分数的巧算教师版
分数乘除法速算巧算.教师版

gillie 教学目标分数是小学阶段的关键知识点,在小学的学习有分水岭一样的阶段性标志,许多难题也是从分数的学习开始遇到的。
分数基本运算的常考题型有(1)分数的四则混合运算(2)分数与小数混合运算,分化小与小化分的选择(3)复杂分数的化简(4)繁分数的计算知识点拨分数与小数混合运算的技巧在分数、小数的四则混合运算中,到底是把分数化成小数,还是把小数化成分数,这不仅影响到运算过程的繁琐与简便,也影响到运算结果的精确度,因此,要具体情况具体分析,而不能只机械地记住一种化法:小数化成分数,或分数化成小数。
技巧1:一般情况下,在加、减法中,分数化成小数比较方便。
技巧2:在加、减法中,有时遇到分数只能化成循环小数时,就不能把分数化成小数。
此时要将包括循环小数在内的所有小数都化为分数。
技巧3:在乘、除法中,一般情况下,小数化成分数计算,则比较简便。
技巧4:在运算中,使用假分数还是带分数,需视情况而定。
技巧5:在计算中经常用到除法、比、分数、小数、百分数相互之间的变,把这些常用的数互化数表化对学习非常重要。
目归例题精讲【例1】5的分母扩大到32,要使分数大小不变,分子应该为_________________________________ 。
8【考点】分数乘除法【难度】2星【题型】填空【关键词】走美杯,五年级,初赛【解析】根据分数的基本性质:分母扩大倍数,要使分数大小不变,分子应该为扩大相同的倍数。
分母扩大:32-8=4 (倍),分子为:4X5=20。
【答案】20【巩固】小虎是个粗心大意的孩子,在做一道除法算式时,这道算式的正确答案是 ____________________ 。
【考点】分数乘除法【难度】2星【关键词】走美杯,初赛,六年级一 5 5【解析】根据题意可知,被除数为120 5=75,所以正确的答案为75一:一5=90。
8 6分数乘除法速算巧算把除数5看成了5来计算,算出的结果是6 8【题型】填空120,【答案】90【例2】将下列算式的计算结果写成带分数:【难度】2星0.5 236 59119【题型】计算原式= 0.5 236 59=118化口1119119 119)X 59=59-59=5860119 119【答案】5811933_疋0.2【例3】计算45.841.38【考点】分数乘除法【难度】2星【题型】计算【解析】【答330.241.38735.843584=4 -1383 146138146 _ 7346 ~23 23【巩固】计算42 2.5231 21.05【考点】分数乘除法【难度】2星【关键词】希望杯,2试【题型】计算【解析】14 252 14 252X:: —83 71053 147516 5 258 —X-—X59【例4】计算31102 1733 3 32512 236 93【考点】分数乘除法【难度】3星【题型】计算8^ —25 59【解析】【答31 102 1733一3 32512 236 9393詡16 5 6 1759 -512 3 9331 102 25 33 236 32264 5 17 59 512 3 93=--------------- x -------------31 102 25 33 236 32-3 74480十21934- 1185568333 25909 35255【难度】3星【题型】填空74480十21934- 1185568333 25909 3525562811 25909 352558333 21934 538113 7 3 997 13 199313 641 2 11 9975 641 11333 19937 52 3【解析】22.524「乂----------31 21.05【答案】8【例5】计算【解析】6【解析】 原式= --------23561 2356 2357亠 2356 23561 (23562357)纱612357_ 2357-2358【答案】【例9】2357 2358r8个90计算 1202 30303 90UI909卄 19 1919 191919 列口99个19【考点】分数乘除法【难度】2星【题型】填空【关键词】希望杯,五年级,一试 原式=1OOx2x3x9x2£ =3806 5 15380【例7】计算19971997*19971998【考点】分数乘除法 【难度】2星【题型】填空【解析】 原式= (1997 J"7)十 1997=1997 ~M997 J"7*1997 =1 +1=1 119981998 19981998【答案】1丄1998本题考察学生对带分数的灵活转化及四则运算定律的准确理解 本题非常容易出现的一种错误解法是:19971997 19971997 "1997-199^-(1997)=1997 ^1997 1997亠—— -1 1998=1999 19981998 1998也就是学生会惯性的理解为除法具有除法分配率!正确的解法如下:19971997X1998+199719971999 1998 19981997 +1997 ------ 1997----------------- 1997----------- 1997 ------------ -----1998 1998199819981999 1997 19991999【答案】【巩固】2009 +20092009= ______ .2010【考点】分数乘除法【难度】2星【题型】填空【解析】 【答【解析】 2007 “ 2007 2007=2007 20082008X2008 2007 200820072009【答案】20082009【例8】1997 *19971997【解析】原式二——2009 120092010 亠 22009 ________ 1 ______= 2009 (2009 ------ ) :一20092010 20112010【答案】2010 2011【巩固】2356亠23562356= _______2357【考点】分数乘除法【难度】2星【关键词】2008年,清华附中考题【题型】填空【巩固】计算2007 -:- 200720072008【考点】分数乘除法 【难度】2星【题型】填空1998【考点】分数乘除法 【难度】2星 【题型】填空 【解析】20092009^ 2008(米),第2006次剪去后剩下的铁丝长为【答案】251250【答案】54【例6】计算:100 4_1.2;<34_5:<1 一=615【考点】分数乘除法【难度】3星【解析】本题用是重复数字的拆分和分数计算的综合,【题型】填空例如:abcabc=abc 1001 =abc 7 11 13 , ababab = ab 10101 =ab 3 7 13 37—8 个10 ,、一-9 10 101 1 十2 3 」9 45 19 型呼1 19 19 19 19 19—8 个 10原式1 2 101 3 10101__ + ________ + __________19 19 101 19 10101【答案】4519【例10】一根铁丝,第一次剪去了全长的1 ,第二次剪去所剩铁丝的 1,第三次剪去所剩铁丝的1,23 4第2008次剪去所剩铁丝的,这时量得所剩铁丝为1米,那么原来的铁丝长 2009【考点】分数乘除法【难度】2星【关键词】中环杯,六年级,初赛【题型】填空米。
分数的速算与巧算(教师)

分数的速算与巧算教学目标本讲知识点属于计算大板块内容,分为三个方面系统复习和学习小升初常考计算题型.1、 裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握裂项技巧及寻找通项进行解题的能力2、 换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。
3、 循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题. 4、通项归纳法通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式. 知识点拨一、裂项综合(一)、“裂差”型运算(1)对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有:1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。
(二)、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
分数的巧算教师版(可编辑修改word版)

+++++分数的速算与巧算(一)分数巧算(求和)分数求和的常用方法:1、公式法,直接运用一些公式来计算,如等差数列求和公式等。
2、图解法,将算式或算式中的某些部分的意思,用图表示出来,从而找出简便方法。
3、裂项法,在计算分数加、减法时,先将其中的一些分数做适当的拆分,使得其中一部分分数可以互相抵消,从而使计算简便。
4、分组法,运用运算定律,将原式重新分组组合,把能凑整或约分化简的部分结合在一起简算。
5、代入法,将算式中的某些部分用字母代替并化简,然后再计算出结果。
典型例题一、公式法:计算:1+2+3+4+ …+2006+2007 2008 2008 2008 2008 2008 2008分析:这道题中相邻两个加数之间相差项+末项)×项数÷2 来计算。
12008,成等差数列,我们可以运用等差数列求和公式:(首1+ 2+3+4+ …+2006+20072008 2008 2008 2008 2008 2008=(12008 +2007)×2007÷2 2008=100312二、图解法:计算:1 1 1 1 1 12 4 8 16 32 64 分析:解法一,先画出线段图:+ + + + + =1- = + + + + +( + )- + + + +( + )- + + + + + ①+ + + + + + + ②+ + + + -( + + + + + ) + + + + + = 从图中可以看出: 1 1 1 1 1 1 1 63 2 4 8 16 32 64 64 64解法二:观察算式,可以发现后一个加数总是前一个加数的一半。
因此,只要添上一个加数 1 64 ,就能 凑成 1 32,依次向前类推,可以求出算式之和。
11 1 1 1 1 + + + + +2 4 8 16 32 64 = 1 1 1 1 1 1 1 1 2 4 8 16 32 64 64 64= 1 1 1 1 1 1 1 2 4 8 16 32 32 64……= 1 ×2- 1 2 64 = 63 64解法三:由于题中后一个加数总是前一个加数的一半,根据这一特点,我们可以把原式扩大 2 倍,然后两式相减,消去一部分。
分数巧算知识点总结

分数巧算知识点总结一、分数的基本概念1.1 分数的定义分数是指两个整数之比,其中被除数为分子,除数为分母,可以用a/b表示,其中a为分子,b为分母,b不能等于0.1.2 分数的性质(1)分子和分母是整数,分母不能为0;(2)分数可以表示小数,也可以表示百分数;(3)分数的大小与所表示的数的大小有关。
1.3 分数的大小比较对于两个分数 a/b 和 c/d 来说,(1)如果 a/b = c/d,那么a*d = b*c;(2)如果 a/b > c/d,那么a*d > b*c;(3)如果 a/b < c/d,那么a*d < b*c。
1.4 一般分数的化简一般分数指分子和分母的除数不能被整除的分数,例如 4/6、2/5等。
化简分数是将分数的分子和分母同时除以它们的最大公约数(即分子和分母的所有公约数中最大的那个数)的过程。
二、分数的加减乘除2.1 分数的加减(1)当两个分数的分母相同时,直接将分子相加或相减,分母保持不变;(2)当两个分数的分母不同时,需要先将它们通分,然后再进行加减运算。
例如:1/3 + 2/3 = 3/3 = 12/5 - 1/5 = 1/52/3 + 3/4 = 8/12 + 9/12 = 17/122.2 分数的乘法两个分数相乘时,将它们的分子相乘得到新的分子,分母相乘得到新的分母,然后化简得到最简分数。
例如:2/3 * 3/4 = 6/12 = 1/22.3 分数的除法两个分数相除时,将第一个分数的分子乘以第二个分数的分母得到新的分子,分母乘以分母得到新的分母,然后化简得到最简分数。
例如:2/3 ÷ 3/4 = 8/9三、分数的巧算技巧3.1 练习整数乘分数在计算时,我们可以将整数转化为分数,然后再进行乘法运算,最后将得到的分数化简即可。
例如:2 * 2/3 = 2/1 * 2/3 = 4/33.2 乘除组合法则在进行复杂的分数运算时,我们可以先把分数转化为小数进行计算,然后再将得到的结果转化为分数。
六年级奥数教案1

六年级奥数教案第三单元巧算求和(二)教学目标:巧妙的运用分数的拆分来进行简便运算。
教学内容:教科书第10页例1、例2和自主检测。
教学重难点:能够灵活运用此方法进行这一类型的简便计算。
教学方法:讲授法、练习法教学过程:步骤教师行为学生行为新课教学出示例1计算1/2+1/6+1/12+1/20常规分析:按照常规方法,这是一题普通的异分母分数加法,我们一般采用通分的方法。
1/2+1/6+1/12+1/20=60/120+20/120+10/120+6/120=96/120=4/5创新点拨:仔细观察每个分数有什么特殊的地方,不难看出,分子都是1,而分母可以写成1×2,2×3,3×4,4×5,即每个分母都可以写成两个连续自然数的积,于是每个分数都可以拆成两个分数的差:1/2=1/1×2=1-1/2,1/6=1/2×3=1/2-1/3,1/12=1/3×4=1/3-1/4,1/20=1/4×5=1/4-1/5。
所以可以引导学生作如下解答:1/2+1/6+1/12+1/20=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5=1-1/5=4/5出示例2计算2/3×5+2/5×7+2/7×9+2/9×11常规分析:异分母分数相加,先通分,再相加,比较麻烦。
创新点拨:仔细观察不难发现,每个分数的分子都是2,而分母都是两个自然数的积,而分子恰好等于分母的两个自然数的差。
5-3=2,7-5=2,9-7=2,11-9=2,于是有解答:2/3×5+2/5×7+2/7×9+2/9×11=1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11=1/3-1/11=8/33小结:在做分数加法运算时,将其中一些分数适当拆开后的一些分数可以相互抵消,以达到简化运算的目的。
分数的巧算

分数的速算与巧算(一)分数巧算(求和)分数求和的常用方法:1、公式法,直接运用一些公式来计算,如等差数列求和公式等。
2、图解法,将算式或算式中的某些部分的意思,用图表示出来,从而找出简便方法。
3、裂项法,在计算分数加、减法时,先将其中的一些分数做适当的拆分,使得其中一部分分数可以互相抵消,从而使计算简便。
4、分组法,运用运算定律,将原式重新分组组合,把能凑整或约分化简的部分结合在一起简算。
5、代入法,将算式中的某些部分用字母代替并化简,然后再计算出结果。
典型例题一、公式法: 计算:20081+20082+20083+20084+…+20082006+20082007二、图解法: 计算:21 +41+81+161+321+641三、裂项法1、计算:21+61+121+201+301+……+901+1101 分析:由于每个分数的分子均为1,先分解分母去找规律:2=1×2,6=2×3,12=3×4,20=4×5,30=5×6,……110=10×11,这些分母均为两个连续自然数的乘积。
再变数型:因为21=211⨯=1-21,61=321⨯=21-31,121=431⨯=31-41,……,1101=11101⨯=101-111。
这样将连加运算变成加减混合运算,中间分数互相抵消,只留下头和尾两个分数,给计算带来方便。
21+61+121+201+301+……+901+1101 =1-21+21-31+31-41+……+91-101+101-111 =1-111 =11102、计算:511⨯+951⨯+1391⨯+……+33291⨯+37331⨯3、计算:21-34-154-354-634-994-1434-1954-25544、计算:21+65+1211+2019+3029+……+97029701+990098995、计算:1+432113211211+++++++++……+100......3211++++6、计算:+⨯⨯+⨯⨯+⨯⨯543143213211…+10099981⨯⨯四、分组法:计算20041+20042-20043-20044+20045+20046-20047-20048+20049+200410-……-20041999-20042000+20042001+20042002五、代入法:计算(1+413121++)×(51413121+++)-(1+51413121+++)×(413121++)热点习题计算:1、49134911499497495493491++++++【1】2、12816413211618141211-------【1281】3、4213012011216121+++++【76】4、200920081200820071......199119901199019891198919881⨯+⨯++⨯+⨯+⨯4、3937137351......191711715115131⨯+⨯++⨯+⨯+⨯6、2+421133011120171215613++++7、565542413029201912116521++++++8、3994003233242552561951961431449910063643536151634+++++++++9、1102190197217561542133011209127651-+-+-+-+-10、20021+20022+20023+20024-20025-20026-20027-20028+20029+200210+…+20021995+20021996-20021997-20021998-20021999-20022000+20022001+2002200211、(1+51413121+++)×(6151413121++++)-(1+6151413121++++)×(51413121+++)12、)54535251()434241()3231(21++++++++++…+(20192018...203202201+++++)13、2001年是中国共产党建党80周年,20011921是个有特殊意义的分数。
竞赛讲义教师版

重点中学选拔考试的试卷,考察学生的计算能力是必不可少的,近几年来又以考察:1.速算巧算;2.分数的计算技巧为明显趋势。
本讲我们将系统地归纳和总结这一部分的技巧和方法。
1.回顾提取公因数(式)和凑整的应用;2.精讲公式应用、循环小数化分数、分数的拆分。
【例1】 1324264839724129612424836124816⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯【分析】 原式=3333331324(1234)9124(1234)⨯⨯⨯+++=⨯⨯⨯+++, (此题学生容易做成1324(1234)9124(1234)⨯⨯⨯+++=⨯⨯⨯+++,虽然答案对,但是老师要强调错误原因。
)【拓展】(首师大附中入学选拔试题)1202505051313131321212121212121212121+++【分析】原式=121015101011310101011251312121101211010121101010121212121⨯⨯⨯+++=+++=⨯⨯⨯。
【例2】 求3333333×6666666乘积的各位数字之和。
【分析】 原式=9999999×2222222=(10000000-1)×2222222 =11111110000000-2222222 =11111107777778计算之公式应用及技巧第一讲所以,各位数字之和为8×7=56。
下面这些公式是小学奥数中常见的计算公式,同学们一定要熟练掌握,这可是小升初考试中计算的好帮手。
同时也希望同学们在做题时能够对一些规律性比较强的数字的计算自己进行归纳。
常用公式: 1. (1)1232n n n ⨯+++++=; 2. 2222(1)(21)1236n n n n ⨯+⨯++++=; 3. ()2223333(1)1231234n n n n ⨯+++++=++++=; 4. ()()()213572112311321n n n n n +++++-=++++-++-++++=;5. ()222222(21)(21)(41)13572133n n n n n n ⨯+⨯-⨯-+++++-==; 6. 等比数列求和公式:0111111(1)1nn a q Sn a q a q a q q--=++⋅⋅⋅+=-。
六年级《分数的巧算》奥数教案

师:那么总共可以分成多少组呢?
生:因为总共有39个分数,两两一组,所以就有 组。
师:这跟我们以前学过的等差数列求和公式是不是一样的?
生:是的。
师:那同学们接下来会计算了吗?
生:会了。
板书:
=( )×
=
(一)星海历练1(5分钟)
求下列所有分母不超过20的真分数的和。
分析:
利用等差数列求和公式分别求出每个括号里分数的和,再求它们的和。
师:看来同学们都找到了自己的朋友了,我们一起来看一下这些数都有什么特点?
生:它们的和都是整数,并且它们的和都相等。
师:同学们太棒了!其实在分数的计算里,这也是我们常用的方法——凑整法,今天我们就一起来学习这方面的知识。
【板书课题:分数的巧算】
二、星海遨游(30分钟)
(一)星海遨游1(10分钟)
师:同学们仔细观察一下题目中的分数,它们都有什么样的特点?
师:同学们还记得我们以前经常碰到过的一种题型吗?(老师板书展示1+2+3+4+……+100),这种题目同学们应该能够10秒钟就把它给解答出来吧?
生:能,等于5050。
师:那同学们一起说说这种方法是怎样的呢?
生:(1+100)×100÷2,也就是高斯的等差数列求和。
师:那用文字怎样表达呢?
生:头加尾的和乘项数除以2。
生:肯定是整数了。
师:老师也是那么觉得的,那么我们把每个括号里面的分数都看作一个整体,同学们有什么发现没?
生:第一个括号里的分数和第四个括号里的分数一样,第二个括号里的分数和第四个括号里的分数一样。
师:是的,那我们字母a表示第一个括号里的分数,用字母b表示第二个括号里的分数。那么式子变成什么样的呢?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数的速算与巧算(一)分数巧算(求和)分数求和的常用方法:1、公式法,直接运用一些公式来计算,如等差数列求和公式等。
2、图解法,将算式或算式中的某些部分的意思,用图表示出来,从而找出简便方法。
3、裂项法,在计算分数加、减法时,先将其中的一些分数做适当的拆分,使得其中一部分分数可以互相抵消,从而使计算简便。
4、分组法,运用运算定律,将原式重新分组组合,把能凑整或约分化简的部分结合在一起简算。
5、代入法,将算式中的某些部分用字母代替并化简,然后再计算出结果。
典型例题一、公式法: 计算:20081+20082+20083+20084+…+20082006+20082007 分析:这道题中相邻两个加数之间相差20081,成等差数列,我们可以运用等差数列求和公式:(首项+末项)×项数÷2来计算。
20081+20082+20083+20084+…+20082006+20082007 =(20081+20082007)×2007÷2 =211003二、图解法: 计算:21 +41+81+161+321+641 分析:解法一,先画出线段图:从图中可以看出:21 +41+81+161+321+641=1-641=6463 解法二:观察算式,可以发现后一个加数总是前一个加数的一半。
因此,只要添上一个加数641,就能凑成321,依次向前类推,可以求出算式之和。
21 +41+81+161+321+641 =21 +41+81+161+321+(641+641)-641 =21 +41+81+161+(321+321)-641 ……解法三:由于题中后一个加数总是前一个加数的一半,根据这一特点,我们可以把原式扩大2倍,然后两式相减,消去一部分。
设x=21 +41+81+161+321+641 ① 那么,2x=(21 +41+81+161+321+641)×2 =1+21 +41+81+161+321 ②用②-①得2x -x=1+21 +41+81+161+321-(21 +41+81+161+321+641) x=6463 所以,21 +41+81+161+321+641=6463三、裂项法1、计算:21+61+121+201+301+……+901+1101 分析:由于每个分数的分子均为1,先分解分母去找规律:2=1×2,6=2×3,12=3×4,20=4×5,30=5×6,……110=10×11,这些分母均为两个连续自然数的乘积。
再变数型:因为21=211⨯=1-21,61=321⨯=21-31,121=431⨯=31-41,……,1101=11101⨯=101-111。
这样将连加运算变成加减混合运算,中间分数互相抵消,只留下头和尾两个分数,给计算带来方便。
21+61+121+201+301+……+901+1101 =1-21+21-31+31-41+……+91-101+101-111 =1-111 =11102、计算:511⨯+951⨯+1391⨯+……+33291⨯+37331⨯ 分析:因为514⨯=1-51,954⨯=51-91,1394⨯=91-131……33294⨯=291-331,37334⨯=331-371。
所以,我们可以将题中的每一个加数都扩大4倍后,再分裂成两个数的差进行简便计算。
511⨯+951⨯+1391⨯+……+33291⨯+37331⨯ =(514⨯+954⨯+1394⨯+……+33294⨯+37334⨯)÷4 111111111=(1-371)÷4=379 3、计算:21-34-154-354-634-994-1434-1954-2554 分析:因为34=4×31=4×311⨯=4×(1-31)×21, 154=4×151=4×531⨯=4×(31-51)×21, 354=4×351=4×751⨯=4×(51-71)×21, ……2554=4×2551=4×17151⨯=4×(151-171)×21. 所以,先用裂项法求出分数串的和,使计算简便。
21-34-154-354-634-994-1434-1954-2554 =21-4×(1-31+31-51+51-71+……+151-171)×21 =21-2×(1-171) =19172 4、计算:21+65+1211+2019+3029+……+97029701+99009899 分析:仔细观察后发现,每个加数的分子均比分母少1.这样可变形为:21=1-21=1-211⨯,65=1-61=1-321⨯,1211=1-121=1-431⨯,2019 =1-201=1-541⨯,……,99009899=1-99001=1-100991⨯.然后再裂项相消。
21+65+1211+2019+3029+……+97029701+99009899 =(1-21)+(1-61)+(1-121)+(1-201)+……+(1-99001) =1×99-(21+61+121+201+……+99001) =99-(211⨯+321⨯+431⨯+541⨯+……+100991⨯) =99-(1-1001) =991001 5、计算:1+432113211211+++++++++……+100......3211++++ 分析:可以看出,第一项的分母为1,第二项的分母为两个数相加,依此类推,最后一个分母是100个数相加且都是等差数列。
这样,利用等差数列求和公式,或利用分数基本性质,变分母为两个数相乘。
再裂项求和。
1111=2121⨯⨯+2100)1001(1......24)41(123)31(122)21(1⨯+++⨯++⨯++⨯+ =1011002......542432322212⨯++⨯+⨯+⨯+⨯ =2×(1-1011) =101991 解法二:原式= )10099......21(221......)4321(221)321(221)21(221212++++⨯⨯+++++⨯⨯+++⨯⨯++⨯⨯+⨯=1011002......432322212⨯++⨯+⨯+⨯ =2×(1011001......431321211⨯++⨯+⨯+⨯) =2×(1-1011) =101991 6、计算:+⨯⨯+⨯⨯+⨯⨯543143213211…+10099981⨯⨯ 分析:可以把题中的每两个加数分解成两个分数之差:)321211(213211⨯-⨯⨯=⨯⨯,)431321(214321⨯-⨯⨯=⨯⨯,…… )10099199981(2110099981⨯-⨯⨯=⨯⨯,此时,可消中间,留两头进行巧算。
原式=21×(321211⨯-⨯)+21×(431321⨯-⨯)+……+21×(10099199981⨯-⨯) =21×(321211⨯-⨯+431321⨯-⨯+……+10099199981⨯-⨯) =21×(100991211⨯-⨯) =198004949四、分组法:计算,20041+20042-20043-20044+20045+20046-20047-20048+20049+200410-……-20041999-20042000+20042001+20042002 分析:算式中共有2002个分数,从第二个分数20042开始依次往后数,每四个分数为一组,到20042001为止,共有500组,每组计算结果都是0.原式=20041+(20042-20043-20044+20045)+(20046-20047-20048+20049)+200410-……+19981999200020012002=20041+20042002 =20042003 五、代入法:计算(1+413121++)×(51413121+++)-(1+51413121+++)×(413121++) 分析:可以把算式中相同的一部分式子,设字母代替,可化繁为简,化难为易。
设413121++=A ,51413121+++=B ,则 原式=(1+A )×B -(1+B)×A=B +AB -A -AB=B -A =(51413121+++)-(413121++) =51热点习题计算:1、49134911499497495493491++++++【1】2、12816413211618141211-------【1281】3、4213012011216121+++++【76】4、200920081200820071......199119901199019891198919881⨯+⨯++⨯+⨯+⨯ 【57055632009119881=-】4、3937137351......191711715115131⨯+⨯++⨯+⨯+⨯【391】6、2+421133011120171215613++++【41145】7、565542413029201912116521++++++【816】8、3994003233242552561951961431449910063643536151634+++++++++【211010】9、1102190197217561542133011209127651-+-+-+-+-【原式=1-3232⨯++4343⨯+-5454⨯++6565⨯+-7676⨯++8787⨯+-9898⨯++109109⨯+-11101110⨯+ =1-(323322⨯+⨯)+(434433⨯+⨯)-(545544⨯+⨯)+…-(111011111010⨯+⨯) =1-(2131+)+(3141+)-(4151+)+…-(101111+) =1-11121-=229】10、20021+20022+20023+20024-20025-20026-20027-20028+20029+200210+…+20021995+20021996-20021997-20021998-20021999-20022000+20022001+20022002 【从第三个分数20023开始依次往后数,每8个分数为一组,到最后一个分数20022002为止,共有250组,每组计算结果都是0.所以,原式=20021+20022=20023】11、(1+51413121+++)×(6151413121++++)-(1+6151413121++++)×(51413121+++) 【设1+51413121+++=A ,51413121+++=B ,原式=A ×(B+61)-(A+61)×B=61】12、)54535251()434241()3231(21++++++++++…+(20192018...203202201+++++) 【原式=21+1+211+2+221+…+921=(21+921)×19÷2=95】13、2001年是中国共产党建党80周年,20011921是个有特殊意义的分数。