八年级数学下册专题训练二
专题02 垂直平分线与角平分线(解析版)八年级数学下册期末综合复习专题提优训练(北师大版)

2020-2021学年八年级数学下册期末综合复习专题提优训练(北师大版)专题02 垂直平分线与角平分线【典型例题】1.如图,△ABC 中,△ABC =25°,△ACB =55°,DE ,FG 分别为AB ,AC 的垂直平分线,E ,G 分别为垂足; (1)直接写出△BAC 的度数;(2)求△DAF 的度数;(3)若BC 的长为30,求△DAF 的周长.【答案】(1)100BAC ∠=︒;(2)20DAF ∠=︒;(3)30DAF C =【分析】 (1)由题意直接根据三角形内角和定理计算,得到答案;(2)由题意根据线段垂直平分线的性质、等腰三角形的性质计算;(3)根据线段垂直平分线的性质、三角形的周长公式计算,得到答案.【详解】解:(1)△△ABC +△ACB +△BAC =180°,△△BAC =180°﹣25°﹣55°=100°;(2)△DE 是线段AB 的垂直平分线,△DA =DB ,△△DAB =△ABC =25°,△FG 是线段AC 的垂直平分线,△AF =CF ,△△F AC =△ACB =55°,△△DAF =△BAC ﹣△DAB ﹣△F AC =100°﹣25°﹣55°=20°;(3)△BC =30,由(2)可知, AD =BD ,F A =FC ,△C △DAF =AD +DF +F A =BD +DF +FC =BC =30.【点睛】本题考查的是线段的垂直平分线的性质以及三角形内角和定理,等腰三角形性质,熟练掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.【专题训练】一、选择题1.如图,在Rt ABC 中,90,B AD ∠=︒平分BAC ∠,交BC 于点D ,DE AC ⊥,垂足为点E ,若1BD =,则DE 的长为( )A .12B .1C .2D .6【答案】B【分析】根据△B =90°,AD 平分△BAC ,DE △AC ,再根据角平分线的性质得到DE =BD =1.【详解】△90B ∠=︒,△DB AB ⊥,又△AD 平分BAC ∠,DA AC ⊥,△由角平分线的性质得1DE BD ==. 故选:B【点睛】本题主要考查了角平分线的性质,灵活运用角平分线的性质处理问题.2.如图,在ABC 中,直线ED 是线段BC 的垂直平分线,直线ED 分别交BC 、AB 于点D 、点E ,已知BD =3,ABC 的周长为20,则AEC 的周长为( )A .14B .20C .16D .12【答案】A【分析】 根据线段的垂直平分线的性质得到EC =EB ,BC =2BD =6,根据三角形的周长公式计算即可.【详解】△ED 是线段BC 的垂直平分线,△EC =EB ,BC =2BD =6,△△ABC 的周长为20,△AB +AC +BC =20,△AB +AC =14,△△AEC 的周长=AC +AE +EC =AC +AE +EB =AC +AB =14,故选:A .【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.3.如图,在ABC 中,AD BC ⊥,垂足为D ,EF 垂直平分AC ,交AC 于点F ,交BC 于点E ,BD DE =,若ABC 的周长为26cm ,5AF =cm ,则DC =( )A .8cmB .7cmC .10cmD .9cm【答案】A【分析】根据线段垂直平分线和等腰三角形性质得出AB=AE=CE,能推出2DE+2EC=16,即可求解.【详解】解:△AD△BC,BD=DE,EF垂直平分AC△AB=AE=EC△△ABC周长是26cm,AF=5cm△AC=10cm△AB+BC=16cm△AB+BE+EC=16cm即2DE+2EC=16cm△DE+EC=8cm△DC=DE+EC=8cm故选A.【点睛】本题主要考查了等腰三角形的性质,线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端的距离相等时解题的关键.4.如图,在Rt△ABC中,△ACB=90°,AC=3,BC=4,BE平分△ABC,CD△AB于D,BE与CD相交于F,则CF的长是()A.1B.43C.53D.2【答案】B【分析】过点E作EG△AB于点G,由EG△AB,CD△AB,可得EG△CD,由平行线的性质可得△GEB=△EFC;在Rt△ABC 中,由勾股定理求得AB的值;由HL判定Rt△EBC△Rt△EBG,由全等三角形的性质可得△CEB=△EFC及AG 的值,进而可判定CF=CE.设CF=EG=EC=x,则AE=3-x,在Rt△AEG中,由勾股定理得关于x的方程,解得x 的值即为CF 的长.【详解】解:过点E 作EG △AB 于点G ,如图:△CD △AB 于D ,△EG △CD ,△△GEB =△EFC ,△在Rt △ABC 中,△ACB =90°,△EC △CB ,又△BE 平分△ABC ,EG △AB ,△EG =EC .在Rt △ABC 中,△ACB =90°,AC =3,BC =4,△AB =5.在Rt △EBC 和Rt △EBG 中,EB EB EC EG=⎧⎨=⎩, △Rt △EBC △Rt △EBG (HL ),△CEB =△GEB ,BG =BC =4,△△CEB =△EFC ,AG =AB ﹣BG =5﹣4=1,△CF =CE .设CF =EG =EC =x ,则AE =3﹣x ,在Rt △AEG 中,由勾股定理得:(3﹣x )2=x 2+12,解得x =43△CF 的长是43.故选:B.【点睛】本题考查了勾股定理、角平分线的性质定理及等腰三角形的判定等知识点,数形结合并熟练掌握相关性质及定理是解题的关键.5.如图,在△ABC中,△B=15°,△C=30°,MN是AB的垂直平分线,PQ是AC的垂直平分线,已知S△ANQ则BC的长为()A B.3C.3D.2+【答案】B【分析】根据线段垂直平分线的性质得出AQ=CQ,BN=AN,根据等腰三角形的性质和已知条件得出△BAN=△B=15°,△CAQ=△C=30°,根据三角形外角性质得出△ANQ=△B+△BAN=30°,△AQN=△C+△CAQ=60°,求出△NAQ=90°,再根据三角形的面积求出AQ,最后求出BC即可.【详解】解:△MN是AB的垂直平分线,PQ是AC的垂直平分线,△AQ=CQ,BN=AN,△△B=15°,△C=30°,△△BAN=△B=15°,△CAQ=△C=30°,△△ANQ=△B+△BAN=15°+15°=30°,△AQN=△C+△CAQ=30°+30°=60°,△△NAQ=180°﹣△ANQ﹣△AQN=90°,△NQ=2AQ,AN==,△S△ANQ=,2△12⨯AQ 解得:AQ =1(负数舍去),即CQ =AQ =1,AN =BN NQ =2AQ =2,△BC =BN +NQ +CQ 2+1=3故选:B .【点睛】本题考查了含30°角的直角三角形的性质,线段垂直平分线的性质,勾股定理,三角形的面积,三角形的外角性质,等腰三角形的性质等知识点,能综合运用知识点进行推理和计算是解此题的关键.二、填空题6.如图,在△ABC 中,△C =90°,AP 平分△CAB ,且PC =3,PB =5,则点P 到边AB 的距离是 ______________【答案】3【分析】作PH △AB 于H .直接根据角平分线的性质求解即可.【详解】解:作PH △AB 于H ,如图,△AP 平分△CAB ,且△C =90°,△3PH PC ==,即点P 到边AB 的距离是3.故答案为3.【点睛】此题主要考查了角平分线的性质,熟练掌握角平分线性质定理是解答此题的关键.7.如图,在△ABC 中,△C =90°,DE 垂直平分斜边AB ,分别交AB 、BC 于D 、E ,若△CAB =△B +28°,则△CAE=__.【答案】28︒【分析】先根据直角三角形的两锐角互余可得31,59B CAB ∠=︒∠=︒,再根据垂直平分线的性质可得AE BE =,然后根据等腰三角形的性质可得31B BAE ∠=∠=︒,最后根据角的和差即可得.【详解】解:△在ABC 中,90C ∠=︒,△90CAB B ∠+∠=︒,又△28CAB B ∠=∠+︒,△31,59B CAB ∠=︒∠=︒,△DE 垂直平分斜边AB ,△AE BE =,△31BAE B ∠=∠=︒,△593128CAE CAB BAE ∠=∠-∠=︒-︒=︒,故答案为:28︒.【点睛】本题考查了直角三角形的两锐角互余、等腰三角形的性质、线段垂直平分线的性质等知识点,熟练掌握等腰三角形的性质和线段垂直平分线的性质是解题关键.8.如图,在△ABC 中,AB =6,AC =8,BC =11,AB 的垂直平分线分别交AB ,BC 于点D 、E ,AC 的垂直平分线分别交AC ,BC 于点F 、G ,则△AEG 的周长为__.【答案】11.【分析】根据线段垂直平分线的性质可得EA=EB,GA=GC,所以可求出△AEG的周长.【详解】解△DE是线段AB的垂直平分线,△EA=EB,同理,GA=GC,△△AEG的周长=AE+EG+GA=EB+EG+GC=BC=11,故答案为:11.【点睛】本题考查了线段垂直平分线的性质.线段垂直平分线上的点到线段两端点的距离相等.9.如图,在四边形ABCD中,△A=90°,AD= 6,连接BD,BD△CD,△ADB=△C.若P是BC边上一动点,则DP长的最小值为__________.【答案】6【分析】根据垂线段最短得出当DP△BC时,DP的长度最小,求出△ABD=△CBD,根据角平分线的性质得出AD=DP=6,即可得出选项.【详解】解:△BD△CD,△△BDC=90°,△△C+△CBD=90°,△△A=90°△△ABD+△ADB=90°,△△ADB=△C,△△ABD=△CBD,当DP△BC时,DP的长度最小,△AD△AB,△DP=AD,△AD=6,△DP的最小值是6,故答案为:6.【点睛】本题考查了角平分线的性质,三角形内角和定理和垂线段最短等知识点,能知道当DP△BC时,DP的长度最小是解此题的关键.10.如图,等腰三角形ABC的面积为24,底边BC为12,点P在边BC上,且BP:PC=3:1,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDP周长的最小值为___________.【答案】8.【分析】如图作AH△BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DP+DC=AD+DP,可得当A、D、P共线时,DP+DC的值最小,最小值就是线段AP的长,此时,△CDP周长的最小,求出AP的长即可.【详解】解:如图作AH△BC于H,连接AD.△EG垂直平分线段AC,△DA=DC,△DP+DC=AD+DP,△当A、D、P共线时,DP+DC的值最小,最小值就是线段AP的长,△12×12•AH=24,△AH=4,△AB=AC,AH△BC,△BH=CH=6,△BP:PC=3:1,△CP=PH=3,△AP5,△DP+DC的最小值为5.△△CDP周长的最小值为5+3=8;故答案为:8.【点睛】本题考查轴对称﹣最短问题、线段的垂直平分线的性质、等腰三角形的性质、勾股定理等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.三、解答题11.如图,在△ABC中,AB=AC,BE平分△ABC,DE△BC,交AB于点D,交AC于点E.(1)求证:BD=DE;(2)若△DEB=30°且DE=3,求AD的长度.【答案】(1)见解析;(2)3.【分析】(1)由BE平分△ABC,DE△BC可得△DBE=△DEB,可得结论;(2)通过证明△ADE为等边三角形,可得AD=DE=3.【详解】证明:(1)△BE平分△ABC,△△ABE=△EBC,△DE△BC,△△DEB=△EBC,△△DBE=△DEB,△BD=DE;(2)△△DEB=△DBE=30°=△EBC,△△ABC=60°,△AB=AC,△△ABC是等边三角形,△△ABC=△ACB=△A=60°,△DE△BC,△△ADE=△ABC=60°,△AED=△C=60°,△△ADE是等边三角形,△AD=DE=3.【点睛】本题考查了等腰三角形的性质,角平分线的性质,平行线的性质,等边三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.,的垂直平分线交于点P.12.如图,ABC中,边AB BC==.(1)求证:PA PB PC(2)点P是否也在边AC的垂直平分线上?请说明理由.【答案】(1)见解析;(2)在,理由见解析【分析】(1)根据线段的垂直平分线的性质可求得,P A=PB,PB=PC,则P A=PB=PC.(2)根据线段的垂直平分线的性质的逆定理,可得点P在边AC的垂直平分线上.【详解】解:(1)证明:△边AB、BC的垂直平分线交于点P,△P A=PB,PB=PC.△P A=PB=PC.(2)△P A=PC,△点P 在边AC 的垂直平分线上.【点睛】此题主要考查线段垂直平分线的性质定理及逆定理:(1)线段垂直平分线上的点和这条线段的两个端点的距离相等;(2)和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.13.如图,AD 为△ABC 的角平分线,DE △AB 于点E ,DF △AC 于点F ,连接EF 交AD 于点O .(1)求证:△DEF =△DFE ;(2)求证:AD 垂直平分EF .【答案】(1)见解析;(2)见解析【分析】(1)根据角平分线的性质证明即可得解;(2)根据已知条件证明Rt △AED △Rt △AFD (HL )和△△DEO DFO ≅即可得解;【详解】(1)△AD 为△ABC 的角平分线,DE △AB ,DF △AC ,△DE =DF ,△△DEF =△DFE ;(2)根据已知条件可得△AED =△AFD =90°,在Rt △AED 和Rt △AFD 中,DE DF AD AD=⎧⎨=⎩, △Rt △AED △Rt △AFD (HL ),△△ADE =△ADF ;在△DEO 和△DFO 中, DEO DFO DE DFEDO FDO ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△△DEO DFO ≅,△EO FO =,EOD FOD ∠=∠,△∠EOD +∠FOD =180°,△∠EOD =∠FOD =90°,△AD 垂直平分EF .【点睛】本题主要考查了角平分线的垂直平分线的判定与性质,结合等三角形证明是解题的关键.14.如图,在ABC 中,AB AC =,AB 的垂直平分线交AB 于M ,交AC 于N .(1)若70ABC ∠=︒,求A ∠的度数;(2)连接NB ,若8cm AB =,NBC 的周长是14cm ,求BC 的长.【答案】(1)40°;(2)6cm【分析】(1)由AB =AC 可得△C =△ABC =70°,由三角形内角和可得△A =40°;(2)由(1)可知BN =AN ,由此可得BN +NC =AN +NC =AC =AB =8cm ,再由C △BNC =BN +CN +BC =14cm ,可得BC =14-8=6(cm ).【详解】解:(1)△AB =AC ,△△ABC =△ACB =70°,△△A =180°-70°-70°=40°;(2)MN 是AB 的垂直平分线,△AN =BN ,△BN +CN =AN +CN =AC ,△AB =AC =8cm ,△BN +CN =8cm ,△C △BNC =BN +CN +BC =14(cm ),△BC =14﹣8=6(cm ).【点睛】本题考查等腰三角形性质,三角形内角和,线段垂直平分线性质,三角形周长,掌握等腰三角形性质,三角形内角和,线段垂直平分线性质,三角形周长是解题关键.15.如图,△ABC 中,AD 平分△BAC ,DG △BC 且平分BC ,DE △AB 于E ,DF △AC 于F .(1)求证:BE =CF ;(2)如果AB =8,AC =6,求AE ,BE 的长.【答案】(1)证明见解析,(2)AE =7,BE =1.【分析】(1)连接DB 、DC ,先由角平分线的性质就可以得出DE =DF ,再证明△DBE △△DCF 就可以得出结论; (2)由条件可以得出△ADE △△ADF 就可以得出AE =AF ,进而就可以求出结论.【详解】解:(1)证明:连接DB 、DC ,△DG △BC 且平分BC ,△DB =DC .△AD 为△BAC 的平分线,DE △AB ,DF △AC ,△DE =DF .在Rt △DBE 和Rt △DCF 中DB DC DE DF =⎧⎨=⎩, Rt △DBE △Rt △DCF (HL ),△BE =CF .(2)在Rt △ADE 和Rt △ADF 中AD AD DE DF =⎧⎨=⎩,△Rt△ADE△Rt△ADF(HL).△AE=AF.△AC+CF=AF,△AE=AC+CF.△AE=AB﹣BE,△AC+CF=AB﹣BE,△AB=8,AC=6,△6+BE=8﹣BE,△BE=1,△AE=8﹣1=7.即AE=7,BE=1.【点睛】本题考查了角平分线的性质的运用,中垂线的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.16.如图,已知Rt△ABC中,△ACB=90°,CD△AB于点D,△BAC的平分线分别交BC,CD于点E、F.(1)试说明△CEF是等腰三角形;(2)若点E恰好在线段AB的垂直平分线上,猜想:线段AC与线段AB的数量关系,并说明理由;(3)在(2)的条件下,若AC=2.5,求△ABE的面积.【答案】(1)见解析;(2)AB=2AC,理由见解析;(3)12【分析】(1)求出△B=△ACD,根据三角形的外角性质求出△CFE=△CEF,根据等腰三角形的判定得出即可;(2)求出△B=△CAE=△BAE,根据三角形内角和定理求出△B=30°,再求出答案即可;(3)求出高EM的长,求出AB的长,再根据三角形的面积公式求出即可.【详解】解:(1)△CD△AB,△△CDB=90°,△△B+△BCD=90°,△△ACB=90°,△△ACD+△BCD=90°,△△ACD=△B,△AE平分△BAC,△△CAE=△BAE,△△ACD+△CAE=△B+△BAE,即△CFE=△CEF,△CF=CE,即△CEF是等腰三角形;(2)AB=2AC,理由是:△E在线段AB的垂直平分线上,△AE=BE,△△B=△BAE,△△CAE=△BAE,△ACB=90°,△3△B=90°,△△B=30°,△AB=2AC;(3)△AC=2.5,△AB=2AC=5,由(2)得,△CAB=60°,△AE平分△CAB,△△CEA =30°,设CE 为x ,则AE 为2x ,AC ,x ,过E 作EM △AB 于M ,△EM =CE =6,△△ABE 的面积S =12AB EM ⋅=12⨯5. 【点睛】本题考查勾股定理、等腰三角形的判定、含30°角的直角三角形的性质,解题关键是熟练运用所学知识,整合已知条件,解决综合问题.17.如图1,在△ABC 中,AD △BC ,垂足为D ,E 为AC 上一点,BE 交AD 于点F ,△ABC =45°,FD =CD . (1)请写出BE 与AC 的位置关系,并说明理由;(2)如图2,连接DE ,求证:△BED =△DEC ;(3)若AD =4,CD =2,在直线BC 上方的平面内是否存在点P ,使得△BFP 为等腰直角三角形.若存在,请直接写出点P 到直线BC 的距离.【答案】(1)BE △AC ,见解析;(2)见解析;(3)存在,4或6或3【分析】(1)证明△BDF △△ADC ,得到△DBF =△DAC ,由△BFD =△AFE 证得△BDF =△AEF =90°,即可得到结论;(2)过点D 作DM △AC ,DN △BE ,根据△BDF △△ADC ,得到BF =AC ,BDF ADC SS =,推出DM =DN ,证得ED 平分△BEC ,由此得到结论;(3)根据勾股定理求出AC 由△BDF △△ADC ,得到BF =AC =DF =DC =2,BD =AD =4,分三种情况:当△PBF =90°,BP =BF 时, 当△P ′FB =90°,P ′F =BF 时, 当△BP ″F =90°,BP ″=FP ″时, 根据等腰直角三角形的性质解答即可.【详解】(1)证明:如图①中,△AD △BC ,△△ADB =90°,△△ABC =45°,△△ABD =△BAD =45°,△BD =DA ,△DF =DC ,△BDF =△ADC =90°,△△BDF △△ADC (SAS ).△△DAC =△CBE ,△△BFD =△AFE ,△△BDF =△AEF =90°,△BE △AC .(2)解:如图,过点D 作DM △AC ,DN △BE ,△△BDF △△ADC ,△BF =AC ,BDF ADC SS =,△DM =DN ,△ED 平分△BEC ,△△BED =△DEC ;(3)解:如图2-1中,满足条件的点P 有3个.在Rt △ADC 中,△AD =4,CD =2,△AC ,△△BDF △△ADC ,△BF =AC =DF =DC =2,BD =AD =4,当△PBF =90°,BP =BF 时,作PM △CB 交CB 的延长线于M . 易证△PMB △△BDF ,△PM =BD =4,△点P 到直线BC 的距离为4;当△P ′FB =90°,P ′F =BF 时,作P ′H △BC 于H ,FG △P ′H 于G . 易证:P ′G =BD =4,GH =DF =2,△P ′H =4+2=6,△P ′到直线BC 的距离为6;当△BP ″F =90°,BP ″=FP ″时,作P ″N △BC 于N .易证P ″N =2PM DF +=3,△P″到直线BC的距离为3,综上所述,满足条件的点P到直线BC的距离为4或6或3.【点睛】此题考查全等三角形的判定及性质,等腰直角三角形的性质,勾股定理,角平分线的判定及性质,熟记各定理并熟练应用解决问题是解题的关键.18.在△ABC中,若AD是△BAC的角平分线,点E和点F分别在AB和AC上,且DE△AB,垂足为E,DF△AC,垂足为F(如图(1)),则可以得到以下两个结论:①△AED+△AFD=180°;②DE=DF.那么在△ABC中,仍然有条件“AD是△BAC的角平分线,点E和点F,分别在AB和AC上”,请探究以下两个问题:(1)若△AED+△AFD=180°(如图(2)),则DE与DF是否仍相等?若仍相等,请证明;否则请举出反例.(2)若DE=DF,则△AED+△AFD=180°是否成立?(只写出结论,不证明)【答案】(1)DE=DF,理由见解析;(2)不一定成立【分析】(1)过点D作DM△AB于M,DN△AC于N,DM=DN,△DME△△DNF,DE=DF;(2)如图,若DE、DF在点D到角的两边的垂线段与顶点A的同侧则一定不成立;【详解】(1)DE=DF.理由如下:过点D作DM△AB于M,DN△AC于N,△AD平分△BAC,DM△AB,DN△AC,△DM=DN,△△AED+△AFD=180°,△AFD+△DFN=180°,△△DFN=△AED,△△DME△△DNF(AAS),△DE=DF;(2)不一定成立.如图,若DE、DF在点D到角的两边的垂线段与顶点A的同侧则一定不成立,经过(1)的证明,若在垂线段上或两侧则成立,所以不一定成立..【点睛】本题主要考查角平分线的性质,难点在于熟练和灵活的应用角平分线要点;19.根据图片回答下列问题.(1)如图①,AD平分△BAC,△B+△C=180°,△B=90°,易知:DB____DC.(2) 如图②,AD平分△BAC,△ABD+△ACD=180°,△ABD<90°,求证:DB=DC.(3)如图③,四边形ABCD中,△B=45°△C=135°,DB=DC AB−AC=________.【答案】(1)=;(2)见解析;(3)【分析】(1)利用HL判断出△ADC△△ADC,即可得出结论;(2)先构造出△ACD△△AED,得出DC=DE,△AED=△C,在判断出DE=DB,即可得出结论;(3)利用(2)结论得出DE=DB,再判断出△BDE=90°,利用勾股定理求出BE即可得出结论.【详解】解:证明:(1)△△B+△C=180°,△B=90°,△△C=90°,△AD平分△BAC,△△DAC=△BAD,△AD=AD,△△ACD△△ABD(AAS),△BD=CD;(2)如图②,在AB边上取点E,使AC=AE,△AD平分△BAC,△△CAD=△EAD,△AD=AD,AC=AE,△△ACD△△AED(SAS),△DC=DE,△AED=△C,△△C+△B=180°,△AED+△DEB=180°,△△DEB=△B,△DE=DB,△DB=DC;(3)如图③,连接AD,在AB上取一点E使AE=AC,同(2)的方法得,AE =AC ,CD =DE =BD =2,△△DEB =△B =45°,△△BDE =90°,根据勾股定理得,BE =,△AB -AC =BE =故答案为:【点睛】本题是四边形综合题,考查全等三角形的判定和性质,角平分线的性质,等腰直角三角形的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,属于中考常考题型.20.如图①,△ABC 中,△ABC ,△ACB 的平分线交于O 点,过O 点作BC 平行线交AB ,AC 于E ,F . (1)试说明:EO =BE ;(2)探究图①中线段EF 与BE ,CF 间的关系,并说明理由;(3)探究图②,△ABC 中若△ABC 的平分线与△ABC 的外角平分线交于O ,过点O 作BC 的平行线交AB 于E ,交AC 于F ,这时EF 与BE ,CF 的关系又如何?请直接写出关系,不需要说明理由.【答案】(1)证明见解析;(2)EF BE CF =+,理由见解析;(3)EF BE CF =-【分析】(1)由题意易得△EOB =△EBO ,△ABO =△OBC ,则有△EOB =△ABO ,进而问题得证;(2)由题意易得△FOC =△OCB ,△FCO =△OCB ,则有△FCO =△FOC ,然后可得CF =OF ,由(1)得BE =OE ,进而问题可求解;(3)同理(1)(2)可得:BE=OE,CF=OF,然后问题可求解.【详解】证明:(1)△EF△BC,△△EOB=△EBO,△BO平分△ABC,△△ABO=△OBC,△△EOB=△ABO,△BE=OE;=+,理由如下:(2)解:EF BE CF△EF△BC,△△FOC=△OCB,△CO平分△ACB,△△FCO=△OCB,△△FCO=△FOC,△CF=OF,由(1)得:BE=OE,△EF=BE+CF;(3)解:EF=BE-CF,理由如下:同理(1)(2)可得:BE=OE,CF=OF,△EF=OE-OF=BE-CF.【点睛】本题主要考查角平分线的定义及平行线的性质,熟练掌握角平分线的定义及平行线的性质是解题的关键,也要熟练掌握“双平等腰”模型.。
数学初二下册第二章练习题

数学初二下册第二章练习题解答:数学初二下册第二章练习题在数学的学习中,练习题是非常重要的,它能够巩固知识、提高技能,使我们更好地掌握数学的基础。
下面,我们就来一起详细地解答初二下册第二章的练习题。
1. 计算下列各组数的和:(1) 2.5,8.7,3.9,6.4,1.2解:我们只需要将这些数相加即可,计算过程如下:2.5 + 8.7 +3.9 + 6.4 + 1.2 = 22.7所以,这组数的和为22.7。
(2) 0.3,1.7,-2.5,4.8,-0.9解:同样地,我们将这些数相加,计算过程如下:0.3 + 1.7 + (-2.5) + 4.8 + (-0.9) = 4.4所以,这组数的和为4.4。
2. 判断下列各式是否正确,并说明理由:(1) 3.2 + (-1.5) = 3.2 - 1.5解:这个式子是正确的。
在数学中,加法的减法法则是成立的。
所以,3.2 + (-1.5) 可以改写为 3.2 - 1.5。
(2) 5 + (-7) = 7 - 5解:这个式子是错误的。
在数学中,加法的减法法则是成立的,但是等号两边的数字要保持一致。
所以,5 + (-7) 不能够改写为 7 - 5。
3. 将下列各组数按从大到小的顺序排列:(1) -2,3,-1,4,0解:我们将这些数按照从大到小的顺序排列,排列结果如下:4,3,0,-1,-2所以,按从大到小的顺序排列后的结果是 4,3,0,-1,-2。
(2) -10,-5,-8,6,-3解:同样地,我们将这些数按照从大到小的顺序排列,排列结果如下:6,-3,-5,-8,-10所以,按从大到小的顺序排列后的结果是 6,-3,-5,-8,-10。
通过以上的练习题,我们可以加深对数学知识的理解和运用。
同时,在解答过程中,我们也养成了积极思考、综合运用的能力。
希望同学们能够继续努力,不断提高自己的数学水平。
本文针对“数学初二下册第二章练习题”这个题目,引入了题目的格式,按照说明进行了练习题的解答。
强化训练北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专项训练试题(含详细解析)

第二章一元一次不等式和一元一次不等式组专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、设m为整数,若方程组3131x y mx y m+=-⎧⎨-=+⎩的解x、y满足175x y+>-,则m的最大值是()A.4 B.5 C.6 D.72、一次函数y=mx﹣n(m,n为常数)的图象如图所示,则不等式mx﹣n≥0的解集是()A.x≥2B.x≤2C.x≥3D.x≤33、如图,一次函数y=kx+b(k≠0)的图像经过点A(﹣1,﹣2)和点B(﹣2,0),一次函数y=2x 的图像过点A,则不等式2x<kx+b≤0的解集为()A .x ≤﹣2B .﹣2≤x <﹣1C .﹣2<x ≤﹣1D .﹣1<x ≤04x 的取值范围是( ) A .x ≥2 B .x >2 C .x ≠2D .x <2 5、下列四个说法:①若a =﹣b ,则a 2=b 2;②若|m |+m =0,则m <0;③若﹣1<m <0,则m 2<﹣m ;④两个四次多项式的和一定是四次多项式.其中正确说法的个数是( )A .4B .3C .2D .16、若a >b ,则( )A .a ﹣1≥bB .b +1≥aC .2a +1>2b +1D .a ﹣1>b +17、若不等式﹣3x <1,两边同时除以﹣3,得( )A .x >﹣13 B .x <﹣13 C .x >13 D .x <138、如图,一次函数y kx b =+(,k b 为常数,且0k ≠)的图像经过点(3,2)-,则关于x 的不等式2kx b +<的解集为( )A .3x >-B .3x <-C .2x >D .2x <9、把不等式组123x x >-⎧⎨+≤⎩的解集在数轴上表示,正确的是( ) A . B .C .D .10、如果点P (m ,1﹣2m )在第一象限,那么m 的取值范围是 ( )A .102m << B .102m -<< C .0m < D .12m > 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,关于x 的不等式组在数轴上所表示的的解集是:______.2、a 、b 、c 表示的数在数轴上如图所示,试填入适当的>”“<”或“=”.(1)3a +______3b +;(2)-a b ________0;(3)35a __________35b ;(4)2a -________2b -; (5)14a -________14b -;(6)ac ⋅_______b c ⋅;(7)a c -________b c -;(8)ab _______2b .3、在某校班级篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜___场.4、关于x 的正比例函数y =(m +2)x ,若y 随x 的增大而增大,则m 的取值范围是________.5、 “a 的25用不等式表示__________________.三、解答题(5小题,每小题10分,共计50分)1、(1)解不等式:3x ﹣2≤5x ,并把解集在数轴上表示出来.(2)解不等式组2(2)313123x x x x -≤-⎧⎪+-⎨>+⎪⎩,并写出它的最大整数解. 2、解不等式组并把它的解集在数轴上表示出来 ()1317225231x x x x ⎧-≤-⎪⎨⎪->+⎩3、春节将至,小明家亲友团准备去某地旅游,甲旅行社的优惠办法是:买4张全票其余人按半价优惠;乙旅行社的优惠办法是:一律按原价的七五折优惠;已知这两家旅行社的原价均为4000元每人.(1)若亲友团有6人,甲、乙旅行社各需多少费用?(2)亲友团为多少人时,甲、乙旅行社的费用相同?(3)当亲友团人数满足什么条件时,甲旅行社的收费更优惠?当亲友团人数满足什么条件时,乙旅行社的收费更优惠?(直接写出结果,不需说明理由)4、三角形的三边长分别是2,x ,10,且正偶数x 满足不等式11145x x +-<-,求该三角形的周长. 5、某公司销售A 、B 两种型号教学设备,每台的销售成本和售价如表:已知每月销售两种型号设备共20台,设销售A 种型号设备x 台,A 、B 两种型号设备全部售完后获得毛利润y 万元(毛利润=售价-成本)(1)求y 关于x 的函数关系式(不要求写自变量的取值范围);(2)若销售两种型号设备的总成本不超过80万元,那么公司如何安排销售A 、B 两种型号设备,售完后毛利润最大?并求出最大毛利润.-参考答案-一、单选题1、B【分析】先把m 当做常数,解一元二次方程,然后根据175x y +>-得到关于m 的不等式,由此求解即可 【详解】解:3131x y m x y m +=-⎧⎨-=+⎩①② 把①×3得:9333x y m +=-③,用③+①得:1042x m =-,解得25m x -=,把25mx-=代入①得6315my m-+=-,解得125my--=,∵175x y+>-,∴21217555m m---+>-,即131755m->-,解得6m<,∵m为整数,∴m的最大值为5,故选B.【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.2、D【分析】观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答.【详解】由图象知:不等式的解集为x≤3故选:D【点睛】本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键.3、B【分析】根据图象知正比例函数y=2x和一次函数y=kx+b的图象的交点,即可得出不等式2x<kx+b的解集,根据一次函数y=kx+b的图象与x轴的交点坐标即可得出不等式kx+b≤0的解集是x≥-2,即可得出答案.【详解】解:∵由图象可知:正比例函数y=2x和一次函数y=kx+b的图象的交点是A(-1,-2),∴不等式2x<kx+b的解集是x<-1,∵一次函数y=kx+b的图象与x轴的交点坐标是B(-2,0),∴不等式kx+b≤0的解集是x≥-2,∴不等式2x<kx+b≤0的解集是-2≤x<-1,故选:B.【点睛】本题考查一次函数和一元一次不等式的应用,能利用数形结合,找到不等式与一次函数图像的关系是解答此题的关键.4、A【分析】根据二次根式有意义,被开方数为非负数,列一元一次不等式,解不等式即可得.【详解】x-≥,解:根据题意,得20x≥,∴2故选:A.【点睛】本题考查了二次根式有意义条件、一元一次不等式解法;解题的关键是熟练掌握二次根式有意义的条件是解题关键.5、C【分析】根据题意分别利用相反数的性质以及绝对值的代数意义和多项式的加法进行判断即可.【详解】解:①若a=﹣b,则a2=b2,说法正确;②若|m|+m=0,则m 0,说法错误;③若﹣1<m<0,则m2<﹣m,说法正确;④两个四次多项式的和不一定是四次多项式,说法错误;①③正确,共有2个.故选:C.【点睛】本题考查相反数的性质和不等式性质以及绝对值的代数意义和多项式的加法,熟练掌握相关的概念是解题的关键.6、C【分析】举出反例即可判断A、B、D,根据不等式的性质即可判断C.【详解】解:A、若a=0.5,b=0.4,a>b,但是a﹣1<b,不符合题意;B、若a=3,b=1,a>b,但是b+1<a,不符合题意;C、∵a>b,∴2a+1>2b+1,符合题意;D、若a=0.5,b=0.4,a>b,但是a﹣1<b+1,不符合题意.故选:C.【点睛】此题考查不等式的性质,对性质的理解是解题的关键.不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.7、A【分析】根据题意直接利用不等式的性质进行计算即可得出答案.【详解】解:不等式﹣3x <1,两边同时除以﹣3,得x >﹣13.故选:A .【点睛】本题主要考查不等式的基本性质.解不等式依据不等式的性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化.8、A【分析】根据图像的意义当x =-3时,kx +b =2,根据一次函数的性质求解即可.【详解】解:∵当x =-3时,kx +b =2,且y 随x 的增大而减小,∴不等式2kx b +<的解集3x >-,故选A .【点睛】本题考查了一次函数与不等式的关系,一次函数图像的性质,灵活运用数形结合思想确定不等式的解集是解题的关键.9、D【分析】先求出不等式组的解集,再把不等式组的解集在数轴上表示出来,即可求解.【详解】解:123x x >-⎧⎨+≤⎩①②, 解不等式②,得:1x ≤ ,所以不等式组的解集为11x -<≤把不等式组的解集在数轴上表示出来为:故选:D【点睛】本题主要考查了解一元一次不等组,熟练掌握解一元一次不等组的步骤是解题的关键.10、A【分析】根据第一象限的横坐标为正、纵坐标为负,列出关于m 的不等式组解答即可.【详解】解:∵P (m ,1﹣2m )在第一象限,∴0120m m ⎧⎨-⎩>> ,解得:102m << 故选A .【点睛】本题主要考查了解一元一次不等式组、平面直角坐标系等知识点,根据点在平面直角坐标系的象限列出关于m 的一元一次不等式组成为解答本题的关键.二、填空题1、21x -<≤【分析】根据图像特点向左是小于,向右是大于,即可得答案.【详解】∵从-2出发向右画出的折线中表示-2的点是空心,∴x >-2,∵从1出发向左画出的折线中表示1的点是实心,∴x ≤1,∴不等式的解集是:−2<x ≤1故答案为:−2<x ≤1.【点睛】本题考查了一元一次不等式的解法,做题的关键是掌握空心和实心的区别.2、> > > < < > > >【分析】本题主要是根据不等式的性质:(1)不等式的两边同时加上或减去同一个数或式子,不等式的方向不改变;(2)不等式的两边同时乘或除以一个大于零的数或式子,不等号的方向不变;(3)不等式的两边同时乘或除以一个小于零的数或式子,不等号的方向改变.据此可以对不等号的方向进行判断.【详解】解:由数轴的定义得:a>0,b>0,c <0,a >b >c ,(1)不等式a >b 的两边同加上3,不改变不等号的方向,则3a +>3b +;(2)不等式a >b 的两边同减去b ,不改变不等号的方向,则a -b >b -b ,即a -b >0;(3)不等式a >b 的两边同乘以35,不改变不等号的方向,则35a >35b ; (4)不等式a >b 的两边同乘以-2,改变不等号的方向,则2a -<2b -;(5)不等式a >b 的两边同乘以-4,改变不等号的方向,则-4a <-4b ;不等式-4a <-4b 的两边同加上1,不改变不等号的方向,则14a -<14b -;(6)不等式a >b 的两边同乘以正数c ,不改变不等号的方向,则a c ⋅ > b c ⋅;(7)不等式a >b 的两边同减去c ,不改变不等号的方向,则a c ->b c -;(8)不等式a >b 的两边同乘以正数b ,不改变不等号的方向,则ab >2b .【点睛】本题主要是考查不等式的基本性质,熟练掌握不等式的三个性质的应用是解本题的关键,同时不等式的性质(3)是类似题型中考查的重点及易错点.3、8【分析】设这个班要胜x 场,则负()28x -场,根据题意列出不等式求解,考虑场次为整数即可得出.【详解】解:设这个班要胜x 场,则负()28x -场,由题意得,()32843x x +-≥,解得:7.5x ≥,∵场次x 为正整数,∴8x ≥.答:这个班至少要胜8场.故答案为:8.【点睛】题目主要考查一元一次不等式的应用,理解题意,列出相应不等式求解是解题关键.4、m >-2【分析】先根据正比例函数的性质列出关于m 的不等式,求出m 的取值范围即可.【详解】解:∵正比例函数()2y m x =+中,y 随x 的增大而增大,∴2m +>0,解得-2m >.故答案为;-2m >.【点睛】本题考查的是正比例函数的性质,即正比例函数y =kx (k ≠0)中,当k >0时,y 随x 的增大而增大.5、25a【分析】根据题意表示出a 的25即可.【详解】解:由题意可得:a 的25可表示为25a .故填25-<a.【点睛】本题考查列一元一次不等式,掌握列一元一次不等式的基本方法成为解答本题的关键.三、解答题1、(1)x≥﹣1,数轴见解析;(2)733x-<≤,2【分析】(1)根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而即可求解.【详解】解:(1)移项,得:3x﹣5x≤2,合并同类项,得:﹣2x≤2,系数化为1,得:x≥﹣1,将不等式的解集表示在数轴上如下:(2)解不等式2(x﹣2)≤3﹣x,得:x≤73,解不等式13123+->+x x,得:x>﹣3,则不等式组的解集为﹣3<x≤73,∴其最大整数解为2.【点睛】本题主要考查解一元一次不等式以及不等式组,熟练掌握解不等式(组)的基本步骤是解题的关键.2、542x ≤<图见解析【分析】先求出每个不等式的解集,然后求出不等式组的解集,最后在数轴上表示出不等式组的解集即可.【详解】 解:()1317225231x x x x ⎧-≤-⎪⎨⎪->+⎩①②解不等式①得:4x ≤, 解不等式②得:52>x , ∴不等式组的解集为:542x ≤<,数轴上表示解集为:【点睛】本题主要考查了解一元一次不等式组,并在数轴上表示不等式组的解集,解题的关键在于能够熟练掌握求不等式组的解集的方法.3、(1)甲旅行社费用20000元,乙旅行社费用18000元;(2)8人;(3)亲友团人数超过8人时,甲旅行社的收费更优惠,亲友团人数少于8人时,乙旅行社的收费更优惠.【分析】(1)由题意直接根据甲、乙旅行社的优惠办法列式进行计算即可;(2)根据题意设亲友团有x 人,进而依据甲、乙旅行社的费用相同建立方程求解即可;(3)由题意直接根据(2)的结论可知当亲友团人数满足什么条件时,甲、乙旅行社的收费更优惠.【详解】解:(1)甲旅行社费用=1400044000(64)200002⨯+⨯⨯-=元, 乙旅行社费用=0.754000618000⨯⨯=元;(2)设亲友团有x 人,甲旅行社费用=1400044000(4)200080002x x ⨯+⨯⨯-=+ 乙旅行社费用=0.7540003000x x ⨯=由20008000x +=3000x解得:x =8∴亲友团有8人,甲、乙旅行社的费用相同(3)由(2)可知当亲友团有8人,甲、乙旅行社的费用相同,则8x >,有200080003000x x +<,即亲友团人数超过8人时,甲旅行社的收费更优惠;则8x <,有200080003000x x +>,亲友团人数少于8人时,乙旅行社的收费更优惠.【点睛】本题考查一元一次方程的运用以及一元一次不等式的运用,读懂题意并根据题意列出方程和不等式求解是解题的关键.4、22【分析】先求出不等式的解集,再根据x 是符合条件的正整数判断出x 的可能值,再由三角形的三边关系求出x 的值即可.解:原不等式可化为5(x+1)<20-4(1-x),解得x<11,∵x是它的正整数解,∴根据三角形第三边的取值范围,得8<x<12,∵x是正偶数,∴x=10.∴第三边的长为10,∴这个三角形的周长为10+10+2=22.【点睛】本题综合考查了求不等式特殊解的方法及三角形的三边关系,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.5、(1)y=-2x+60;(2)公司生产A,B两种品牌设备各10台,售完后获利最大,最大毛利润为40万元.【分析】(1)设销售A种品牌设备x台,B种品牌设备(20-x)台,算出每台的利润乘对应的台数,再合并在一起即可求出总利润;(2)由“生产两种品牌设备的总成本不超过80万元”,列出不等式,再由(1)中的函数的性质得出答案.【详解】解:(1)设销售A种型号设备x台,则销售B种型号设备(20-x)台,依题意得:y=(4-3)x+(8-5)×(20-x),即y=-2x+60;(2)3x+5×(20-x)≤80,解得x≥10.∴当x=10时,y最大=40万元.故公司生产A,B两种品牌设备各10台,售完后获利最大,最大毛利润为40万元.【点睛】本题考查了一次函数的应用,一元一次不等式的应用,注意题目蕴含的数量关系,正确列式解决问题.。
2020-2021学年人教版八年级数学下册第18章 正方形的性质与判定 经典常考题专题训练(二 )

人教版八年级数学下册第18章正方形的性质与判定经典常考题专题训练(二)1.如图,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG时,求证:菱形EFGH为正方形.2.如图①,在正方形ABCD中,点E,F分别在AB、BC上,且AE=BF.(1)试探索线段AF、DE的数量关系,写出你的结论并说明理由;(2)连接EF、DF,分别取AE、EF、FD、DA的中点H、I、J、K,则四边形HIJK 是什么特殊平行四边形?请在图②中补全图形,并说明理由.3.如图,已知点E,F,M,N分别是正方形ABCD四条边上的点,并且AE=BF=CM =DN.(1)求证:四边形EFMN是正方形;(2)若AB=4,当点E在什么位置时,四边形EFMN的周长最小?并求四边形EFMN 周长的最小值.4.如图,正方形ABCD两条对角线AC、BD交于O,过O任作一直线L与边AB,CD 交于M,N,MN的垂直平分线与边BC,AD交于P,Q.设正方形ABCD的面积为S,四边形MPNQ的面积为S2.1(1)求证:四边形MPNQ是正方形;(2)若S1=1,求S2的取值范围.5.如图,正方形ABCD的对角线AC与BD交于点O,过点C作CE∥BD,过点D作DE∥AC,CE与DE交于点E.求证:四边形OCED是正方形.6.如图,Rt△CEF中,∠C=90°,∠CEF,∠CFE外角平分线交于点A,过点A分别作直线CE,CF的垂线,B,D为垂足.(1)求证:四边形ABCD是正方形.(2)已知AB的长为6,求(BE+6)(DF+6)的值.(3)借助于上面问题的解题思路,解决下列问题:若三角形PQR中,∠QPR=45°,一条高是PH,长度为6,QH=2,则HR=.7.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)当线段DE与正方形ABCD的某条边的夹角是35°时,求∠EFC的度数.8.如图,正方形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC.(1)求证:四边形OCED是正方形.(2)若AC=,则点E到边AB的距离为.9.如图,在△ABC中,∠ABC=90°,以AC为一边向三角形外作菱形ACEF,D为菱形ACEF对角线的交点,连接BD,BD平分∠ABC.(1)判断四边形ACEF为何种特殊的四边形,请说明理由.(2)若AB=3,BD=4,求BC的长.10.已知,如图,在正方形ABCD的各边上截取AE=BF=CG=DH,连接AF、BG、CH、DE,依次相交于点N、P、Q、M,求证:四边形MNPQ是正方形.11.如图,在正方形ABCD中,E、F、G、H分别为边AB、BC、CD、DA上的点,HA =EB=FC=GD,连接EG、FH,交点为O,连接EF、FG、GH、HE,求证:四边形EFGH是正方形.12.已知,如图,点A′、B′、C′、D′分别在正方形的边AB、BC、CD、DA上且AA′=BB′=CC′=DD′.(1)求证:四边形A′B′C′D′是正方形.(2)当点A′、B′、C′、D′处在什么位置时,正方形A′B′C′D′的面积是正方形ABCD面积的?请写出计算过程.13.如图,在四边形ABDE中,AD与BE相交于点O,OA=OB=OE=OD,AB=BD.(1)求证:四边形ABDE是正方形;(2)若∠ACB=90°,连接OC,OC=6,AC=5,求BC的长.14.如图,在四边形ABCD中,AD∥BC,∠A=90°,AB=BC,∠D=45°,CD的垂直平分线交CD于E,交AD于F,交BC的延长线于G,若AD=a.(1)求证:四边形ABCF是正方形;(2)求BG的长.15.如图,在Rt△ABC中,∠A=90°,AB=2cm,AC=4cm.(1)在直角三角形中作一个正方形EFMN,使得EF、EN分别在边AB、AC上,点M 在BC边上,求正方形的边长.(2)将(1)中的正方形EFMN沿着射线AB以1cm/s的速度向右平移,当点E平移至与B重合时,正方形停止运动,设平移的时间为ts,正方形EFMN与Rt△ABC重叠部分的面积为S,求使用时间t表示S.参考答案1.证明:(1)连接GE,∵AB∥CD,∴∠AEG=∠CGE,∵GF∥HE,∴∠HEG=∠FGE,∴∠HEA=∠CGF;(2)∵四边形ABCD是正方形,∴∠D=∠A=90°,∵四边形EFGH是菱形,∴HG=HE,在Rt△HAE和Rt△GDH中,,∴Rt△HAE≌Rt△GDH(HL),∴∠AHE=∠DGH,又∠DHG+∠DGH=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH为正方形;2.解:(1)AF=DE.∵ABCD是正方形,∴AB=AD,∠DAB=∠ABC=90°,∵AE=BF,∴△DAE≌△ABF,∴AF=DE.(2)四边形HIJK是正方形.如下图,H、I、J、K分别是AE、EF、FD、DA的中点,∴HI=KJ=AF,HK=IJ=ED,∵AF=DE,∴HI=KJ=HK=IJ,∴四边形HIJK是菱形,∵△DAE≌△ABF,∴∠ADE=∠BAF,∵∠ADE+∠AED=90°,∴∠BAF+∠AED=90°,∴∠AOE=90°∴∠KHI=90°,∴四边形HIJK是正方形.3.解:(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD=DA,∵AE=BF=CM=DN,∴BE=CF=DM=NA,又∠A=∠B=∠C=∠D=90°,∴△BEF≌△CFM≌△DMN≌△ANE,∴EF=FM=MN=NE,∴四边形EFMN是菱形.∵∠AEN=∠BFE,且∠BEF+∠BFE=90°,∴∠BEF+∠AEN=90°,∴∠FEN=90°.∴菱形EFMN是正方形;(2)当EN最小时,正方形EFMN的周长最小,设AE=DN=x,则EN==,∴x=2时,EN的值最小,最小值=2,又四边形EFMN是正方形,∴四边形EFMN周长的最小值为.4.解:(1)证明:∵QP垂直平分线段MN,∴MQ=NQ,PM=PN,∴△AOQ≌△DON(ASA),∴OQ=ON,∴∠OQN=∠ONQ=45°,同理可得∠OQM=∠OMQ=∠OMP=∠OPM=45°,∴∠NQM=∠QMP=∠MPN=∠PNQ=90°,∴四边形MPNQ是矩形,而MQ=NQ,∴四边形MPNQ是正方形.(2)设AQ=DN=x,则QD=1﹣x,∴而S2≤S1=1,∴.5.证明:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵正方形ABCD的对角线AC与BD交于点O,∴OD=OC,∠DOC=90°,∴四边形CODE是正方形.6.(1)证明:作AG⊥EF于G,如图1所示:则∠AGE=∠AGF=90°,∵AB⊥CE,AD⊥CF,∴∠B=∠D=90°=∠C,∴四边形ABCD是矩形,∵∠CEF,∠CFE外角平分线交于点A,∴AB=AG,AD=AG,∴AB=AD,∴四边形ABCD是正方形;(2)解:∵四边形ABCD是正方形,∴BC=CD=6,在Rt△ABE和Rt△AGE中,,∴Rt△ABE≌Rt△AGE(HL),∴BE=BG,同理:Rt△ADF≌Rt△AGF(HL),∴DF=GF,∴BE+DF=GE+GF=EF,设BE=x,DF=y,则CE=BC﹣BE=6﹣x,CF=CD﹣DF=6﹣y,EF=x+y,在Rt△CEF中,由勾股定理得:(6﹣x)2+(6﹣y)2=(x+y)2,整理得:xy+6(x+y)=36,∴(BE+6)(DF+6)=(x+6)(y+6)=xy+6(x+y)+36=36+36=72;(3)解:如图2所示:把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,∴MG=DG=MP=PH=6,∴GQ=4,设MR=HR=a,则GR=6﹣a,QR=a+2,在Rt△GQR中,由勾股定理得:(6﹣a)2+42=(2+a)2,解得:a=3,即HR=3;故答案为:3.7.(1)证明:作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA=45°,∴EQ=EP,∵∠QEF+∠PEF=90°,∠PED+∠PEF=90°,∴∠QEF=∠PED,在Rt△EQF和Rt△EPD中,∴Rt△EQF≌Rt△EPD(ASA),∴EF=ED,∴矩形DEFG是正方形;(2)①当DE与AD的夹角为35°时,如图2,∵∠ADE=35°,∠ADC=90°,∴∠EDC=55°,∵∠EDC+∠DEF+∠EFC+∠FCD=360°,∴∠EFC=360°﹣90°﹣90°﹣55°=125°,②当DE与DC的夹角为35°时,如图3∵∠DEF=∠DCF=90°,∴点D,点E,点C,点F四点共圆,∴∠EDC=∠EFC=35°,综上所述:∠EFC=35°或125°.8.(1)证明:∵CE∥BD,DE∥AC,∴四边形OCED是平行四边形,在正方形ABCD中,AC⊥BD,OD=OC,∴∠COD=90°,∴四边形OCED是正方形.(2)解:如图,连接EO并延长,交AB于G,交CD于H,由(1)知:四边形OCED是正方形,∴CD⊥OE,∵四边形ABCD是正方形,∴AB∥CD,∴EG⊥AB,∵AC=,∴AB=BC=1=GH,Rt△DCE中,∵DE=CE,EH⊥CD,∴DH=CH,∴EH=CD=0.5,∴EG=1+0.5=1.5,∴点E到边AB的距离为1.5;故答案为:1.5.9.(1)解:四边形ACEF是正方形;理由如下:∵BD平分∠ABC,∠ABC=90°,∴∠CBD=∠ABD=∠ABC=45°,AC2=BC2+AB2=BC2+9,∵四边形ACEF是菱形,∴AE⊥CF,∠DAC=∠DAF=∠CAF,∴∠ADC=90°,∴A、B、C、D四点共圆,∴∠DAC=∠CBD=45°,∴∠CAF=2∠DAC=90°,∴四边形ACEF是正方形;(2)解:作DM⊥AB于M,DN⊥BC于N,如图所示:则△BDM和△BDN是等腰直角三角形,∴DM=DN=BD=4,∴S△ABD=AB×DM=×3×4=6,∵S△ABC=AB×BC=BC,S=BC×DN=2BC,S△ACD=S正方形ACEF=AC2=(BC2+9),△BDCS=S△ABC+S△ADC=S△ABD+S△BCD四边形ABCD∴BC+(BC2+9)=6+2BC解得:BC=5或BC=﹣3(舍去),∴BC=5.10.证明:∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠BAD=∠ABC=∠BCD=∠CDA=90°,在△ABF和△BCG中,,∴△ABF≌△BCG(SAS)∴∠BAF=∠GBC,∵∠BAF+∠AFB=90°,∴∠BNF=90°,∴∠MNP=90°.∴同理可得∠NPQ=∠PQM=90°,∴四边形MNPQ是矩形.在△ABN和△BCP中,,∴△ABN≌△BCP(AAS),∴AN=BP,在△AME和△BNF中,,∴△AME≌△BNF(AAS),∴AM=BN,∴MN=NP,∴矩形MNPQ是正方形.11.证明:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵HA=EB=FC=GD,∴AE=BF=CG=DH,∴△AEH≌△BFE≌△CGF≌△DHG,∴EF=FG=GH=HE,∴四边形EFGH是菱形,∵△DHG≌△AEH,∴∠DHG=∠AEH,∵∠AEH+∠AHE=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴四边形EFGH是正方形.12.(1)证明:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵AA′=BB′=CC′=DD′,∴A′B=B′C=C′D=D′A,在△AA′D′和△BB′A′中,,∴△AA′D′≌△BB′A′(SAS),∴A′D′=A′B′,∠AA′D′=∠BB′A′,∵∠BB′A′+∠BA′B′=90°,∴∠AA′D′+∠BA′B′=90°,∴∠B′A′D′=90°,同理:∠A′B′C′=∠B′C′D′=90°,∴四边形A′B′C′D′是矩形,∴四边形A′B′C′D′是正方形;(2)点A′、B′、C′、D′分别在AB、BC、CD、DA的三等分点时,正方形A′B′C′D′的面积是正方形ABCD面积的;∵正方形ABCD∽正方形A′B′C′D′,∴正方形A′B′C′D′:正方形ABCD的面积=()2=,∴=,设A′B′=a,AB=3a,A′B=x,则BB′=3a﹣x,在Rt△A′BB′中,x2+(3a﹣x)2=(a)2,解得:x=a,或x=2a,∴A′B=2a,∴点A′、B′、C′、D′分别在AB、BC、CD、DA的三等分点时,正方形A′B′C′D′的面积是正方形ABCD面积的.13.解:(1)∵OA=OB=OE=OD,∴四边形ABCD是平行四边形,AD=BE,∴四边形ABDE是矩形,又∵AB=BD,∴四边形ABDE是正方形.(2)如图所示,过O作OF⊥BC,过A作AM⊥OF,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∵∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=AM=CF,∴△OCF为等腰直角三角形,∵OC=6,根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=6,∴FB=OM=OF﹣FM=6﹣5=1,∴BC=CF+BF=6+1=7.14.解:(1)∵CD的垂直平分线交CD于E,交AD于F,∴FC=FD,∴∠D=∠FCD=45°,∴∠CFD=90°,即∠AFC=90°,又∵AD∥BC,∠A=90°,∴∠B=90°,∴四边形ABCF是矩形,又∵AB=BC,∴四边形ABCF是正方形;(2)∵FG垂直平分CD,∴CE=DE,∠CEG=∠DEF=90°,∵BG∥AD,∴∠G=∠EFD,在△CEG和△DEF中,,∴△CEG≌△DEF(AAS),∴CG=FD,又∵正方形ABCF中,BC=AF,∴AF+FD=BC+CG,∴AD=BG=a.15.解:(1)设正方形的边长为a.∵MN∥AB,∴=,∴=,∴a=cm,∴正方形的边长为cm.(2)当0<t≤时,S=﹣•t•2t=﹣t2+.当<t≤时,S=[(﹣t)+(2﹣t)]=﹣t+,当<t≤2时,S=•(2﹣t)•(4﹣2t)=t2﹣4t+4.。
人教版八年级数学下册第18章平行四边形专项训练2(含答案)

人教版八年级数学下册第18章平行四边形专项训练2(含答案)专训1.矩形性质与判定的灵活运用名师点金:矩形是特殊的平行四边形,它具有一般平行四边形的所有性质,同时还具有一些独特的性质.它的性质可归结为三个方面:(1)从边看:矩形的对边平行且相等;(2)从角看:矩形的四个角都是直角;(3)从对角线看:矩形的对角线互相平分且相等.判定一个四边形是矩形可从两个角度考虑:一是判定它有三个角为直角;二是先判定它为平行四边形,再判定它有一个角为直角或两条对角线相等.利用矩形的性质与判定求线段的长(转化思想)1.如图,将矩形纸片ABCD的四个角向内折起,点A,点B落在点M处,点C,点D落在点N处,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=3 cm,EF=4 cm,求AD的长.(第1题)利用矩形的性质与判定判断线段的数量关系2.如图,在△ABC中,∠A=90°,D是AC上的一点,BD=DC,P是BC 上的任意一点,PE⊥BD,PF⊥AC,E,F为垂足.试判断线段PE,PF,AB之间的数量关系,并说明理由.(第2题)利用矩形的性质与判定证明角相等3.如图,在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.(第3题)利用矩形的性质与判定求面积4.如图,已知点E是▱ABCD中BC边的中点,连接AE并延长交DC的延长线于点F.(1)连接AC,BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形;(2)在(1)的条件下,若△AFD是等边三角形,且边长为4,求四边形ABFC 的面积.(第4题)专训2.菱形性质与判定的灵活运用名师点金:菱形具有一般平行四边形的所有性质,同时又具有一些特性,可以归纳为三个方面:(1)从边看:对边平行,四边相等;(2)从角看:对角相等,邻角互补;(3)从对角线看:对角线互相垂直平分,并且每一条对角线平分一组对角.判定一个四边形是菱形,可先判定这个四边形是平行四边形,再判定一组邻边相等或对角线互相垂直,也可直接判定四边相等.利用菱形的性质与判定求菱形的高1.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,且AE∥CD,CE∥AB.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求菱形ADCE的高.(计算结果保留根号)(第1题)利用菱形的性质与判定求菱形对角线长2.如图,在矩形AFCG中,BD垂直平分对角线AC,交CG于D,交AF 于B,交AC于O.连接AD,BC.(1)求证:四边形ABCD是菱形;(2)若E为AB的中点,DE⊥AB,求∠BDC的度数;(3)在(2)的条件下,若AB=1,求菱形ABCD的对角线AC,BD的长.(第2题)利用菱形的性质与判定解决周长问题3.如图,在Rt△ABC中,∠ACB=90°,D,E分别为AB,AC边的中点,连接DE,将△ADE绕点E旋转180°,得到△CFE,连接AF.(1)求证:四边形ADCF是菱形;(2)若BC=8,AC=6,求四边形ABCF的周长.(第3题)利用菱形的性质与判定解决面积问题4.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.(第4题)专训3.正方形性质与判定的灵活运用名师点金:正方形既是矩形,又是菱形,它具有矩形﹨菱形的所有性质,判定一个四边形是正方形,只需保证它既是矩形又是菱形即可.利用正方形的性质解决线段和差倍分问题1.已知:在正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.(1)如图①,当∠MAN绕点A旋转到BM=DN时,易证:BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图②,请问图①中的结论是否还成立?如果成立,请给予证明;如果不成立,请说明理由.(2)当∠MAN绕点A旋转到如图③的位置时,线段BM,DN和MN之间有怎样的数量关系?请写出你的猜想,并证明.(第1题)利用正方形的性质证明线段位置关系2.如图,在正方形ABCD中,对角线AC,BD相交于点O,E,F分别在OD,OC上,且DE=CF,连接DF,AE,AE的延长线交DF于点M.求证:AM⊥DF.(第2题)正方形性质与判定的综合运用3.如图,P,Q,R,S四个小球分别从正方形的四个顶点A,B,C,D同时出发,以同样的速度分别沿AB,BC,CD,DA的方向滚动,其终点分别是B,C,D,A.(1)不管滚动多长时间,求证:连接四个小球所得的四边形PQRS总是正方形.(2)四边形PQRS在什么时候面积最大?(3)四边形PQRS在什么时候面积为原正方形面积的一半?并说明理由.(第3题)专训4.特殊平行四边形性质与判定的灵活运用名师点金:特殊平行四边形的性质区别主要从边﹨角及对角线三个方面进行区分;而判定主要从建立在其他特殊四边形的基础上再附加什么条件方面进行判定.矩形的综合性问题a.矩形性质的应用1.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明;(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于点G,PH⊥EC 于点H,试求PG+PH的值.(第1题)b.矩形判定的应用2.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:(1)四边形OCED是矩形;(2)OE=BC.(第2题)c.矩形性质和判定的应用3.如图①,在△ABC中,AB=AC,点P是BC上任意一点(不与B,C重合),PE⊥AB,PF⊥AC,BD⊥AC.垂足分别为E,F,D.(1)求证:BD=PE+PF.(2)当点P在BC的延长线上时,其他条件不变.如图②,BD,PE,PF之间的上述关系还成立吗?若不成立,请说明理由.(第3题)菱形的综合性问题a.菱形性质的应用4.已知:如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.(1)求证:AE=EC.(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?并说明理由.(第4题)b.菱形判定的应用5.如图,在Rt△ABC中,∠B=90°,BC=53,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(t>0).过点D作DF⊥BC 于点F,连接DE,EF.(1)求证:AE=DF.(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由.(3)当t为何值时,△DEF为直角三角形?请说明理由.(第5题)c.菱形性质和判定的应用6.(1)如图①,纸片▱ABCD中,AD=5,S▱ABCD=15.过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为()A.平行四边形B.菱形C.矩形D.正方形(2)如图②,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.①求证:四边形AFF′D是菱形;②求四边形AFF′D的两条对角线的长.(第6题)正方形的综合性问题a.正方形性质的应用7.如图,在正方形ABCD中,G是BC上任意一点,连接AG,DE⊥AG 于E,BF∥DE交AG于点F,探究线段AF,BF,EF三者之间的数量关系,并说明理由.(第7题)b.正方形判定的应用8.两个长为2 cm,宽为1 cm的矩形摆放在直线l上(如图①),CE=2 cm,将矩形ABCD绕着点C顺时针旋转α角,将矩形EFGH绕着点E逆时针旋转相同的角度.(1)当旋转到顶点D,H重合时(如图②),连接AE,CG,求证:△AED≌△GCD;(2)当α=45°时(如图③),求证:四边形MHND为正方形.(第8题)答案专训11.解:由折叠的性质知∠HEM=∠AEH,∠BEF=∠FEM,∴∠HEF=∠HEM+∠FEM=12×180°=90°.同理可得∠EHG=∠HGF=∠EFG=90°,∴四边形EFGH为矩形.∴HG∥EF,HG=EF.∴∠GHN=∠EFM.又∵∠HNG=∠FME=90°,∴△HNG≌△FME.∴HN=MF.又∵HN=HD,∴HD=MF.∴AD =AH+HD=HM+MF=HF.∵HF=EH2+EF2=32+42=5(cm),∴AD=5 cm.点拨:此题利用折叠提供的角相等,可证明四边形EFGH为矩形,然后利用三角形全等来证明HN=MF,进而证明HD=MF,从而将AD转化为直角三角形EFH的斜边HF,进而得解,体现了转化思想.(第2题)2.解:PE+PF=AB.理由:过点P作PG⊥AB于G,交BD于O,如图所示.∵PG ⊥AB ,PF ⊥AC ,∠A =90°,∴∠A =∠AGP =∠PFA =90°.∴四边形AGPF 是矩形.∴AG =PF ,PG ∥AC.∴∠C =∠GPB.又∵BD =DC ,∴∠C =∠DBP.∴∠GPB =∠DBP.∴OB =OP.∵PG ⊥AB ,PE ⊥BD ,∴∠BGO =∠PEO =90°. 在△BGO 和△PEO 中,⎩⎨⎧∠BGO =∠PEO ,∠GOB =∠EOP ,OB =OP ,∴△BGO ≌△PEO.∴BG =PE. ∵AB =BG +AG =PE +PF.3.证明:(1)∵四边形ABCD 是平行四边形,∴AB ∥CD. ∴BE ∥DF.又∵BE =DF , ∴四边形BFDE 是平行四边形. ∵DE ⊥AB , ∴∠DEB =90°.∴四边形BFDE 是矩形.(2)∵四边形ABCD 是平行四边形, ∴AB ∥DC ,AD =BC. ∴∠DFA =∠FAB.由(1)易得△BCF 为直角三角形, 在Rt △BCF 中,由勾股定理,得 BC =CF2+BF2=32+42=5, ∴AD =BC =DF =5. ∴∠DAF =∠DFA. ∴∠DAF =∠FAB , 即AF 平分∠DAB.4.(1)证明:∵四边形ABCD 为平行四边形,∴AB ∥DC.∴∠ABE =∠ECF. 又∵点E 为BC 的中点,∴BE =CE. 在△ABE 和△FCE 中,∵⎩⎨⎧∠ABE =∠FCE ,BE =CE ,∠AEB =∠FEC ,∴△ABE ≌△FCE.∴AB =CF.又AB∥CF,∴四边形ABFC为平行四边形.∴AE=EF.∵∠AEC为△ABE 的外角,∴∠AEC=∠ABC+∠EAB.又∵∠AEC=2∠ABC,∴∠ABC=∠EAB.∴AE=BE.∴AE+EF=BE+EC,即AF=BC.∴四边形ABFC为矩形.(2)解:∵四边形ABFC是矩形,∴AC⊥DF.又∵△AFD是等边三角形,∴CF=CD=DF2=2.∴AC=42-22=2 3.∴S四边形ABFC=23×2=4 3.专训21.(1)证明:∵AE∥CD,CE∥AB,∴四边形ADCE是平行四边形,又∵∠ACB =90°,D是AB的中点,∴CD=BD=AD,∴平行四边形ADCE是菱形.(2)解:如图,过点D作DF⊥CE,垂足为点F,则DF即为菱形ADCE的高,∵∠B=60°,CD=BD,∴△BCD是等边三角形,∴∠BCD=60°.∵CE∥AB,∴∠BCE=180°-∠B=120°,∴∠DCE=60°,又∵CD=BC=6,∴在Rt△CDF中,易求得DF=33,即菱形ADCE的高为3 3.(第1题)2.(1)证明:∵BD垂直平分AC,∴OA=OC,AD=CD,AB=BC.∵四边形AFCG是矩形,∴CG∥AF.∴∠CDO=∠ABO,∠DCO=∠BAO.∴△COD≌△AOB(AAS).∴CD=AB.∴AB=BC=CD=DA.∴四边形ABCD是菱形.(2)解:∵E为AB的中点,DE⊥AB,∴DE垂直平分AB.∴AD=DB.又∵AD=AB,∴△ADB为等边三角形,∴∠DBA =60°.∵CD ∥AB ,∴∠BDC =∠DBA =60°.(3)解:由菱形性质知,∠OAB =12∠BAD =30°.在Rt △OAB 中,AB =1,∴OB =12,∴OA =32.∴BD =1,AC = 3.3.(1)证明:∵将△ADE 绕点E 旋转180°得到△CFE ,∴AE =CE ,DE =FE.∴四边形ADCF 是平行四边形.∵D ,E 分别为AB ,AC 边的中点,∴DE 是△ABC 的中位线.∴DE ∥BC.∵∠ACB =90°,∴∠AED =90°.∴DF ⊥AC.∴四边形ADCF 是菱形.(2)解:在Rt △ABC 中,BC =8,AC =6,∴AB =10.∵点D 是AB 边的中点,∴AD =5.∵四边形ADCF 是菱形,∴AF =FC =AD =5.∴四边形ABCF 的周长为8+10+5+5=28.4.(1)证明:∵E 是AD 中点,∴AE =DE. ∵AF ∥BC ,∴∠FAE =∠BDE ,又∵∠AEF =∠DEB ,∴△AEF ≌△DEB(ASA ).(2)证明:由(1)知,△AEF ≌△DEB ,则AF =DB ,∵D 是BC 的中点,∴DB =DC ,∴AF =CD ,又∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC =90°,D 是BC 的中点,∴AD =DC =12BC ,∴四边形ADCF 是菱形.(3)解:设菱形ADCF 的DC 边上的高为h ,则Rt △ABC 斜边BC 上的高也为h ,∵BC =52+42=41,∴DC =12BC =412,h =4×541=2041,∴菱形ADCF的面积为:DC·h =412×2041=10.专训31.解:(1)仍有BM +DN =MN 成立.证明如下: 如图(1),过点A 作AE ⊥AN ,交CB 的延长线于点E, 易证△ABE ≌△ADN ,∴DN =BE ,AE =AN. 又∵∠MAN =45°,∴∠EAM =∠NAM =45°,AM =AM ,∴△EAM ≌△NAM.∴ME =MN.∵ME =BE +BM =DN +BM ,∴BM +DN =MN .(2)DN -BM =MN.证明如下: 如图(2),在DN 上截取DE =BM ,连接AE.∵四边形ABCD 是正方形,∴∠ABM =∠D =90°,AB =AD. 又∵BM =DE ,∴△ABM ≌△ADE.∴AM =AE ,∠BAM =∠DAE.∵∠DAB =90°,∴∠MAE =90°. ∵∠MAN =45°,∴∠EAN =45°=∠MAN.又∵AM =AE ,AN =AN , ∴△AMN ≌△AEN.∴MN =EN. ∴DN =DE +EN =BM +MN. ∴DN -BM =MN.(1)(2)(第1题)2.证明:∵AC ,BD 是正方形ABCD 的两条对角线,∴AC ⊥BD ,OA =OD =OC =OB.∵DE =CF ,∴OE =OF.在Rt △AOE 与Rt △DOF 中,⎩⎨⎧OA =OD ,∠AOE =∠DOF =90°,OE =OF ,∴Rt △AOE ≌Rt △DOF.∴∠OAE =∠ODF.∵∠DOF =90°,∴∠DFO +∠FDO =90°.∴∠DFO +∠FAE =90°.∴∠AMF =90°,即AM ⊥DF.3.(1)证明:∵四边形ABCD 是正方形,∴∠A =∠B =∠C =∠D =90°,AB =BC =CD =DA.又∵不管滚动多长时间,AP =BQ =CR =DS ,∴SA =PB =QC =RD.∴△ASP ≌△BPQ ≌△CQR ≌△DRS.∴PS =QP =RQ =SR ,∠ASP =∠BPQ.∴不管滚动多长时间,四边形PQRS 是菱形.又∵∠APS +∠ASP =90°,∴∠APS +∠BPQ =90°.∴∠QPS =180°-(∠APS +∠BPQ)=180°-90°=90°.∴不管滚动多长时间,四边形PQRS 总是正方形.(2)解:当P ,Q ,R ,S 在出发时或在到达终点时面积最大,此时的面积就等于原正方形ABCD 的面积.(3)解:当P ,Q ,R ,S 四点运动到正方形四边中点时,四边形PQRS 的面积是原正方形ABCD 面积的一半.理由:设原正方形ABCD 的边长为a.当PS 2=12a 2时,在Rt △APS 中,AS =a -SD =a -AP. 由勾股定理,得AS 2+AP 2=PS 2,即(a -AP)2+AP 2=12a 2, 解得AP =12a.同理可得BQ =CR =SD =12a.∴当P ,Q ,R ,S 四点运动到正方形ABCD 各边中点时,四边形PQRS 的面积为原正方形面积的一半.专训41.解:(1)△AED ≌△CEB′.证明:∵四边形ABCD 是矩形,∴BC =DA ,∠B =∠D. 由折叠的性质,知BC =B′C ,∠B =∠B′, ∴B′C =DA ,∠B′=∠D. 在△AED 和△CEB′中,⎩⎨⎧∠DEA =∠B′EC ,∠D =∠B′,DA =B′C ,∴△AED ≌△CEB′.(第1题)(2)如图,延长HP 交AB 于点M ,则PM ⊥AB. ∵∠1=∠2,PG ⊥AB′,∴PM =PG. ∵CD ∥AB ,∴∠2=∠3,∴∠1=∠3,∴AE=CE=8-3=5.在Rt△ADE中,DE=3,AE=5,∴AD=52-32=4.∵PH+PM=AD,∴PG+PH=AD=4.2.证明:(1)∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形.∵四边形ABCD是菱形,∴AC⊥BD.∴∠DOC=90°.∴四边形OCED是矩形.(2)∵四边形ABCD是菱形,∴BC=CD.∵四边形OCED是矩形,∴OE=CD,∴OE=BC.(第3题)3.(1)证明:如图,过点B作BH⊥FP交FP的延长线于点H.∵BD⊥AC,PF⊥AC,BH⊥PF,∴四边形BDFH是矩形.∴BD=HF.∵AB=AC,∴∠ABC =∠C.∵PE⊥AB,PF⊥AC,∴∠PEB=∠PFC=90°.∴∠EPB=∠FPC.又∵∠HPB=∠FPC,∴∠EPB=∠HPB.∵PE⊥AB,PH⊥BH,∴∠PEB=∠PHB =90°.又∵PB=PB,∴△PEB≌△PHB.∴PE=PH,∴BD=HF=PF+PH=PF+PE.即BD=PE+PF.(2)解:不成立,此时PE=BD+PF.理由:过点B作BH⊥PF交PF的延长线于点H.与(1)同理可得PE=PH,BD =HF.∴PE=FH+FP=BD+PF.(第4题)4.(1)证明:连接AC,如图.∵BD是菱形ABCD的对角线,∴BD是线段AC的垂直平分线,∴AE =EC.(2)解:点F 是线段BC 的中点. 理由:∵四边形ABCD 是菱形, ∴AB =CB. 又∵∠ABC =60°, ∴△ABC 是等边三角形, ∴∠BAC =60°. ∵AE =EC , ∴∠EAC =∠ACE. ∵∠CEF =60°, ∴∠EAC =30°, ∴∠EAC =∠EAB.∴AF 是△ABC 的角平分线. ∴BF =CF.∴点F 是线段BC 的中点.5.(1)证明:在△DFC 中,∠DFC =90°,∠C =30°,DC =2t , ∴DF =t ,又∵AE =t ,∴AE =DF.(2)解:能.理由如下:∵AB ⊥BC ,DF ⊥BC ,∴AE ∥DF. 又∵AE =DF ,∴四边形AEFD 为平行四边形.在Rt △ABC 中,设AB =x ,则由∠C =30°,得AC =2x ,由勾股定理,得AB 2+BC 2=AC 2,即x 2+(53)2=4x 2,解得x =5(负根舍去), ∴AB =5. ∴AC =2AB =10. ∴AD =AC -DC =10-2t.由已知得点D 从点C 运动到点A 的时间为10÷2=5(s ),点E 从点A 运动到点B 的时间为5÷1=5(s ).若使▱AEFD 为菱形,则需AE =AD ,即t =10-2t ,解得t =103.符合题意. 故当t =103 s 时,四边形AEFD 为菱形.(3)解:①当∠EDF =90°时,四边形EBFD 为矩形. 在Rt △AED 中,∠ADE =∠C =30°,∴AD =2AE ,即10-2t =2t ,解得t =52.符合题意. ②当∠DEF =90°时,由(2)知EF∥AD,∴∠ADE=∠DEF=90°.∵∠A=90°-∠C=60°,∴∠AED=30°.∴AE=2AD,即t=2(10-2t),解得t=4.符合题意.③当∠EFD=90°时,△DEF不存在.综上所述,当t=52s或4 s时,△DEF为直角三角形.6.(1)C(2)①证明:∵AF綊DF′,∴四边形AFF′D是平行四边形.∵S▱ABCD=AD·AE=15,AD=5,∴AE=3.∵AE=3,EF=4,∠E=90°,∴AF=AE2+EF2=32+42=5.∵AD=5,∴AD=AF,∴四边形AFF′D是菱形.②解:如图,连接AF′,DF,在Rt△AEF′中,AE=3,EF′=EF+FF′=4+5=9,∴由勾股定理可得AF′=310.在Rt△DFE′中,FE′=EE′-EF=5-4=1,DE′=AE=3,∴由勾股定理得DF=10,∴四边形AFF′D的两条对角线的长分别是310和10.(第6题)7.解:线段AF,BF,EF三者之间的数量关系是AF=BF+EF,理由如下:∵四边形ABCD是正方形,∴AB=AD,∠DAB=∠ABC=90°.∴∠DAE+∠BAF=90°.∵DE⊥AG于E,BF∥DE交AG于F,∴∠AFB=∠DEF=∠AED=90°,∴∠ADE+∠DAE=90°,∴∠ADE =∠BAF. 在△ABF 和△DAE 中,⎩⎨⎧∠BAF =∠ADE ,∠AFB =∠DEA ,AB =DA ,∴△ABF ≌△DAE. ∴BF =AE.∵AF =AE +EF ,∴AF =BF +EF. 8.证明:(1)∵CD =CE =DE =2 cm , ∴∠CDE =60°.又∵四边形ABCD 和四边形EHGF 是矩形, ∴∠ADC =∠GDE =90°,∴∠ADE =∠GDC =150°.在△AED 和△GCD 中,⎩⎨⎧AD =GD ,∠ADE =∠GDC ,DE =DC ,∴△AED ≌△GCD. (2)∵α=45°,∴∠NCE =∠NEC =45°, ∴∠CNE =90°,CN =NE , ∴∠HND =90°.∴∠H =∠D =∠HND =90°, ∴四边形MHND 是矩形.又∵CD =HE ,CN =NE ,∴HN =ND. ∴四边形MHND 是正方形.。
2020-2021学年八年级数学苏科版下册反比例函数与几何综合题专题练习(2)

2021八年级下册反比例函数与几何综合解答题专题练习(2)1.如图,在平面直角坐标系中,四边形ABCD 是平行四边形,点A 、B 在x 轴上,点C 、D 在第二象限,点M 是BC 中点.已知AB=6,AD=8,∠DAB=60°,点B 的坐标为(-6,0).(1)求点D 和点M 的坐标;(2)如图∠,将□ABCD 沿着x 轴向右平移a 个单位长度,点D 的对应点D 和点M 的对应点M '恰好在反比例函数ky x=(x>0)的图像上,请求出a 的值以及这个反比例函数的表达式; (3)如图∠,在(2)的条件下,过点M ,M '作直线l ,点P 是直线l 上的动点,点Q 是平面内任意一点,若以,B C '',P 、Q 为顶点的四边形是矩形,请直接写出所有满足条件的点Q 的坐标. 2.如图,正方形AOCB 的边长为4,反比例函数的图象过点()3,4E .(1)求反比例函数的解析式;(2)反比例函数的图象与线段BC 交于点D ,直线12y x b =-+过点D ,与线段AB 相交于点F ,求点F 的坐标;(3)连接,OF OE ,探究AOF ∠与EOC ∠的数量关系,并证明.3.阅读理解:己知:对于实数a≥0,b≥0,满足 a = b 时,等号成立,此时取得代数式a+b 的最小值.根据以上结论,解决以下问题:(1)拓展:若a>0,当且仅当a=___时,a+1a有最小值,最小值为____; (2)应用:∠如图1,已知点P 为双曲线y=4x(x>0)上的任意一点,过点P 作PA∠x 轴,PB 丄y 轴,四边形OAPB 的周长取得最小值时,求出点P 的坐标以及周长最小值: ∠如图2,已知点Q 是双曲线y=8x(x>0)上一点,且PQ∠x 轴, 连接OP 、OQ ,当线段OP 取得最小值时,在平面内取一点C ,使得以0、P 、Q 、C 为顶点的四边形是平行四边形,求出点C 的坐标.4.在平面直角坐标系第一象限中,已知点A 坐标为()1,0,点D 坐标为()1,3,点G 坐标为()1,1,动点E 从点G 出发,以每秒1个单位长度的速度匀速向点D 方向运动,与此同时,x 轴上动点B 从点A 出发,以相同的速度向右运动, 两动点运动时间为:(02)t t <<, 以AD AB 、分别为边作矩形ABCD , 过点E 作双曲线交线段BC 于点F ,作CD 中点M ,连接BE EF EM FM 、、、 (1)当1t =时,求点F 的坐标.(2)若BE 平分AEF ∠, 则t 的值为多少? (3)若EMF ∠为直角, 则t 的值为多少?5.如图,在直角坐标系xOy 中,矩形ABCD 的DC 边在x 轴上,D 点坐标为(6,0)-边AB 、AD 的长分别为3、8,E 是BC 的中点,反比例函数ky x=的图象经过点E ,与AD 边交于点F .(1)求k 的值及经过A 、E 两点的一次函数的表达式;(2)若x 轴上有一点P ,使PE PF +的值最小,试求出点P 的坐标;(3)在(2)的条件下,连接EF 、PE 、PF ,在直线AE 上找一点Q ,使得QEF PEF S S ∆∆=直接写出符合条件的Q 点坐标.6.如图,在平面直角坐标系中,直线12y x =-与反比例函数ky x=的图象交于A ,B 两点(点A 在点B 左侧),已知A 点的纵坐标是2.(1)求反比例函数的表达式;(2)点A 上方的双曲线上有一点C ,如果ABC 的面积为30,直线BC 的函数表达式.7.如图,双曲线y 1=1k x与直线y 2=2x k 的图象交于A 、B 两点.已知点A 的坐标为(4,1),点P (a ,b)是双曲线y 1=1k x上的任意一点,且0<a <4. (1)分别求出y 1、y 2的函数表达式;(2)连接PA 、PB ,得到∠PAB ,若4a =b ,求三角形ABP 的面积; (3)当点P 在双曲线y 1=1k x上运动时,设PB 交x 轴于点E ,延长PA 交x 轴于点F ,判断PE 与PF 的大小关系,并说明理由.8.已知边长为4的正方形ABCD ,顶点A 与坐标原点重合,一反比例函数图象过顶点C ,动点P 以每秒1个单位速度从点A 出发沿AB 方向运动,动点Q 同时以每秒4个单位速度从D 点出发沿正方形的边DC→CB→BA 方向顺时针折线运动,当点P 与点Q 相遇时停止运动,设点P 的运动时间为t .∠求出该反比例函数解析式;∠连接PD ,当以点Q 和正方形的某两个顶点组成的三角形和∠PAD 全等时,求t 值;9.如图,在平面直角坐标系中有Rt ABC ,90BAC ∠=︒,AB AC =,(3,0)A -,(0,1)B ,(,)C m n . (1)请直接写出C 点坐标.(2)将ABC 沿x 轴的正方向平移t 个单位,'B 、'C 两点的对应点、正好落在反比例函数ky x=在第一象限内图象上.请求出t ,k 的值.(3)在(2)的条件下,问是否存x轴上的点M和反比例函数kyx图象上的点N,使得以'B、'C,M,N为顶点的四边形构成平行四边形?如果存在,请求出所有满足条件的点M和点N的坐标;如果不存在,请说明理由.10.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.11.如图,A、B是双曲线y=kx上的两点,过A点作AC∠x轴,交OB于D点,垂足为C,过B点作BE∠x轴,垂足为E.若∠ADO的面积为1,D为OB的中点,(1)求四边形DCEB的面积.(2)求k 的值.12.如图,在∠ABC 中,AC=BC ,AB∠x 轴于A ,反比例函数y=kx(x >0)的图象经过点C ,交AB 于点D ,已知AB=4,BC=52. (1)若OA=4,求k 的值.(2)连接OC ,若AD=AC ,求CO 的长.13.如图,一次函数y kx b =+与反比例函数6(0)y x x=>的图象交于(),6A m ,()3,B n 两点.(1)求一次函数的解析式; (2)根据图象直接写出60kx b x+-<的x 的取值范围; (3)求AOB的面积.14.已知一次函数()10y kx n n =+<和反比例函数()20,0my m x x=>>.(1)如图1,若2n =-,且函数1y 、2y 的图象都经过点()3,4A . ∠求m ,k 的值;∠直接写出当12y y >时x 的范围;(2)如图2,过点()1,0P 作y 轴的平行线l 与函数2y 的图象相交于点B ,与反比例函数()30ny x x=>的图象相交于点C .∠若2k =,直线l 与函数1y 的图象相交点D .当点B 、C 、D 中的一点到另外两点的距离相等时,求m n -的值;∠过点B 作x 轴的平行线与函数1y 的图象相交于点E .当m n -的值取不大于1的任意实数时,点B 、C 间的距离与点B 、E 间的距离之和d 始终是一个定值.求此时k 的值及定值d . 15.如图,已知一次函数y=32 x−3与反比例函数y=kx的图象相交于点A(4,n),与x 轴相交于点B .(1)填空:n 的值为___,k 的值为___;(2)以AB 为边作菱形ABCD ,使点C 在x 轴正半轴上,点D 在第一象限,求点D 的坐标; (3)观察反比例函数y=kx的图象,当y∠−2时,请直接写出自变量x 的取值范围。
【初中数学】人教版八年级下册专题训练(二)中点四边形(练习题)

人教版八年级下册专题训练(二)中点四边形(146) 1.如图,在四边形ABCD中,AC=BD=6,E,F,G,H分别是AB,BC,CD,DA的中点,求EG2+FH2的值.2.四边形ABCD为边长等于1的菱形,顺次连接它的各边中点组成四边形EFGH(四边形EFGH称为原四边形的中点四边形),再顺次连接四边形EFGH的各边中点组成第二个中点四边形……则按上述规律组成的第八个中点四边形的边长等于.3.如图所示,E,F,G,H分别是四边形ABCD的边AB,BC,CD,AD的中点.(1)当四边形ABCD是矩形时,四边形EFGH是形,并说明理由;(2)当四边形ABCD满足什么条件时,四边形EFGH是正方形?并说明理由.4.如图,在四边形ABCD中,E,F,G,H分别是BC,AD,BD,AC的中点.(1)求证:EF与GH互相平分;(2)当四边形ABCD的边满足条件时,EF⊥GH.5.顺次连接对角线相等的四边形的各边中点,所得四边形是()A.矩形B.平行四边形C.菱形D.任意四边形6.顺次连接菱形各边中点所得到的四边形是()A.梯形B.矩形C.菱形D.正方形7.若四边形的对角线互相垂直,则顺次连接这个四边形各边中点所得的四边形是()A.平行四边形B.矩形C.菱形D.正方形8.如图,顺次连接任意四边形ABCD各边中点,所得的四边形EFGH是中点四边形.下列四个叙述:①中点四边形EFGH一定是平行四边形;②当四边形ABCD是矩形时,中点四边形EFGH也是矩形;③当中点四边形EFGH是菱形时,四边形ABCD是矩形;④当四边形ABCD是正方形时,中点四边形EFGH也是正方形.其中正确的是(填序号).9.如图,在四边形ABCD中,AD=CD,AB=CB,E,F,G,H分别是AD,AB,CB,CD的中点.求证:四边形EFGH是矩形.10.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形11.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.正方形C.对角线相等的四边形D.对角线互相垂直的四边形12.如图,在四边形ABCD中,E,F,G,H分别是BC,AC,AD,BD的中点,要使四边形EFGH是菱形,四边形ABCD的边AB,CD应满足的条件是.13.如图所示,E,F,G,H为四边形ABCD各边的中点,若对角线AC,BD的长都为20,则四边形EFGH的周长是()A.80B.40C.20D.1014.如图,已知E,F,G,H分别为菱形ABCD四边的中点,AB=6cm,∠ABC=60∘,则四边形EFGH的面积为cm2.15.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为.16.如图,在四边形ABCD中,AC=8,BD=6,且AC⊥BD,E,F,G,H分别是AB,BC,CD,DA 的中点,则EG2+FH2=.参考答案1.【答案】:如图,连接EF ,FG ,GH ,EH ,∵E ,H 分别是AB ,DA 的中点,∴EH 是△ABD 的中位线,∴EH =12BD =3. 同理可得EF ,FG ,GH 分别是△ABC ,△BCD ,△ACD 的中位线, ∴EF =GH =12AC =3,FG =12BD =3,∴EH =EF =GH =FG =3,∴四边形EFGH 为菱形,∴EG ⊥HF ,且垂足为O ,∴EG =2OE ,FH =2OH .在Rt △OEH 中,根据勾股定理得:OE 2+OH 2=EH 2=9,等式两边同时乘4得4OE 2+4OH 2=9×4=36,∴(2OE)2+(2OH)2=36,即EG 2+FH 2=36.【解析】:连接EH,HG,GF,FE ,根据题目条件提供的四个中点,结合中位线的性质,证明四边形EFGH 为菱形,再根据菱形的性质及勾股定理求出结果.2.【答案】:116【解析】:根据题意,结合图形寻找规律:第二、四、六、八个中点四边形为菱形,第一个菱形边长为12,第二个菱形边长为14,第三个菱形边长为18,第四个菱形边长为116,即为第八个菱形的边长3(1)【答案】当四边形ABCD 是矩形时,四边形EFGH 是菱形.理由:∵四边形ABCD 是矩形,∴AC =BD .∵E ,F ,H 分别是AB ,BC ,AD 的中点,∴EF=12AC,EH=12BD,∴EF=EH.同理可得EF=GH=GF,∴四边形EFGH是菱形【解析】:利用矩形及中位线的性质,结合菱形的判定方法进行推导证明.(2)【答案】当四边形ABCD满足AC=BD且AC⊥BD时,四边形EFGH是正方形.理由:∵E,F分别是四边形ABCD的边AB,BC的中点,∴EF∥AC,EF=12AC,同理,EH∥BD,EH=12BD,GF=12BD,GH=12AC.∵AC=BD,∴EF=EH=GH=GF,∴四边形EFGH是菱形.∵AC⊥BD,∴EF⊥EH,∴菱形EFGH是正方形【解析】:根据三角形的中位线平行于第三边并等于第三边的一半,先判断出AC=BD,又正方形的四个角都是直角,可以得到正方形的邻边互相垂直,然后证出AC与BD垂直,得到四边形ABCD满足的条件.4(1)【答案】证明:连接GE,GF,HF,EH.∵E,G分别是BC,BD的中点,∴EG=12CD.同理FH=12CD,FG=12AB,EH=12AB,∴EG=FH,GF=EH,∴四边形EHFG是平行四边形.∴EF与GH互相平分【解析】:根据题中提供的四个中点,得到几组中位线,利用中位线的性质,及平行四边形的判定方法,推导出四边形EHFG是平行四边形,进而推导出结论(2)【答案】当四边形ABCD的边满足条件AB=CD时,EF⊥GH.【解析】:理由如下:当EF⊥GH时,四边形EGFH是菱形,此时GF=EG.∵EG=12CD,FG=12AB,∴AB=CD.∴当四边形ABCD的边满足条件AB=CD时,EF⊥GH5.【答案】:C【解析】:顺次连接对角线相等的四边形的各边中点,所得四边形是菱形.如图,∵E,F,G,H分别为四边形ABCD各边的中点,∴EH为△ABD的中位线,FG为△CBD的中位线,∴EH∥BD,EH=12BD,FG∥BD,FG=12BD,∴EH∥FG,EH=FG=12BD,∴四边形EFGH为平行四边形.又∵EF为△ABC的中位线,∴EF=12AC.又∵EH=12BD,且AC=BD,∴EF=EH,∴平行四边形EFGH为菱形.故选C.6.【答案】:B【解析】:利用菱形的性质、矩形的判定方法及中位线的性质推导出结果.7.【答案】:B【解析】:如图,在四边形ABCD中,AC⊥BD,连接各边的中点E,F,G,H,则EH∥AC,FG∥AC,EF∥BD,GH∥BD.又因为对角线AC⊥BD,所以GH⊥EH,EH⊥EF,EF⊥FG,FG⊥HG.故可判定该四边形是矩形.故选B.8.【答案】:①④【解析】:如图四边形ABCD,连接AC,BD.∵E,F,G,H分别是四边形各边的中点,∴EF∥AC,HG∥AC,EH∥BD,GF∥BD,∴EF∥GH,EH∥FG,∴四边形EFGH是平行四边形,故①正确.若四边形ABCD是矩形,则AC=BD.∵EF=12AC,EH=12BD,∴EF=EH,∴平行四边形EFGH是菱形,故②错误.若四边形EFGH是菱形,则AC=BD,但四边形ABCD不一定是矩形,故③错误.若四边形ABCD是正方形,则AC=BD,AC⊥BD,∴四边形EFGH是正方形,故④正确.∴正确的叙述是①④.9.【答案】:连接AC,BD,交于点O,如图.∵E,F,G,H分别是AD,AB,CB,CD的中点,∴EF∥BD∥GH,EH∥AC∥FG,EF=GH=12BD,EH=FG=12AC,∴四边形EFGH是平行四边形.∵AD=CD,AB=CB,∴点D,B都在线段AC的垂直平分线上,∴DB垂直平分AC,∴DB⊥AC,OA=OC.∵EF∥DB,∴EF⊥AC.∵FG∥AC,∴EF⊥FG,∴四边形EFGH是矩形【解析】:利用三角形的中位线解题.10.【答案】:D【解析】:若得到的四边形是矩形,那么邻边互相垂直,根据三角形中位线定理,故原四边形的对角线必互相垂直,由此得解.11.【答案】:C【解析】:若得到的四边形是菱形,那么四条边都相等,根据三角形中位线定理,故原四边形的对角线必相等,由此得解.12.【答案】:AB=CD【解析】:若四边形EFGH是菱形,则GH=EH,又根据题中条件所给的四个中点,利用中位线的性质推导出AB=2GH,CD=2EH,所以AB=CD.13.【答案】:B【解析】:∵E,F,G,H是四边形ABCD各边的中点,∴HG=EF=12AC,GF=HE=12BD,∴四边形EFGH的周长=HG+EF+GF+HE=12(AC+AC+BD+BD)=12×(20+20+20+20)=40 14.【答案】:9√3【解析】:连接AC,BD,相交于点O,如图所示, ∵点E,F,G,H分别是菱形四边的中点,∴EH=12BD=FG,EH∥BD∥FG, EF=12AC=HG,∴四边形EHGF是平行四边形.∵菱形ABCD中,AC⊥BD,∴EF⊥EH,∴平行四边形EFGH是矩形.∵四边形ABCD是菱形,∠ABC=60∘,∴∠ABO=30∘.∵AC⊥BD,∴∠AOB=90∘,∴AO=12AB=3cm,∴AC=6cm.在Rt△AOB中,由勾股定理,得OB=√AB2−OA2=3√3cm, ∴BD=6√3cm.∵EH=12BD,EF=12AC,∴EH=3√3cm,EF=3cm,∴矩形EFGH的面积=EF·EH=9√3cm2. 故答案为9√315.【答案】:12【解析】:∵E,F,G,H分别为边AD,AB,BC,CD的中点,∴HE=12AC=4,HE∥AC,GF∥AC,∴HE∥GF.同理,HG∥EF,HG=12BD=3,∴四边形EFGH是平行四边形.∵AC⊥BD,∴∠EHG=90∘,∴四边形EFGH是矩形,∴四边形EFGH的面积为3×4=1216.【答案】:50【解析】:连接HG,EH,EF,FG,∵E,F,G,H分别是AB,BC,CD,DA的中点,∴HG=EF=12AC=4,EH=FG=12BD=3,∵E,H分别是AB,AD的中点,∴HE∥BD,HE=12BD,同理FG∥BD,FG=12BD,∴四边形HEFG是平行四边形.∵AC⊥BD,∴HG⊥EH,∴四边形HEFG为矩形,∴EG2+FH2=EF2+FG2+EF2+EH2=52+52=50。
八年级数学竞赛专题训练试卷(二)因式分解与分式

八年级数学竞赛专题训练试卷(二)因式分解与分式一、选择题(每小题4分,共40分)1.已知a 2+b 2+4a -2b+5=0,则a b a b+-的值为 ( ) (A)3 (B)13 (C)-3 (D)13- 2.a 4+4分解因式的结果是 ( )(A)(a 2+2a -2)(a 2-2a+2) (B)(a 2+2a -2)(a 2-2a -2)(C)(a 2+2a+2)(a 2-2a -2) (D)(a 2+2a+2)(a 2-2a+2)3.下列五个多项式:①ab -a -b -1;②(x -2) 2+4x ;③3m(m -n)+6n(n -m );④x 2-2x -1;⑤6a 2-13ab+6b 2,其中在有理数范围内可以进行因式分解的有 ( )(A)1个 (B)2个 (C)3个 (D)4个4.a ,b ,c 为△ABC 的三边且3a 3+6a 2b -3a 2c -6abc=0,则△ABC 的形状为 ( )(A)直角三角形 (B)等腰三解形(C)等腰直角三角形 (D)等腰三角形或直角三角形5.a ,b ,c 是正整数,a >b >c ,且a 2-ab -ac+bc=7,则b -c 等于 ( )(A)1 (B)6 (C)土6 (D)1或76.若x 取整数,则使分式6321x x +-的值为整数的x 的值有 ( ) (A)3个 (B)4个 (C)6个 (D)8个7.已知x 2+ax -18能分解成两个整系数的一次因式的乘积,则符合条件的整数a 的个数是( )(A)3个 (B)4个 (C)6个 (D)8个8.若a=20092+20092×20102+20102,则n ( )(A)是完全平方数,还是奇数 (B)是完全平方数。
还是偶数(C)不是完全平方数,但是奇数 (D)不是完全平方数,但是偶数9.设有理数a ,b ,c 都不为零,且a+b+c=0,则222222222111b c a c a b a b c +++-+-+- 的值是 ( )(A)正数 (B)负数 (C)零 (D)不能确定10.当x 分别取值12007,12006,12005,…,12,1,2,…,2005,2006,2007时,计算代数式2211x x -+的值,将所得的结果相加,其和等于 ( ) (A)-1 (B)1 (C)0 (D)2007二、填空题(每小题4分,共40分)11.因式分解:4a 2-4b 2+4bc -c 2=_________.12.已知a 、b 为实数,且ab=1,a ≠1,设11a b M a b =+++,1111N a b =+++,则M -N 的值等于_________.13.若多项式x 3+ax 2+bx 能被(x -)和(x+4)整除,那么a=________,b=_________.14.整数a ,b 满足6ab -9a+10b=303,则a+b=_________.15.k 取________时,方程2211x k x x x x x+-=++会产生增根. 16.已知15a b +=-,a+3b=1,则22331295a ab b +++的值为__________. 17.分解因式:x 4-x 3+4x 2+3x+5=________.18.分解因式:x 2-2xy -8y 2-x -14y -6=_________.19.分解因式:24x 2-1507x -337842=_________.20.已知abc=1,a+b+c=2,a 2+b 2+c 2=3,则111111ab c bc a ca b +++-+-+-的值为_________.三、解答题(21题满分10分,22题、23题每题满分15分,共40分)21.解方程:(1)(x+1)(x+3)(x+5)(x+7)+15=0.(2)()()()()()111511291012x x x x x x ++=+++++…+.22.已知:3(a2+b2+c2)=(a+b+c) 2,求证:a=b=c.23.小明在计算中发现:1×2×3×4+1=52,2×3×4×5+1=112,3×4×5×6+1=192,…由此他做出猜想:四个连续正整数的乘积加1必为平方数.你认为他的猜想正确吗?试说明理由.参考答案一、选择题1.B 2.D 3.B 4.B 5.B 6.B 7.C 8.A 9.C 10.C二、填空题11.原式=(2a+2b -c)(2a -2b+c).12.M -N=0.13.a=1,b=12.14.a+b=15.15.k=-1或k=2时方程有增根.16.0.17.x 4-x 3+4x 2+3x+5=(x 2+x+1)(x 2-2x+5).18.原式=x 2-(2y+1)x -(8y 2+14y -6)=x 2-(2y+1)x -2(4y+3)(y+1)=(x -4y -3)(x+2y+2).19.原式=(3x+274)(8x -1233).20.23- 三、解答题21.(1)原方程可整理成:(x 2+8x+7)(x 2+8x+15)+15=0.将(x 2+8x)看成整体,则有(x 2+8x) 2+22(x 2+8x)+120=0.∴(x 2+8x+12)(x 2+8x+10)=0,即x 2+8x+12=0或x 2+8x+10=0,解得x 1=-2,x 2=-6,34x =-44x =-(2)原方程可写成:1111115112x+91012x x x x x -+-+-=++++…+, 即1151012x x -=+,去分母,整理得x 2+10x 24=0, 解得x 1=12,x 2=2,且经检验是原方程的解.22.∵3(a 2+b 2+c 2)=(a+b+c) 2,∴3a 2+3b 2+3c 2=a 2+b 2+c 2+2ab+26c+2ca .∴(a 2-2ab+b 2)+(b 2-2bc+c 2)+(c 2-2ca+a 2)=0.即(a -b ) 2+(b -c) 2+(c -a) 2=0.∴a -b =0且b -c=0且c -a=0,∴a =b =c .23.猜想正确.设四个连续正整数为n ,(n+1),(n+2),(n+3)(其中n 为正整数), n(n+1)(n+2)(n+3)+l=(n 2+3n)(n 2+3n+2)+1=(n 2+3n) 2+2(n 2+3n)+1=[(n 2+3n)+1] 2∴四个连续正整数的乘积加1必为平方数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题一(二次根式)一、选择题(每题3分,共30分) 1、1、若式子在实数范围内有意义,则x 的取值范围是( ) A .x ≥B .x >C .x ≥D .x >2. 在函数y=1x-3 中,自变量x 的取值范围是 ( )A .3x ≠B .0x ≠C .3x >D .3x =3、若式子在实数范围内有意义,则x 的取值范围是( ) A .x ≥B .x >C .x ≥D .x >4、在函数y=1x-3 中,自变量x 的取值范围是 ( )A .3x ≠B .0x ≠C .3x >D .3x =5、下列计算结果正确的是:(A)(B) (C) (D)6、下列计算结果正确的是:(A)(B) (C) (D)7、下列二次根式中不能再化简的二次根式的是( ) A .B .C .D .8、下列式子中,属于最简二次根式的是( )A.9 B. 7 C. 20 D.319、下列式子中,属于最简二次根式的是( )A.9 B. 7 C. 20 D.31 二、计算题-()2+-+4、121128-⎪⎭⎫⎝⎛+--+π,(83)6(4236)22+⨯--÷5、先化简,后计算:11()b a b b a a b ++++,其中512a +=,512b -=6、化简并求值:(x-1x+1 +2x x 2-1 )÷ 1x 2-1 ,其中x=0。
7、化简求值:,其中.8、先化简后求值.9、已知的值是 .三、(二次根式非负性)1、若为实数,且,则的值为( )A .1B .C .2D .2、若三角形ABC 的三边a 、b 、c 满足0,则△ABC 的面积为____.3、已知,那么的值为( ) A .一l B .1 C .32007D .4、若实数a 、b 满足042=-++b a ,则ba=专题二(勾股定理)一、选择题或填空题1、有一个三角形两边长为4和5,要使三角形为直角三角形,则第三边长为()A、3 B 、 C、3或 D、3或2、如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.7,24,25 B .,, C.3,4,5 D.4,,3、在△ABC中AB=15,AC=13,高AD=12,则△ABC的周长为()A.42 B.32 C.42或32 D.37或334、△ABC中,若AB=15,AC=13,高AD=12,则△ABC的周长是( )A.42B.32C.42或32D.37或335、以下列各组数为边的三角形中,是直角三角形的有()(1)3,4,5;(2),,;(3)32,42,52;(4)0.03,0.04,0.05.A.1个B.2个C.3个D.4个6、直角三角形的两条直角边长分别为、,则这个直角三角形的斜边长为________,面积为________ .7、已知a,b,c为三角形的三边,则= .8、如图所示,一个梯子AB长2.5米,顶端A靠在墙上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下滑了__________米.9、直角三角形的两边为3和4,则该三角形的第三边为 .二、综合体1、在长方形纸片ABCD中,AD=4cm,AB=10cm,按如图方式折叠,使点B与点D重合,折痕为EF,则DE=cm.2、如图,折叠长方形的一边,使点落在边上的点处,,,求:(1)的长;(2)的长.3、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12B. 24C.D. 3164、如图,中,于D,若求的长。
专题三(平行四边形)一、填空题或选择题1、如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F,连接CE,则CE的长________.2、如图所示:在正方形ABCD的边BC延长线上取一点E,使CE=AC,连接AE交CD于F,则∠AFC为度.3、如图,在菱形中,对角线、相交于点O,E为BC的中点,则下列式子中,一定成立的是________.4、如图,在□ABCD的面积是12,点E,F在AC上,且AE=EF=FC,则△BEF的面积为()A. 6B. 4C. 3D. 25、如下图,在中,分别是边的中点,已知,则的长为()A.3 B.4 C.5 D.6EFD CBA二、综合体(平行四边形)1、(本题10分)如图,在□ABCD 中,F E 、分别是边BC 和AD 上的点.请你补充一个条件,使CDF ABE ∆∆≌,并给予证明.2、.如图,在□ABCD 中,F 是AD 的中点,延长BC 到点E ,使CE=21BC ,连结DE ,CF 。
(1)求证:四边形CEDF 是平行四边形; (2)若AB=4,AD=6,∠B=60°,求DE 的长。
3、如图,点E 、F 分别是□ABCD 的边BC 、AD 上的点,且BE=DF .(1) 试判断四边形AECF 的形状; (2) 若AE=BE ,∠BAC =90°,求证:四边形AECF 是菱形.4、如图,E 、F 分别是矩形ABCD 的对角线AC 、BD 上两点,且AE DF =.求证:(1)BOE ∆≌COF ∆;(2)四边形BCFE 是等腰梯形.5、如图,在四边形ABCD 中,AB =BC ,对角线BD 平分 ∠ABC ,P 是BD 上一点,过点P 作PM ⊥AD ,PN ⊥CD ,垂 足分别为M 、N 。
(1) 求证:∠ADB =∠CDB ; (2) 若∠ADC =90︒,求证:四边形MPND 是正方形。
专题四(一次函数)一、 选择题或填空题1、已知点(-2,y 1),(-1,y 2),(1,y 3)都在直线y=-3x +b 上,则y 1,y 2,y 3的值的大小关系是( )A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 3>y 1>y 2D .y 3<y 1<y 2 2、一次函数与的图像如下图,则下列结论:①k<0;②>0;③当<3时,中,正确的个数是( )A .0B .1C .2D .33、函数y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么m 的取值范围是( )(A ) (B ) (C ) (D )4、一次函数y=mx+n 与y=mnx (mn ≠0),在同一平面直角坐标系的图像是……( )A. B. C. D.5、如图,已知函数和的图象交点为,则不等式的解集为 .6、如图,函数y=2x 和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为( )A.x<B.x<3C.x>D.x>3FEOD CBAA B CD N M Pyx o yxoyxoyxo7、与直线y=2x+1关于x轴对称的直线是()A.y=-2x+1 B.y=-2x-1 C112y x=-- D112y x=-+8、将直线y=3x向下平移2个单位,得到直线.9、从A地向B地打长途电话,通话3分钟以内(含3分钟)收费2.4元,3分钟后每增加通话时间1分钟加收1元(不足1分钟的通话时间按1分钟计费),某人如果有12元话费打一次电话最多可以通话分钟.二、根据图像回答问题1、小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了骑车的速度继续匀速行驶,下面是行使路程s (米)关于时间t(分)的函数图象,那么符合这个同学行驶情况的图像大致是()A .B. C .D.2、小明、小宇从学校出发到青少年宫参加书法比赛,小明步行一段时间后,小宇骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小明出发时间t(分)之间的函数关系如图所示.下列说法:①小宇先到达青少年宫;②小宇的速度是小明速度的3倍;③a=20;④b=600.其中正确的是()A.①②③B.①②④C.①③④D.①②③④3、李老师开车从甲地到相距240km的乙地,如果油箱剩余油量y(L)与行驶里程x(km)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是 L.4、某商店试销一种成本单价为100元/件的运动服,规定试销时的销售单价不低于成本单价,又不高于180元/件,经市场调查,发现销售量y(件)与销售单价x(元)之间的关系满足一次函数y=kx+b(k≠0),其图象如图。
(1)根据图象,求一次函数的解析式;(2)当销售单价x在什么范围内取值时,销售量y不低于80件。
5、某电信公司开设了甲、乙两种市内移动通信业务。
甲种使用者每月需缴18元月租费,然后每通话1分钟,再付话费0.2元;乙种使用者不缴月租费,每通话1分钟,付话费0.6元。
若一个月内通话时间为分钟,甲、乙两种的费用分别为和元。
(1)试分别写出、与之间的函数关系式;(2)在如图所示的坐标系中画出、的图像;(3)根据一个月通话时间,你认为选用哪种通信业务更优惠?6、已知,直线y=2x+3与直线y=-2x-1.(1) 求两直线与y轴交点A,B的坐标;(2) 求两直线交点C的坐标;(3) 求△ABC的面积.三、设计方案,求最值7、我市某化工厂现有甲种原料290kg,乙种原料212kg,计划利用这两种原料生产A,B两种产品共80件.生产一件A产品需要甲种原料5kg,•乙种原料1.5kg,生产成本是120元;生产一件B产品,需要甲种原料2.5kg,乙种原料3.5kg,•生产成本是200元.(1)该化工厂现有的原料能否保证生产?若能的话,有几种生产方案,请你设计出来;(2)设生产A,B两种产品的总成本为y元,其中一种的生产件数为x,试写出y与x之间的函数关系,并利用函数的性质说明(1)中哪种生产方案总成本最低?•最低生产总成本是多少?xy140120100120140801608、某服装厂现有A 种布料70m ,B 种布料52m ,现计划用这两种布料生产M 、N 两种型号的时装80套.已知做一套M 型号的时装需要A 种布料0.6m ,B 种布料O.9m ,可获利45元,做一套N 型号的时装需要A 种布料1.1m ,B 种布料0.4m ,可获利50元.若设生产N 型号的时装套数为x ,用这批布料生产这两种型号的时装所获的总利润为y 元. (1)求y 与x 的函数关系式,并求出自变量x 的取值范围;(2)该服装厂在生产这批时装中,当生产N 型号的时装多少套时,所获利润最大?最大利润是多少?专题五(数据的波动)一、 选择题或填空题1、已知样本x , 99,100,101,y 的平均数为100,方差是2,则x = ,y = . 2、刘翔为了迎战2008年北京奥运会刻苦进行110米拦训练,教练对他的10次训练成绩进行统计分析,若要判断他的成绩是否稳定,则教练需要知道刘翔这10次成绩的( ) A .平均数 B .中位数 C .众数 D .方差3、一组有三个不同的数:3、8、7,它们的频数分别是3、5、2,这组数据的平均数是_______.4、若一组数据的平均数是,方差是,则的平均数是 ,方差是 .5、某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25, 这组数据的中位数和众数分别是( )A .23,25B .23,23C .25,23D .25,256、某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元7、在方差公式()()()[]2222121x x x x x x nS n -++-+-=Λ中,下列说法不正确的是( ) A. n 是样本的容量 B. n x 是样本个体C. x 是样本平均数 D. S 是样本方差8、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月9、某老师计算学生的学期总评成绩时按照如下的标准:平时成绩占20%,期中成绩占30%, 期末成绩占50%.小东和小华的成绩如下表所示:请你通过计算回答:小东和小华的学期总评成绩谁较高?某中学对“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,下图是根据这组数据绘制的统计图,图中从左到右各长方形高度之比为2:8:5:4:3,又知此次调查中捐15元和20元得人数共39人.(1) 他们一共抽查了多少人?(2) 这组数据的众数、中位数各是多少?(3) 若该校共有1500名学生,请估算全校学生共捐款多少元?工资(元) 2 000 2 200 2 400 2 600 人数(人)13 42学生 平时成绩 期中成绩 期末成绩小东 70 80 90小华 90 70 80 010203040506070809012345678某班学生1~8月课外阅读数量折线统计图3670585842287583本数月份(第8题)12345678专题六:最值问题1、如图,没有上盖的圆柱盒高为10cm,周长为32cm,点A距离下底面3cm.一只位于圆柱盒外表面点A处的蚂蚁想爬到盒内表面对侧中点B处.则蚂蚁需要爬行的最短路程的长为cm如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为【】A.54B.52C.53D.65专题七:找规律1、如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为.2、如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是 .专题八:动点问题1、如图,在等边三角形ABC中,BC=6cm. 射线AG//BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)填空:①当t为_________s时,四边形ACFE是菱形;②当t为_________s时,以A、F、C、E为顶点的四边形是直角梯形.2、如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.MPFECBA。