ,可得:OP=OQ=×2=,此时P(0,);当P′在AB上时,过P′作P′M⊥x轴,∵P′Q′=2,△P′Q′M为等腰直角三角形,∴P′M=Q′M=OM=OB ﹣P′M=8﹣,此时P′(8﹣,).5如图所示:由折叠性质得:设AE=x=FC=FG,则BE=ED=8﹣x,在Rt△ABE中,由勾股定理得:AB2+AE2=BE2,即62+x2=(8﹣x)2,解得:x=,∴BE=8﹣=,EF===,由折叠性质得:∠BEF=∠DEF=∠BFE,∵EN=NM,∴∠DEF=∠NME=∠F′,∴EM∥BF′,BE∥E′F′,∴四边形BEMF′为平行四边形,由旋转性质得:BF′=BF=8﹣x,∴BE=BF′,∴平行四边形BEMF′为菱形,∴EM=BE=,∴FM=EF﹣EM=﹣=.6.(1)∵直线y=﹣x+8与x轴,y轴分别交于点A,点B,∴A(6,0),B(0,8),在Rt△OAB中,∠AOB=90°,OA=6,OB=8,∴AB==10,∵△DAB沿直线AD折叠后的对应三角形为△DAC,∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上,∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0),由题意可知CD=BD,CD2=BD2,在Rt△OCD中,由勾股定理得162+y2=(8﹣y)2,解得y=﹣12.∴点D的坐标为D(0,﹣12),可设直线CD的解析式为y=kx﹣12(k≠0)∵点C(16,0)在直线y=kx﹣12上,∴16k﹣12=0,解得k=,∴直线CD的解析式为y=x﹣12.7.略8.∵菱形ABCD的顶点A(2,0),点B(1,0),∴点D的坐标为(4,1),当y=1时,x+3=1,解得x=﹣2,∴点D向左移动2+4=6时,点D在EF上,∵点D落在△EOF的内部时(不包括三角形的边),∴4<m<6.9.(1)△AED≌△CEB′证明:∵四边形ABCD为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°,又∵∠B′EC=∠DEA,∴△AED≌△CEB′;(2)由折叠的性质可知,∠EAC=∠CAB,∵CD∥AB,∴∠CAB=∠ECA,∴∠EAC=∠ECA,∴AE=EC=8﹣3=5.在△ADE中,AD===4,延长HP交AB于M,则PM⊥AB,∴PG=PM.∴PG+PH=PM+PH=HM=AD=4.10.∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=6,∴BE=3,∴AE==4,11.∵菱形AECF,AB=6,设BE=x,则AE=CE=6﹣x,∵菱形AECF,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=FCO=30°,∴2BE=CE,即CE=2x,∴2x=6﹣x,解得:x=2,∴CE=4,又EB=2,则利用勾股定理得:BC=2.12.(1)证明:∵△BDC1是由△BDC沿直线BD折叠得到的,∴∠C1BD=∠CBD,∵四边形ABCD是矩形,∴AD∥BC,∴∠CBD=∠EDB,∴∠C1BD=∠EDB,∴BE=DE,∴△EBD是等腰三角形;(2)解:设DE=x,则AE=AD﹣DE=8﹣x,∵∠A=90°,BE=DE=x,在Rt△ABE中,BE2=AB2+AE2,∴x2=62+(8﹣x)2,∴x=,即DE=.13.根据折叠的性质知:BP=BC,∠PBQ=∠CBQ ∴BN=BC=BP ∵∠BNP=90°∴∠BPN=30°∴∠PBQ=×60°=30°.14.(1)证明:如图所示,由折叠得OA=OC,EF⊥AC.∵AD∥BC,∴∠AEO=∠CFO,∠EAO=∠FCO.∴△AOE≌△COF,∴AE=CF.又AE∥CF,∴四边形AECF 是平行四边形.∵AC⊥EF,∴四边形AECF是菱形.(2)解:∵四边形AECF是菱形,∴AF=AE=10cm,设AB=a,BF=b,∵△ABF 的面积为24cm 2,∴10022=+b a ,48=ab ,∴196)(2=+b a .∴14=+b a ,或14-=+b a (不合题意,舍去),∴△A BF 的周长为2410=++b a (cm )15.设AE=x ,由折叠可知,EC=x ,BE=4﹣x ,在Rt △ABE 中,AB 2+BE 2=AE 2,即32+(4﹣x )2=x 2,解得:x=,由折叠可知∠AEF=∠CEF ,∵AD ∥BC ,∴∠CEF=∠AFE ,∴∠AEF=∠AFE ,即AE=AF=,∴S △AEF =×AF ×AB=××3= 16.(1)证明:∵直角△ABC 中,∠C=90°﹣∠A=30°.∵CD=4t ,AE=2t ,又∵在直角△CDF 中,∠C=30°,∴DF=CD=2t ,∴DF=AE ;解:(2)∵DF ∥AB ,DF=AE ,∴四边形AEFD 是平行四边形,当AD=AE 时,四边形AEFD 是菱形,即60﹣4t=2t ,解得:t=10,即当t=10时,▱AEFD 是菱形;(3)当t=时△DEF 是直角三角形(∠EDF=90°);当t=12时,△DEF 是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE ∥BC .∴∠ADE=∠C=30°∴AD=2AE ∵CD=4t ,∴DF=2t=AE ,∴AD=4t ,∴4t +4t=60,∴t=时,∠EDF=90°.当∠DEF=90°时,DE ⊥EF ,∵四边形AEFD 是平行四边形,∴AD ∥EF ,∴DE ⊥AD ,∴△ADE 是直角三角形,∠ADE=90°,∵∠A=60°,∴∠DEA=30°,∴AD=AE ,AD=AC ﹣CD=60﹣4t ,AE=DF=CD=2t ,∴60﹣4t=t ,解得t=12.综上所述,当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).。
八年级数学下册知识点复习专题讲练函数中的动点问题含解析

函数中的动点问题1. 点在线段上运动:根据线段长或图形面积求函数关系。
如:如图所示,点P在线段BC、CD、DA上运动,△ABP的面积变化情况的图象是什么样的?解析:看清横轴和纵轴表示的量。
答案:2. 双动点变化:两动点同时运动,分析图形面积变化图象。
如图1,在矩形ABCD中,点E是对角线AC 的三等分点(靠近点A),动点F从点C出发沿C→A→B运动,当点F与点B重合时停止运动。
设点F运动的路程为x,△BEF的面积为y,那么图2能表示y与x函数关系的大致图象吗?图1 图2解析:动点问题的函数图象,解决本题应首先看清横轴和纵轴表示的量,然后根据动点的行程判断y的变化情况。
答案:能。
3. 图形运动变化所形成的函数问题:图形整体运动时,形成的函数问题;如图,边长为1和2的两个正方形,其一边在同一水平线上,小正方形自左向右匀速穿过大正方形,设穿过的时间为t,阴影部分面积为S,那么S与t的函数图象大致是什么?解析:图形运动变化所形成的函数问题.关键是理解图形运动过程中的几个分界点。
答案:4. 实际问题中的运动变化图象如图,小亮在操场上玩,一段时间内沿M→A→B→M的路径匀速散步,能近似刻画小亮到出发点M的距离y与时间x之间关系的函数图象是()解析:解决实际问题中的运动变化图象,要根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义选出正确的图象。
答案:总结:研究在不同位置时点的运动变化所产生的线段、面积的变化关系是重点。
例题如图,M是边长为4的正方形AD边的中点,动点P自A点起,由A⇒B⇒C⇒D匀速运动,直线MP扫过正方形所形成面积为y,点P运动的路程为x,则表示y与x的函数关系的图象为()A.B.C.D.解析:分别求出P 在AB 段、BC 段、CD 段的函数解析式或判断函数的类型,即可判断。
答案:解:点P 在AB 段时,函数解析式是:y =21AP•AM=21×2x=x ,是正比例函数y x =;点P 在BC 段时,函数解析式是:1()242y AM BP AB x =+⋅=-,是一次函数24y x =-;则2,1BC AB k k ==,BC AB k k ∴>。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 直角三角形1、直角三角形的性质:①直角三角形的两锐角互余②直角三角形斜边上的中线等于斜边上的一半。
如图,在Rt ∆ABC 中,∵CD 是斜边AB 的中线,∴12CD AB =。
例·直角三角形斜边长20cm,则此斜边上的中线为 .③在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。
如图,在Rt ∆ABC 中,∵∠A=30°,∴12BC AB =。
例·在Rt△ABC 中,∠C=90°,∠A=30°,则下列结论中正确的是( )。
A .AB=2BCB .AB=2AC C .AC 2+AB 2=BC 2D .AC 2+BC 2=AB 2④在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
如图,在Rt ∆ABC 中,∵12BC AB =,∴∠A=30°。
例·等腰三角形一腰上的高等于腰长的一半,则顶角的度数是 。
⑤勾股定理及其逆定理(1)勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方,即222a b c +=。
求斜边,则c =求直角边,则a =b 例·如图是拉线电线杆的示意图。
已知CD ⊥AB ,,∠CAD=60°,则拉线AC 的长是________m 。
例·若一个直角三角形的两边长分别为6和10,那么这个三角形的第三条边长是______。
(2)逆定理 如果三角形的三边长a 、b 、c 有关系222a b c +=,那么这个三角形是直角三角形 。
分别计算“22a b +”和“2c ”,相等就是Rt ∆,不相等就不是Rt ∆。
例·在Rt△ABC 中,若,,AB=3,则下列结论中正确的是( )。
A .∠C=90° B.∠B=90° C .△ABC 是锐角三角形 D .△ABC 是钝角三角形例·一块木板如右图所示,已知AB =4,BC =3,DC =12,AD =13,,木板的面积为 。
例·某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80米,BC=60米,若线段CD 是一条小渠,且D 点在边AB 上,•已知水渠的造价为10元/米,问D 点在距A 点多远处时,水渠的造价最低?最低造价是多少?⑥直角三角形性质与勾股定理运用的常见图形例·如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为7m,梯子的顶端B到地面的距离为24m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于15m.同时梯子的顶端B下降至B′,那么BB′的长度是多少?例·如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°,使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?(结果精确到0.1cm,参考数据:≈)2、直角三角形的判定①有两个角互余的三角形是直角三角形②在三角形中,如果一条边上的中线等于这条边的一半,那么这个三角形是直角三角形。
③如果三角形的三边长a 、b 、c 有关系222a b c +=,那么这个三角形是直角三角形 。
例·若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是 三角形. 例·若∠A :∠B:∠C=2:3:5,则△ABC 是_________三角形例·已知a,b,c 是三角形的三边长,如果满足2a 2+2b 2+2c 2-2ab-2bc-2ac=0,则三角形的形状是( )A 、底与边不相等的等腰三角形B 、等边三角形C 、钝角三角形D 、直角三角形3、直角三角形全等方法:SAS 、ASA 、SSS 、AAS 、HL 。
例·如图,在ΔABC 中,D 为BC 的中点,DE ⊥BC 交∠BAC 的平分线AE 于点E ,EF ⊥AB 于点F ,EG ⊥AC 的延长线于点G 。
求证:BF=CG 。
4、角平分线的性质角平分线的性质定理: 角平分线上的点到这个角的两边的距离相等如图,∵AD 是∠BAC 的平分线(或∠1=∠2),PE ⊥AC ,PF ⊥AB∴PE=PF角平分线判定定理:角的内部到角的两边距离相等的点在角的平分线上。
例·如图,在ΔABC 中,∠C=90°∠ABC 的平分线BD 交AC 于点D,若BD=10厘米,BC=8厘米,DC=6厘米,则点D 到直线AB 的距离是________厘米。
例·如图:在△ABC 中,O 是∠ABC 与∠ACB 的平分线的交点。
求证:点O 在∠A 的平分线上。
例·如图,在△ABC 中,∠B =90°,AD 平分∠BAC 交BC 于D ,BC =10cm ,CD =6cm ,则点D 到AC 的距离是: 。
例·如图,在Rt △ABC 中,AC =4,BC =3,AB =5,点P 是三角形内桑内角平分线的交点,则点P 到AB 的距离是: 。
5。
如图,∵CD 是线段AB 的垂直平分线,∴PA=PB例·如图,△ABC 中,DE 是AB 的垂直平分线,AE=4cm ,△ABC 的周长是18 cm ,则△BDC 的周长是__。
例·已知:如图,求作点P ,使点P 到A 、B 两点的距离相等,且P 到∠MON 两边的距离也相等.第二章 四边形1、多边形内角和公式:n 边形的内角和=(n -2)·180º n 2180n =+︒内角和求边形的方法:任意多边形外角和等于360º四边形具有不稳定性,三角形具有稳定性。
例·一个多边形的内角和为12600,它是 边形。
例·已知一个多边形的内角和是外角和的5倍,它是 边形。
2、中心对称:(在直角坐标系中即关于原点对称,其横、纵坐标都互为相反数) 成中心对称的两个图形中,对应点得连线经过对称中心,且被对称中心平分会画与某某图形成中心对称图形会辨别图形、实物、汉字、英文字母、扑克等是否中心对称图形例·下列几张扑克牌中,中心对称图形的有________张例· 在字母C 、H 、V 、M 、S 中是中心对称图形的是例·下列既是轴对称图形又是中心对称图形的是( )A: 等边三角形 B : 平行四边形 C: 等腰梯形 D : 矩形例·下列图案是中心对称图形,不是轴对称图形的是( ).O NM · ·A B 第2题例·如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点)和点A1. 画出△ABC关于点1A的中心对称图形.3、三角形的中位线三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
如图,在⊿ABC中,∵E是AB的中点,F是AC的中点,∴EF是⊿ABC的中位线∴EF‖BC,12EF BC例·如图,□ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3 cm,则AB的长为例·已知△ABC三边的长分别为10、12、16,那么这个三角形的三条中位线所围成的三角形的周长等于()A、 38B、19C、17D、214、特殊四边形的性质与判定平行四边形的性质:边(对边相等且平行)角(对角相等,邻角互补)对角线(对角线互相平分)不是轴对称图形,是中心对称图形平行四边形判定:定义判定:两组对边分别平行的四边形是平行四边形如图,∵ AB‖CD,AD‖BC,∴四边形ABCD是平行四边形方法1 两组对边分别相等的四边形是平行四边形如图,∵ AB=CD,AD=BC,∴四边形ABCD是平行四边形方法2 两组对角分别相等的四边形是平行四边形如图,∵∠A=∠C,∠B=∠D,∴四边形ABCD是平行四边形方法3 一组对边平行相等的四边形是平行四边形如图,∵ AB‖CD,AB=CD,∴四边形ABCD是平行四边形或∵AD‖BC,AD=BC,∴四边形ABCD是平行四边形方法4 对角线互相平分的四边形是平行四边形如图,∵ OA=OC,OB=OD,∴四边形ABCD是平行四边形例·如图,在□ABCD中,点E是AD的中点,BE的延长线与CD的延长线交于点F。
试连结BD、AF,判断四边形ABDF的形状,并证明你的结论.例·如图,已知BE ∥DF ,∠ADF=∠CBE ,AF=CE ,求证:四边形DEBF 是平行四边形.矩形的性质:边(对边相等且平行) 角(四个角都是直角)对角线(对角线互相平分且相等) 是轴对称图形,也是中心对称图形矩形的判定:定义判定:有一个角是直角的平行四边形是矩形方法1 有三个角是直角的四边形是矩形方法2 对角线相等的平行四边形是矩形例·如图,△ABC 中,点O 为AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的外角平分线CF 于点F ,交∠ACB 内角平分线CE 于E .(1)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论;(2)猜想△ABC 是何形状三角形时,矩形AECF 会是正方形?并证明你的结论。
例·如图16,矩形ABCD 沿着直线BD 折叠,使点C 落在C ′处,BC ′交AD 于点E ,AD=8,AB=4,则DE 的长为 。
例·如图所示,矩形ABCD 的两条对角线相交于点O ,∠AOB=60°,AB=2,则矩形的对角线AC 的长是 .菱形的性质:边(四条边相等) 角(对角相等,邻角互补)对角线(对角线互相平分且垂直) 是轴对称图形,也是中心对称图形菱形的面积等于两条对角线的长度乘积的一半菱形的判定:定义判定: 一组邻边相等的平行四边形是菱形方法1 四边都相等的四边形是菱形方法2 对角线互相垂直的平行四边形是菱形例·已知矩形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别相交于E 、F.求证:四边形AFCE 为菱形A BCD F例·矩形ABCD的对角线相交于O,AB=6,AC=10,则面积为例·菱形的周长为20,一条对角线长为6,则其面积为正主形的性质:边(四条边相等)角(四个角都是直角)对角线(对角线互相平分且垂直相等)是轴对称图形,也是中心对称图形正方形的判定:定义判定:一组邻边相等且有一个角是直角的平行四边形是正方形方法1 有一个角是直角的菱形是正方形方法2 有一组邻边相等的矩形是正方形例·正方形具有而菱形不一定具有的性质是()A: 对角线互相平分 B对角线相等 C:对角线平分一组对角 D:对角线互相垂直例·顺次连接对角线相等的四边形各边中点所得的四边形是例·如图,把一个长方形纸片对折两次,然后剪下一个角,为了得到一个正方形,剪刀与折痕所成的角的度数应为( )°°°°例·下列说法错误的是()A对角线互相垂直平分的四边形是菱形B对角线平分且相等的四边形是矩形C:对角线互相垂直且相等的四边形是正方形D对角线互相平分的四边形是平行四边形。