10.第十课_乘法公式

合集下载

第十讲 代数式

第十讲   代数式

【知识点 4】列代数式的读法
读代数式的目的:一方面是培养和训练我们的数学语言表达能力;另一方面是通过读 代数式弄清运算顺序和实际问题背景、几何意义,为以后列代数式,准确熟练地进行代数 式运算打好基础。
对于代数式中的加、减、乘、除的读法与小学的读法是一致的,一般按下面情况读出: 1)按运算顺序来读。例如:a+b 读作“a 加 b”;3x-2 读作“x 的 3 倍减 2”;s/t 读作 “s 除以 t”或读作“t 除 s”或读作“s 比 t”或读作“t 分之 s”。 2)按运算的结果来读。如 a+b 读作“a 与 b 的和”;3x-2 读作“x 的 3 倍与 2 的差”; s/t 读作“s 与 t 的商”。 3)按实际背景和几何意义来读。如,代数式 5a,如果 a 表示正五边形的边长,那么 5a 可表示正五边形的周长;如果 a 表示一个本子的价格,那么 5a 可表示 5 个本子的价格等。 4)对于含有括号的代数式,应把括号里面的代数式看做一个整体,按运算结果来读。 如(a-b)x 应读作“a 与 b 的差乘以 x”。 5)对于以分数形式出现的代数式,不论按分数形式来读,还是按除法形式来读,都应
2.下列代数式中符合书写要求的是( )
A.ab2×4 B.
C.
D.6xy2÷3
3.在下列式子中:3xy﹣2、3÷a、 (a+b)、a•5、﹣3 abc 中,符合代数式书写要求的有 () A.1 个 B.2 个 C.3 个 D.4 个 4.某商场举办促销活动,促销的方法是将原价 x 元的衣服以( x﹣10)元出售,则下列说 法中,能正确反映该商场的促销方法的是( ) A.原价打 8 折后再减 10 元 B.原价减 10 元后再打 8 折 C.原价减 10 元后再打 2 折 D.原价打 2 折后再减 10 元

第十讲整式的乘除(乘法公式)

第十讲整式的乘除(乘法公式)

第十讲 整式的乘除(乘法公式)一、【知识要点】1、 单项式乘以单项式: ;2、 单项式乘以多项式:m(a+b) = ;3、 多项式乘以多项式:(m+n)(a+b)= ;(x+a )(x+b)= ;4、 单项式除以单项式: ;5、 多项式除以单项式:(am+an) ÷a= ;6、平方差公式:(a+b)(a-b)= ;7、完全平方公式:(a+b)2= ;(a-b )2 = ;8、立方和公式:(a+b)(a 2-ab+b 2) = ;立方差公式:(a-b)(a 2+ab+b 2) = .二、【典型例题】1、计算:(1)(-a -b )(a -b ) (2)(31x 2+-)(31x 2--)(3)(-a-b )2 (4))1)(1)(1)(1(42-+++x x x x(5))2)(2(z y x z y x ++-+- (6)(x+5)2-(x -2)(x -3)2、先化简,再求值:(x +2y )(x -2y )-(2x -y )(-2x -y ),其中x =8,y =-8;3、已知a 2-3a +1=0.求aa 1+和221a a +的值;4、求证:两个连续整数的积加上其中较大的一个数的和等于较大的数的平方5、已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状。

6、如图三个小圆圆心都在大圆的直径上,它们的直径分别是a,b,c① 求证:三个小圆周长的和等于大圆的周长② 求:大圆面积减去三个小圆面积和的差。

三、【巩固练习】1、选择题:(1)如果一个单项式与3ab -的积为234a bc -,则这个单项式为( ) A 、214a c B 、14ac C 、294a c D 、94ac (2))12)(12(+-+x x 的计算结果是 ( )A.-4x 2+1B.1-4x 2C. 4x 2+1D. 4x 2-1(3)如果(x -2)(x +3) = x 2+px +q ,那么p 、q 的值为( )A .p =5,q =6B .p =1,q =-6C .p =1,q =6D .p =5,q =-6(4)下列运算中,正确的是( )A 、()222a b a b +=+B 、()2222x y x xy y --=++C 、()()2326x x x +-=-D 、()()22a b a b a b --+=- (5)若x 2+mx+1是完全平方式,则m=( ) A 、±2 B 、2 C 、±4 D 、4(6)已知2249x mxy y -+是关于,x y 的完全平方式,则m 的值为( )A 、6B 、6±C 、12D 12±(7)若二项式4m 2+9加上一个单项式后是一含m 的完全平方式,则这样的单项式的个数有( )A 、4个B 、3个C 、2个D 、1个(8)为了应用平方差公式计算()()c b a c b a -++-,必须先适当变形,下列各变形中,正确的是( )A 、()[]()[]b c a b c a +--+ B 、()[]()[]c b a c b a -++- C 、()[]()[]a c b a c b +--+ D 、()[]()[]c b a c b a -+--(9)已知7)(2=+b a ,3)(2=-b a ,则22b a +与ab 的值分别是( ) A. 4,1 B. 2,23 C.5,1 D. 10,23 (10)如图,在长为a 的正方形中挖掉一个边长为b 的小正方形(a>b )把余下的部分剪拼成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( )A .a 2-b 2=(a+b)(a-b)B .(a+b)2=a 2+2ab+b 2C .(a-b)2=a 2-2ab+b 2D .(a+2b)(a-b)=a 2+ab-2b 22、填空题:(1)若多项式m x y 12x 92+-是完全平方式,则m= . (2)若x 2+kx +25是一个完全平方式,则k = .(3)单项式36a b 与229a b c 的公因式为(4)若1,2=-=-c a b a ,则=-+--22)()2(a c c b a(5)若3,2a b ab +=-=,则22a b += ,()2a b -= (6)已知a -a 1 =3,则a 2+a 12 的值等于 (7)已知2m =x ,43m =y ,用含有字母x 的代数式表示y ,则y = ;(8)若m 2+n 2=6n -4m -13,则m 2-n 2 =_________.(9)已知0134622=+-++y x y x ,则2046)(y x +的值为 (10)己知a 2=a+1,则代数式a 5-5a+2的值为3、计算:(1)(a+b )(-b+a ) (2)(3a+2b )(3a -2b ) (3)(4m+n )2(4)(y-12)2 (5)(a -b )(a+b )(a 2+b 2) (6)(a+2b -3c )(a -2b+3c )(1)992 (2)998×1002 (3)98×102-992 (4)1198992++5、先化简,再求值: [(x -y)2+(x+y)(x -y)]÷2x,其中x=3,y=-1.56、己知a+b=1, 求证:a 3+b 3+3ab=17、观察下列算式:1×3+1=4=22 ,2×4+1=9=32 ,3×5+1=16=42 ,4×6+1=25=52 ……请将你找出的规律用公式表示出来,并加以证明。

人教版初高中数学章节目录

人教版初高中数学章节目录

人教版初中数学章节目录七年级上册(61)第1章有理数(19)第2章整式的加减(8)第3章一元一次方程(18)第4章图形认识初步(16)_______________________________________________________________________________ 七年级下册(62)第5章相交线与平行线(14)第6章平面直角坐标系(7)第7章三角形(8)第8章二元一次方程组(12)第9章不等式与不等式组(12)第10章数据的收集整理与描述(9)_______________________________________________________________________________ 八年级上册(62)第11章全等三角形(11)第12章轴对称(13)第13章实数(8)第14章一次函数(17)第15章整式的乘除与因式分解(13)_______________________________________________________________________________ 八年级下册(61)第16章分式(14)第17章反比例函数(8)第18章勾股定理(8)第19章四边形(16)第20章数据的分析(15)_______________________________________________________________________________ 九年级上册(62)第21章二次根式(9)第22章一元二次方程(13)第23章旋转(8)第24章圆(17)第25章概率初步(15)_______________________________________________________________________________ 九年级下册(48)第26章二次函数(12)第27章相似(13)第28章锐角三角函数(12)第29章投影与视图(11)_______________________________________________________________________________%%%% 各章详细内容%%%%_______________________________________________________________________________ ~~~~七~~~年~~~级~~~上~~~册~~~~~~~~~~~~~~~~~~~~~第一章有理数1.1正数和负数阅读与思考用正负数表示加工允许误差1.2有理数1.3有理数的加减法实验与探究填幻方阅读与思考中国人最先使用负数1.4有理数的乘除法观察与思考翻牌游戏中的数学道理1.5有理数的乘方数学活动小结复习题1第二章整式的加减2.1整式阅读与思考数字1与字母X的对话2.2整式的加减信息技术应用电子表格与数据计算数学活动小结复习题2第三章一元一次方程3.1从算式到方程阅读与思考“方程”史话3.2解一元一次方程(一)——合并同类项与移项实验与探究无限循环小数化分数3.3解一元一次方程(二)——去括号与去分母3.4实际问题与一元一次方程数学活动小结复习题3第四章图形认识初步4.1多姿多彩的图形阅读与思考几何学的起源4.2直线、射线、线段阅读与思考长度的测量4.3角4.4课题学习设计制作长方体形状的包装纸盒数学活动小结复习题4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~七年级下册第五章相交线与平行线5.1相交线5.2平行线5.3平行线的性质5.4平移数学活动小结复习题5第六章平面直角坐标系6.1平面直角坐标系6.2坐标方法的简单应用数学活动小结复习题6第七章三角形7.1与三角形有关的线段7.2与三角形有关的角7.3多边形及其内角和7.4课题学习镶嵌数学活动小结复习题7第八章二元一次方程组8.1二元一次方程组8.2消元8.3再探实际问题与二元一次方程组数学活动小结复习题8第九章不等式与不等式组9.1不等式9.2实际问题与一元一次不等式9.3一元一次不等式组9.4课题学习利用不等关系分析比赛(1)数学活动小结复习题9第十章数据的收集整理与描述10.1几种常见的统计图表10.2用图表描述数据信息技术应用利用计算机画统计图阅读与思考作者可能是谁10.3课题学习从数据谈节水数学活动小结复习题10~~八~~~年~~~级~~~上~~~册~~~~~~~~第十一章全等三角形11.1全等三角形11.2三角形全等的条件阅读与思考为什么要证明11.3角的平分线的性质数学活动小结复习题11第十二章轴对称12.1轴对称12.2轴对称变换信息技术应用探索轴对称的性质12.3等腰三角形实验与探究三角形中边与角之间的不等关系数学活动小结复习题12第十三章实数13.1平方根13.2立方根13.3实数数学活动小结复习题13第十四章一次函数14.1变量与函数信息技术应用用计算机画函数图象14.2一次函数阅读与思考科学家如何测算地球的年龄14.3用函数观点看方程(组)与不等式数学活动小结复习题14第十五章整式的乘除与因式分解15.1整式的乘法15.2乘法公式阅读与思考杨辉三角15.3整式的除法15.4因式分解观察与猜想x2+(p+q)x+pq型式子的因式分解数学活动小结复习题15 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~八年级下册第十六章分式16.1分式16.1分式的运算阅读与思考容器中的水能倒完吗16.1分式方程数学活动小结复习题16第十七章反比例函数17.1反比例函数17.1实际问题与反比例函数阅读与思考生活中的反比例关系数学活动小结复习题17第十八章勾股定理18.1勾股定理18.2勾股定理的逆定理数学活动小结复习题18第十九章四边形19.1平行四边形19.2特殊的平行四边形实验与探究巧拼正方形19.3梯形观察与猜想平面直角坐标系中的特殊四边形19.4课题学习:重心数学活动小结复习题19第二十章数据的分析20.1数据的代表20.2数据的波动信息技术应用用计算机求几种统计量阅读与思考数据波动的几种度量20.3课题学习体质健康测试中的数据分析数学活动小结复习题20~~~九~~~年~~~级~~~上~~~册~~~~~~~~~~~~~~~~~~~~~~第二十一章二次根式21.1二次根式21.2二次根式乘除21、3二次根式的加减阅读与思考海伦──秦九韶公式数学活动小结复习题21第二十二章一元二次方程22.1一元二次方程22.2降次──解一元二次方程阅读与思考黄金分割数22.3实际问题与一元二次方程观察与猜想发现一元二次方程根与系数的关系数学活动小结复习题22第二十三章旋转23.1图形的旋转23.2中心对称信息技术应用探索旋转的性质23.3课题学习图案设计数学活动小结复习题23第二十四章圆24.1圆24.2与圆有关的位置关系24.3正多边形和圆阅读与思考圆周率π24.4弧长和扇形面积实验与研究设计跑道数学活动小结复习题24第二十五章概率初步25.1概率25.2用列举法求概率阅读与思考概率与中奖25.3利用频率估计概率阅读与思考布丰投针实验25.4课题学习键盘上字母的排列规律数学活动小结复习题25 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~九年级下册第二十六章二次函数26.1二次函数实验与探究推测植物的生长与温度的关系26.2用函数观点看一元二次方程信息技术应用探索二次函数的性质26.3实际问题与二次函数数学活动小结复习题26第二十四章相似27.1图形的相似27.2相似三角形观察与猜想奇妙的分形图形27.3位似信息技术应用探索位似的性质数学活动小结复习题27第二十八章锐角三角函数28.1锐角三角函数阅读与思考一张古老的三角函数28.2解直角三角形数学活动小结复习题28第二十九章投影与视图29.1投影29.2三视图阅读与思考视图的产生与应用29.3课题学习制作立体模型数学活动小结复习题29各章节详细知识点七年级上册第一章《有理数》1.正数与负数的概念2.正数与负数的实际意义3.有理数的概念4.数轴的概念5.相反数的概念6.绝对值的概念7.有理数的大小比较8.有理数的加法法则9.有理数的减法法则10.有理数的乘法法则11.有理数的运算律12.有理数的除法法则13.有理数的混合运算法则14.有理数的乘方相关概念(乘方、幂、底数、指数)15.有理数的乘方法则16.科学记数法17.近似数(有效数字)第二章《整式的加减》1.单项式及其相关概念(单项式、系数、次数)2.多项式及其相关概念(多项式、项、常数项、次数)3.整式4.同类项的概念5.合并同类项的法则6.去括号法则7.整式加减的运算法则第三章《一元一次方程》1.方程的概念2.一元一次方程的概念3.方程的解4.等式的性质5.一元一次方程的解法(步骤)6.一元一次方程的应用问题(和差倍分问题、数字问题、行程问题、工程问题、劳动力调配问题、增长率问题、商品利润问题)第四章《图形的初步认识》1.几何图形的概念2.立体图形的概念3.平面图形的概念4.立体图形的三视图5.立体图形的展开图6.点、线、面、体的概念7.直线的相关概念(直线、相交线、交点)8.两点确定一条直线9.点与直线的位置关系10.线段的中点11.两点之间线段最短12.两点之间的距离13.角及其相关概念14.角平分线15.余角的概念16.补角的概念17.余角(补角)的性质七年级下册第五章《相交线与平行线》1.相交线的相关概念(邻补角、对顶角)2.对顶角的性质3.垂线的相关概念(垂直、垂线、垂足)4.过一点画垂线5.垂线段最短6.点到直线的距离7.“三线八角”的相关概念8.平行的概念9.平行公理10.平行线的判定11.平行线的性质12.命题及其相关概念(命题、真命题、假命题)13.定理的概念14.平移的概念15.平移的性质第六章《平面直角坐标系》1.有序实数对的概念2.平面直角坐标系及其相关概念(平面直角坐标系、横轴、纵轴、原点、坐标、象限)3.特殊点坐标(象限符号、坐标轴上点的特征、坐标轴角平分线上点的特征、对称点坐标特征、平行于坐标轴的点的特征)4.直角坐标系的实际应用5.平移的坐标特征第七章《三角形》1.三角形的概念2.三角形的分类3.三角形的三边关系4.三角形的“三线”(高线、中线、角平分线)5.三角形的稳定性6.三角形的内角和定理7.三角形的外角8.三角形的外角性质定理9.多边形及其相关概念(多边形、对角线、正多边形)10.多边形的内角和定理11.多边形的外角和定理第八章《二元一次方程组》1.二元一次方程的概念2.二元一次方程(组)的解3.解二元一次方程(代入消元法、加减消元法)4.二元一次方程的应用5.三元一次方程组的概念6.三元一次方程组的解法第九章《不等式与不等式组》1.不等式的概念2.不等式的解3.解集4.一元一次不等式的概念5.不等式的性质6.一元一次不等式的解法7.一元一次不等式的应用8.一元一次不等式组的概念9.一元一次不等式组的解法第十章《数据的收集、整理与描述》1.收集数据(问卷)2.整理数据(表格)3.描述数据(条形统计图、扇形统计图)4.抽样调查的概念5.总体、个体、样本、样本容量6.简单随机抽样的概念7.直方图及其相关概念(直方图、组距、频数)8.画直方图的步骤八年级上册第十一章《全等三角形》1.全等形的概念2.全等三角形的相关概念(全等三角形、对应顶点、对应边、对应角)3.全等三角形的性质4.全等三角形的判定5.角平分线的性质6.角平分线的判定第十二章《轴对称》1.轴对称图形的概念2.关于直线对称的相关概念3.轴对称的性质4.线段垂直平分线的性质5.线段垂直平分线的判定6.作轴对称图形7.关于坐标轴对称点的特征8.等腰三角形的概念9.等腰三角形的性质10.等腰三角形的判定11.等边三角形的概念12.等边三角形的判定13.等边三角形的性质第十三章《实数》1.算术平方根的概念2.平方根的概念3.平方根的性质4.立方根的概念5.立方根的性质6.实数的概念7.实数的分类8.实数的相反数、绝对值9.实数与数轴的关系第十四章《一次函数》1.变量与常量2.函数与自变量3.函数的图像4.正比例函数的解析式5.正比例函数的图象及其性质6.一次函数的解析式7.一次函数的图象及其性质8.一次函数与一元一次方程的关系9.一次函数与一元一次不等式关系10.一次函数与二元一次方程组的关系第十五章《整式的乘除与因式分解》1.同底数的幂的乘法公式2.幂的乘方公式3.积的乘方公式整式的乘法法则4.单项式与多项式相乘的乘法法则5.多项式相乘的乘法法则6.平方差公式7.完全平方公式8.添括号法则9.同底数幂的除法法则10.单项式除单项式的法则11.多项式除以单项式法则12.因式分解的概念13.因式分解的方法(提取公因式法、公式法)八年级下册第十六章《分式》1.分式的概念2.分式的基本性质3.约分与通分4.最简分式5.分式乘除的法则6.分式加减的法则7.整数指数幂的运算性质8.分式方程的概念9.分式方程的解法10.分式方程的应用第十七章《反比例函数》1.反比例函数的概念2.反比例函数的图象及其性质3.反比例函数的应用第十八章《勾股定理》1.勾股定理2.勾股定理的逆定理第十九章《四边形》2.平行四边形的性质3.平行四边形的判定4.两条平行直线之间的距离5.矩形的概念6.矩形的判定7.矩形的性质8.菱形的概念9.菱形的性质10.菱形的判定11.正方形的概念12.正方形的性质与判定13.梯形概念14.梯形的分类15.等腰梯形的性质16.等腰绞刑的判定第二十章《数据的分析》1.平均数与加权平均数2.中位数3.众数4.方差九年级上册第二十一章《二次根式》1.二次根式的概念2.二次根式的两个重要公式3.代数式的概念4.二次根式的乘法法则5.二次根式的除法法则6.最简二次根式7.二次根式的加减法法则第二十二章《一元二次方程》2.一元二次方程的根3.一元二次方程的解法(直接开方法、配方法、求根公式法、因式分解法)4.根的判别式5.一元二次方程根与系数的关系6.一元二次方程的应用(面积问题、连续增长问题)第二十三章《旋转》1.旋转的相关概念(旋转、旋转中心、旋转角)2.旋转的性质3.中心对称的相关概念(中心对称、对称中心、对称点)4.中心对称的性质5.中心对称图形的概念6.关于原点对称的点的坐标的特征第二十四章《圆》1.圆的相关概念(圆的两种定义、圆心、半径、弦、直径、圆弧、优弧、劣弧、半圆、等圆、等弧)2.垂径定理及其推论3.弧、弦、圆心角、弦心距之间的关系定理4.圆周角的概念5.圆周角定理及其推论6.圆内接多边形的概念7.圆内接四边形的性质8.点与圆的位置关系9.三点确定一个圆10.三角形的外接圆及外心11.直线与圆的位置关系及其相关概念12.切线的性质及判定定理13.切线长定理14.圆与圆的位置关系及其相关概念15.正多边形与圆的相关概念(正三角形与圆、正方形与圆、正六边形与圆)16.弧长公式及扇形面积公式17.圆锥及圆柱的侧面积及表面积第二十五章《概率》1.随机事件、不可能事件、必然事件的概念2.随机事件的性质3.概率的概念4.概率的计算公式5.用列表法、树形图计算概率6.频率与概率的关系高中数学目录此文为人教必修版新教材高中数学目录必修一第一章1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法第二章2.1函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.1.5用计算机作函数图像(选学)2.2一次函数和二次函数2.2.1一次函数的性质与图像2.2.2二次函数的性质与图像2.3函数的应用(1)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法----二分法第三章基本初等函数(1)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(2)必修二第一章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱棱锥棱台的结构特征1.1.3圆柱圆锥圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱棱锥棱台和球的表面积1.1.7柱锥台和球的体积1.2点线面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系1.2.3空间中的垂直关系第二章平面解析几何初步2.1平面直角坐标系中的基本公式2.1.1数轴上的基本公式2.1.2平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的集中形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系2.4.1空间直角坐标系2.4.2空间两点距离公式必修三第一章算法初步1.1算法与程序框图1.1.1算法的概念1.1.2程序框图1.1.3算法的三种基本逻辑结构和框图表示1.2基本算法语句1.2.1赋值输入输出语句1.2.2条件语句1.2.3循环语句1.3中国古代数学中的算法案例第二章统计2.1随机抽样2.1.1简单的随机抽样2.1.2系统抽样2.1.3分层抽样2.1.4数据的收集2.2用样本估计总体2.2.1用样本的频率分布估计总体的分布2.2.2用样本的数字特征估计总体的数字特征2.3变量的相关性2.3.1变量间的相互关系2.3.2两个变量的线性相关第三章概率3.1事件与概率3.1.1随机现象3.1.2事件与基本事件空间3.1.3频率与概率3.1.4概率的加法公式3.2古典概型3.2.1古典概型3.2.2概率的一般加法公式(选学)3.3随机数的含义与应用3.3.1几何概型3.3.2随机数的含义与应用3.4概率的应用必修四第一章基本的初等函数(2)1.1任意角的概念与弧度制1.1.1角的概念的推广1.1.2弧度制和弧度制与角度制的换算1.2任意角的三角函数1.2.1三角函数的定义1.2.2单位圆与三角函数线1.2.3同角三角函数的基本关系式1.2.4诱导公式1.3三角函数的图像与性质1.3.1正弦函数的图像与性质1.3.2余弦函数正切函数的图像与性质1.3.3已知三角函数值求角第二章平面向量2.1向量的线性运算2.1.1向量的概念2.1.2向量的加法2.1.3向量的减法2.1.4数乘向量2.1.5向量共线的条件和轴上向量坐标运算2.2向量的分解和向量的坐标运算2.2.1平面向量基本定理2.2.2向量的正交分解与向量的直角坐标运算2.2.3用平面向量坐标表示向量共线条件2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律2.3.3向量数量积的坐标运算与度量公式2.4向量的应用2.4.1向量在几何中的应用2.4.2向量在物理中的应用第三章三角恒等变换3.1和角公式3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2倍角公式和半角公式3.2.1倍角公式3.2.2半角的正弦余弦和正切3.3三角函数的积化和差与和差化积必修五第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理1.1.2余弦定理1.2应用举例第二章数列2.1数列2.1.1数列2.1.2数列的递推公式(选学)2.2等差数列2.2.1等差数列2.2.2等差数列的前n项和2.3等比数列2.3.1等比数列2.3.2等比数列的前n项和第三章不等式3.1不等关系与不等式3.1.1不等关系与不等式3.1.2不等式性质3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单的线性规划问题3.5.1二元一次不等式(组)所表示的平面区域3.5.2简单线性规划选修2-1第一章常用逻辑用语1.1命题与量词1.1.1命题1.1.2量词1.2基本逻辑联结词1.2.1且与或1.2.2非(否定)1.3充分条件必要条件与命题的四种形式1.3.1推出与充分条件必要条件1.3.2命题的四种形式第二章圆锥曲线方程2.1曲线方程2.1.1曲线与方程的概念2.1.2由曲线求它的方程由方程研究曲线性质2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的集几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第三章空间向量与几何体3.1空间向量及其运算3.1.1空间向量的线性运算3.1.2空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2空间向量在立体几何中的应用3.2.1直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离(选学)选修2-2第一章导数及其应用1.1导数1.1.1函数的平均变化率1.1.2瞬时速度与导数1.1.3导数的几何1.2导数的运算1.2.1常数函数与幂函数的导数1.2.2导数公式表及数学软件的应用1.2.3导数的四则运算法则1.3导数的应用1.3.1利用导数判断函数的单调性1.3.2利用导数研究函数的极值1.3.3导数的实际应用1.4定积分与微积分的基本定理1.4.1曲边梯形面积与定积分1.4.2微积分基本定理第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法2.3数学归纳法2.3.1数学归纳法2.3.2数学归纳法应用举例第三章数系的扩充与复数3.1数系的扩充与复数的概念3.1.1实数系3.1.2复数的概念3.1.3复数的几何意义3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法3.2.3复数的除法选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与实践的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布第三章统计案例3.1独立性检验3.2回归分析选修4-4第一章坐标系1.1直角坐标系平面上的伸缩变换1.1.1直角坐标系1.1.2平面上的伸缩变换1.2极坐标系1.2.1平面上点的极坐标1.2.2极坐标与直角坐标的关系1.3曲线的极坐标方程1.4圆的极坐标方程1.4.1圆心在极轴上且过极点的圆1.4.2圆心在点(a,∏/2)处且过极点的圆1.5柱坐标系和球坐标系1.5.1柱坐标系1.5.2球坐标系第二章参数方程2.1曲线的参数方程2.1.1抛射体的运动2.1.2曲线的参数方程2.2直线与圆的参数方程2.2.1直线的参数方程2.2.2圆的参数方程2.3圆锥曲线的参数方程2.3.1椭圆的参数方程2.3.2双曲线的参数方程2.3.3抛物线的参数方程2.4一些常见曲线的参数方程2.4.1摆线的参数方程2.4.2圆的渐开线的参数方程。

结构力学课后答案第10章结构动力学

结构力学课后答案第10章结构动力学
对于CD杆件,相当于在中点作用一集中力
10-34试说明用振型分解法求解多自由度体系动力响应的基本思想,这一方法是利用了振动体系的何种特性
10-35试用振型分解法计算题10-32。
解:
刚度矩阵 质量矩阵
其中
由刚度矩阵和质量矩阵可得:
则 应满足方程
其稳态响应为:
同理:
显然最大位移
10-36试用振型分解法计算题10-31结构作有阻尼强迫振动时,质量处的最大位移响应。已知阻尼比ξ1=ξ2=。
得振型方程:
)
,令
,由频率方程D=0
解得: ,

(c)
解:
图 图
(1) , ,
(2)振型方程

令 ,频率方程为:
(3)当 时,设
当 时,设
绘出振型图如下:
第一振型 第二振型
(d)
解:
#
图 图
频率方程为:
取 代入整理得:
其中
~
振型方程为:
将 代入(a)式中的第一个方程中,得:
绘出振型图如下:
第一振型 第二振型
\
解:
若 为静力荷载,弹簧中反力为 。
已知图示体系为静定结构,具有一个自由度。设为B点处顺时针方向转角 为坐标。建立动力方程:
则弹簧支座的最大动反力为 。
10-21设图a所示排架在横梁处受图b所示水平脉冲荷载作用,试求各柱所受的最大动剪力。已知EI=6×106Nm2,t1=,FP0=8×104N。
(a)
设 ,

使 ,则
(2)

如果使速度响应最大,则 最大,设 ,显然要求 最小。使: 得 。
(3)
令 显然要求 最小。
则 解的:

结构力学课后答案第10章结构动力学

结构力学课后答案第10章结构动力学
题10-39图题10-40图
10-40用有限单元法计算图示具有分布质量刚架的第一和第二自振频率及其相应的主振型。已知弹性模量E=2500kN/cm2,材料密度 =0.0025kg/cm3;柱子的横截面面积A1=100cm2,惯性矩I1=833.33cm4;梁的横截面面积A2=150cm2,惯性矩I2=2812.50cm4。
解:
若 为静力荷载,弹簧中反力为 。
已知图示体系为静定结构,具有一个自由度。设为B点处顺时针方向转角 为坐标。建立动力方程:
则弹簧支座的最大动反力为 。
10-21设图a所示排架在横梁处受图b所示水平脉冲荷载作用,试求各柱所受的最大动剪力。已知EI=6×106N·m2,t1=0.1s,FP0=8×104N。
则同样有: 。
10-9图示结构AD和DF杆具有无限刚性和均布质量 ,A处转动弹簧铰的刚度系数为kθ,C、E处弹簧的刚度系数为k,B处阻尼器的阻尼系数为c,试建立体系自由振动时的运动方程。
解:
取DF隔离体, :
取AE隔离体:
将R代入,整理得:
10-10试建立图示各体系的运动方程。
(a)
解:(1)以支座B处转角作为坐标,绘出梁的位移和受力图如下所示。图中惯性力为三角形分布,方向与运动方向相反。
解:
图 图
(1)求结构运动方程
如所示弯矩图,图乘后,
其中 ,稳态解:
所示结构的运动方程为 ,C点最大动位移幅值为
(2)求B点的动位移反应

B点的动位移幅值为
(3)绘制最大动力弯矩图
图 图
最大动力弯矩图
10-20试求图示集中质量体系在均布简谐荷载作用下弹簧支座的最大动反力。设杆件为无限刚性,弹簧的刚度系数为k。
解:

整数乘除法运算法则

整数乘除法运算法则

整数乘除法运算法则是什么先乘除,后加减,有括号的先算括号里的积/一个因数=另一个因数被除数/除数=商被除数/商=除数除数*商=被除数整数加、减计算法则:1)要把相同数位对齐,再把相同计数单位上的数相加或相减;2)哪一位满十就向前一位进。

2、小数加、减法的计算法则:1)计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),2)再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。

(得数的小数部分末尾有0,一般要把0去掉。

)3、分数加、减计算法则:1)分母相同时,只把分子相加、减,分母不变;2)分母不相同时,要先通分成同分母分数再相加、减。

4、整数乘法法则:1)从右起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对个因数的哪一位对齐;2)然后把几次乘得的数加起来。

(整数末尾有0的乘法:可以先把0前面的数相乘,然后看各因数的末尾一共有几个0,就在乘得的数的末尾添写几个0。

)5、小数乘法法则:1)按整数乘法的法则算出积;2)再看因数中一共有几位小数,就从得数的右边起数出几位,点上小数点。

3)得数的小数部分末尾有0,一般要把0去掉。

6、分数乘法法则:把各个分数的分子乘起来作为分子,各个分数的分母相乘起来作为分母,(即乘上这个分数的倒数),然后再约分。

7、整数的除法法则1)从被除数的商位起,先看除数有几位,再用除数试除被除数的前几位,如果它比除数小,再试除多一位数;2)除到被除数的哪一位,就在那一位上面写上商;3)每次除后余下的数必须比除数小。

8、除数是整数的小数除法法则:1)按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;2)如果除到被除数的末尾仍有余数,就在余数后面补零,再继续除。

9、除数是小数的小数除法法则:1)先看除数中有几位小数,就把被除数的小数点向右移动几位,数位不够的用零补足;2)然后按照除数是整数的小数除法来除10、分数的除法法则:1)用被除数的分子与除数的分母相乘作为分子;2)用被除数的分母与除数的分子相乘作为分母。

2023年数学初升高衔接课(八中云校) - 前六天定稿.pdf

2023年暑假数学初升高衔接课教学安排日期教学计划作业练才是硬道理(一)7月3日第一课:“缘”在高中一路同“学”第二课:多项式的乘法7月4日第三课:耐克函数与耐克兄弟练才是硬道理(二)第四课:基本不等式初步练才是硬道理(三)7月5日第五课:因式分解的多种方法(一)第六课:因式分解的多种方法(二)7月6日第七课:根式与分式(一)练才是硬道理(四)第八课:根式与分式(二)7月7日第九课:一元二次方程练才是硬道理(五)第十课:二元二次方程7月8日第十一课:分式方程练才是硬道理(六)第十二课:无理方程7月9日休息休息练才是硬道理(七)7月10日第十三课:解不等式(一)第十四课:解不等式(二)练才是硬道理(八)7月11日第十五课:二次函数的图象及性质第十六课:二次函数的应用练才是硬道理(九)7月12日第十七课:平行线分线段成比例定理与射影定理第十八课:角平分线性质定理与面积法练才是硬道理(十)7月13日第十九课:三角形的“四心”第二十课:圆幂定理练才是硬道理(十一)7月14日第二十一课:集合的概念第二十二课:集合间的基本关系7月15日第二十三课:集合的基本运算(一)练才是硬道理(十二)第二十四课:集合的基本运算(二)学生姓名:第三部分——怎么能学好数学(1)初高中差异性(2)学不好的原因:1.用背诵的方法“学”数学——只看不做2.听懂了≠学会了≠做对了——只做不思3.忽略历史遗留问题——明日复明日4.“抄”笔记、“抄”错题——外表的美丽5.没有接纳数学的自信——兴趣是最好的老师(3)成功的学习路径:一看、二听、三记、四练、五思、六忆。

(4)微信交流高中数学学习方法:结束语希望我们再今后的日子里……数学告诉你,每天努力多一点,人生将大不同时时坚持事事落实笑到最后(1)分类是自然科学乃至社会科学研究中的基本逻辑方法。

(2)从具体出发,选取适当的分类标准。

(3)划分只是手段,分类研究才是目的。

(4)有分有合,先分后合,是分类整合思想的本质属性。

乘法的结合律和简便算法

乘法的结合律和简便算法(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如工作计划、工作总结、演讲稿、合同范本、心得体会、条据文书、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical sample essays for everyone, such as work plans, work summaries, speech drafts, contract templates, personal experiences, policy documents, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!乘法的结合律和简便算法乘法的结合律和简便算法(通用3篇)乘法的结合律和简便算法篇1教学目标1.使学生理解并掌握乘法结合律.2.应用乘法交换律和结合律进行简算.教学重点理解乘法的结合律的意义及运用.教学难点乘法结合律的运用.教学步骤一、复习准备,引入问题情境1.口算题.(卡片)2X5 50X2、25X4、8X125 125X80 40X25通过刚才的口算题,你们很快算出结果,那你们想不想知道在乘法运算中有哪三对好朋友呢?教师板书:5X2、25X4、125X8请同学们要牢记这三对好朋友,一会儿它要给我们很大的帮助.2.生比赛看谁算得快(直接写得数)25X42X4、69X125X8 4X39X25比赛结果都是老师算得快.二、探究新知1.导入:刚才老师所以算得快,是因为老师运用了乘法的一个定律,它可以使连乘的计算题变得非常简便易算.你们想知道吗?这节课我们就共同研究乘法结合律.(板书课题:乘法结合律)2.教学例3、(1)出示例3、演示课件“乘法结合律”出示例3、下载(2)引导学生:先分组试算,再从上面的例子中寻找规律?(3)使学生明确:左边三个数相乘的积和右边三个数相乘的积相等.(4)同座互相试算,自己写数,看一看结果是否都是这样?(5)反馈练习:完成下面几组算式并观察下面每组的两个算式,你发现了什么规律?(15X(4)X10○15X(4X(10) (7X(8)X5○7X(8X(5)(125X80)X5○125X(80X(5)(12X2(5)X4○12X(4X2(5)(6)引导学生总结规律:三个数相乘,先把前两个数相乘,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,它们的积不变.教师提问:如果用字母a、b、c分别表示这三个数,那么乘法结合律该怎样表示呢?启发学生:(aXb)Xc=aX(bXc) (教师板书)教师说明:a、b、c表示的是大于0或等于0的整数.((7)练习:教材第61页上面的“做一做”(学生填书)订正并说明根据.根据运算定律,在下面的□里填上适当的数.30X6X7=30X(□X□) 125X(8X40)=(□X□)X□3.教学例4、我们知道应用加法的交换律、结合律可使一些计算简便.同样我们应用乘法交换律和结合律也可以进行简便运算.(板书:简便算法) 出示例 4、计算 43X25X4演示课件“乘法结合律”出示例4、下载(1)学生讨论交流:怎样计算比较简便?(2)指名板演,讲述计算方法.4.教学例5:出示例5.计算25X43X4演示课件“乘法结合律”出示例5 下载(1)同桌讨论:这道题怎样计算比较简便?(2)指名板演,集体订正.(3)学生总结:由25X43X4到43X25X4这一步,根据乘法交换律.由43X25X4到43X(25X(4)的根据是乘法结合律.5.比较例4和例5:观察比较例4和例5.(1)学生讨论:例4和例5在应用运算定律方面有什么不同?(2)引导学生明确:计算例4时,没有调换因数的位置,只应用了乘法的结合律,使计算简便;例5应用了交换律调换了因数的位置,然后再应用乘法结合律,计算简便.6.启发学生回忆:过去学过的哪些知识应用了乘法的结合律?7.练习:教材第61页下方的“做一做”.(学生口述解答)应用乘法交换律和结合律,进行简便计算.27X4X5 8X(7X2(5)12X25教师小结:以上我们学的是应用定律如何进行简算,也就是在几个数相乘的条件下,如果其中有两个数相乘得整十、整百……的数,就可应用乘法交换律和结合律,使计算比较简便.三、巩固发展1.填空:演示课件“乘法结合律”出示练习下载(1)乘法结合律用字母公式表示是().(2)教科书第62页第3题.下面哪些等式应用了乘法结合律?4X(15X(3)=(4X15)X3(3X(4)X5X6=3X(4X(5)X66X(3Xa)=6X(aX(3)2.练习第十三4题.用简便方法计算下面各题,说一说各应用了什么运算定律?492X5X2、8X(25X15) 25X17X4X213X50X4、25X166X4、8X5X125X403.练习十三第5题,投影出示.(口答)下面哪些算式运用了运算定律?为什么?4X5=2X10 aXbXc=aXcXb a+b=b+a1X2+3=1X3+2、a+b+c=b+a+c 1+2X3=1+3X24.练习十四第6题,分组讨论.下面哪些算式运用了运算定律?为什么?1+4+6+9=(1+(9)+(4+(6)4X6X25=6X(4X2(5)54+28+46=(54+4(6)+285.练习十四第8题,投影出示.学生独立填写,订正时说一说是怎样想的填写下表,并把每组的数跟第一组的比较,说出因数有什么变化,积有什么变化.a40804020408080b5050100502510025aXb四、全课小结这节课通过同学们的观察与思考,自己发现并总结出了乘法结合律,又根据乘法结合律对许多题目进行了简算.今后同学们做题时,要仔细观察题目特点,更准确更巧妙地把题目计算出来.五、布置作业练习十三第7、9题.7题.下面各题,怎样算简便就怎样算50X26X4、212+27+373、167+32+33、125X50X80623-199 324+298 40X24X25 35X4X25X209题.在运动会开幕式上进行大型团体操表演.一共有8个方阵,每个方阵有15行,每行有15个人.一共有多少人参加表演?板书设计乘法的结合律和简便算法篇2教学内容:教科书例3、例4、例5及“做一做”,练习十三第3—9题。

苏科版物理八年级上册听课笔记(完整版)

苏科版物理八年级上册听课笔记(完整版)听课笔记--物理八年级上册(苏科版)第一课:物质的组成和运动1. 物质的三态:固态、液态、气态2. 分子是物质的最小组成部分3. 分子的热运动:分子在不停地做无规则的热运动4. 固体的特性:形状不变、体积不变5. 液体的特性:形状可变、体积不变6. 气体的特性:形状可变、体积可变7. 小结:物质的组成和运动是物理学研究的基础,不同态的物质具有不同的特性。

第二课:测量1. 物理量:具有大小和单位的量2. 常用的物理量:长度、质量、时间3. 常用的单位:米(m)、千克(kg)、秒(s)4. 量纲:物理量的种类5. 量纲式:用基本物理量表示物理量的公式6. 计算物理量时要注意单位的转换7. 小结:测量是科学实验的基础,正确的测量方法和单位的使用是科学研究的基础。

第三课:力的作用和效果1. 力的两个基本特征:大小和方向2. 力的单位和测量方法:牛顿(N)3. 力的效果:改变物体的形状、改变物体的运动状态4. 力的平衡和不平衡:合力为零时物体处于平衡状态5. 力对物体的压力:压力=力/面积6. 合力对物体的形状和运动的影响:压缩、伸长、弯曲、拉力、压力、摩擦力等7. 小结:力是物体发生运动或产生形变的原因,力的效果取决于力的大小和方向。

第四课:运动的描述1. 位置的变化:用参照物和方向表示物体的位置2. 位移和距离:位移是从初始位置到结束位置的直线距离,距离是路径的长度3. 速度和速率:速度=位移/时间,速率=距离/时间4. 平均速度和瞬时速度:平均速度=总位移/总时间,瞬时速度是某一时刻的速度5. 负加速度表示减速6. 小结:运动是物体的位置随时间变化的过程,可以通过位移、距离、速度和加速度来描述运动。

第五课:力的效果:物体做功1. 功:力沿着物体的移动方向所做的功2. 功的计算公式:功=力×位移×cosθ3. 功的单位:焦耳(J)4. 不同方向的力对功的影响:力和位移在同一方向时做正功,力和位移在垂直方向时不做功,力和位移在反方向时做负功5. 功率:功率=功/时间6. 计算功率时要注意单位的转换7. 小结:力对物体做功,功值取决于力的大小、位移的大小以及力和位移的夹角。

初中数学章节目录

人教版初中数学章节目录七年级上册第一章有理数1.1正数和负数1.2有理数1.3有理数的加减法1.4有理数的乘除法1.5有理数的乘方第二章整式的加减2.1整式 2.2整式的加减第三章一元一次方程3.1从算式到方程3.2解一元一次方程(一)合并同类项与移项3.3解一元一次方程(二)—去括号与去分母3.4实际问题与一元一次方程第四章图形认识初步4.1多姿多彩的图形4.2直线、射线、线段 4.3角4.4课题学习设计制作长方体形的包装盒七年级下册第五章相交线与平行线5.1相交线5.2平行线5.3平行线的性质5.4平移第六章平面直角坐标系6.1平面直角坐标系6.2坐标方法的简单应用第七章三角形7.1与三角形有关的线段7.2与三角形有关的角7.3多边形及其内角和7.4课题学习镶嵌第八章二元一次方程组8.1二元一次方程组8.2消元8.3再探实际问题与二元一次方程组第九章不等式与不等式组9.1不等式9.2实际问题与一元一次不等式9.3一元一次不等式组9.4课题学习利用不等关系分析比赛(1)第十章数据的收集整理与描述10.1几种常见的统计图表10.2用图表描述数据10.3课题学习从数据谈节水八年级上册第十一章全等三角形11.1全等三角形11.2三角形全等的条件11.3角的平分线的性质第十二章轴对称12.1轴对称12.2轴对称变换12.3等腰三角形第十三章实数13.1平方根13.2立方根13.3实数第十四章一次函数14.1变量与函数14.2一次函数14.3用函数观点看方程(组)与不等式第十五章整式的乘除与因式分解15.1整式的乘法15.2乘法公式15.3整式的除法15.4因式分解八年级下册第十六章分式16.1分式16.1分式的运算16.1分式方程第十七章反比例函数17.1反比例函数17.1实际问题与反比例函数第十八章勾股定理18.1勾股定理18.2勾股定理的逆定理第十九章四边形19.1平行四边形19.2特殊的平行四边形19.3梯形19.4课题学习:重心第二十章数据的分析20.1数据的代表20.2数据的波动20.3课题学习体质健康测试中的数据分析九年级上册第二十一章二次根式21.1二次根式21.2二次根式乘除21.3 二次根式的加减第二十二章一元二次方程22.1一元二次方程22.2降次──解一元二次方程22.3实际问题与一元二次方程第二十三章旋转23.1图形的旋转23.2中心对称23.3课题学习图案设计第二十四章圆24.1圆24.2与圆有关的位置关系24.3正多边形和圆24.4弧长和扇形面积第二十五章概率初步25.1概率25.2用列举法求概率25.3利用频率估计概率25.4课题学习键盘上字母的排列规律九年级下册第二十六章二次函数26.1二次函数26.2用函数观点看一元二次方程26.3实际问题与二次函数第二十四章相似27.1图形的相似27.2相似三角形27.3位似第二十八章锐角三角函数28.1锐角三角函数28.2解直角三角形第二十九章投影与视图29.1投影29.2三视图29.3课题学习制作立体模型各章节详细知识点七年级上册第一章《有理数》1.正数与负数的概念2.正数与负数的实际意义3.有理数的概念4.数轴的概念5.相反数的概念6.绝对值的概念7.有理数的大小比较8.有理数的加法法则9.有理数的减法法则10.有理数的乘法法则11.有理数的运算律12.有理数的除法法则13.有理数的混合运算法则14.有理数乘方相关概念(乘方、幂、底数、指数)15.有理数的乘方法则16.科学记数法17.近似数(有效数字)第二章《整式的加减》1.单项式及其相关概念(单项式、系数、次数)2.多项式及其相关概念(多项式、项、常数项、次数)3.整式4.同类项的概念5.合并同类项的法则6.去括号法则7.整式加减的运算法则第三章《一元一次方程》1.方程的概念2.一元一次方程的概念3.方程的解4.等式的性质5.一元一次方程的解法(步骤)6.一元一次方程的应用问题(和差倍分问题、数字问题、行程问题、工程问题、劳动力调配问题、增长率问题、商品利润问题)第四章《图形的初步认识》1.几何图形的概念2.立体图形的概念3.平面图形的概念4.立体图形的三视图5.立体图形的展开图6.点、线、面、体的概念7.直线的相关概念(直线、相交线、交点)8.两点确定一条直线9.点与直线的位置关系10.线段的中点11.两点之间线段最短12.两点之间的距离13.角及其相关概念14.角平分线15.余角的概念16.补角的概念17.余角(补角)的性质七年级下册第五章《相交线与平行线》1.相交线的相关概念(邻补角、对顶角)2.对顶角的性质3.垂线的相关概念(垂直、垂线、垂足)4.过一点画垂线5.垂线段最短6.点到直线的距离7.“三线八角”的相关概念8.平行的概念9.平行公理10.平行线的判定11.平行线的性质12.命题及其相关概念(命题、真命题、假命题)13.定理的概念14.平移的概念15.平移的性质第六章《平面直角坐标系》1.有序实数对的概念2.平面直角坐标系及其相关概念(平面直角坐标系、横轴、纵轴、原点、坐标、象限)3.特殊点坐标(象限符号、坐标轴上点的特征、坐标轴角平分线上点的特征、对称点坐标特征、平行于坐标轴的点的特征)4.直角坐标系的实际应用5.平移的坐标特征第七章《三角形》1.三角形的概念2.三角形的分类3.三角形的三边关系4.三角形的“三线”(高线、中线、角平分线)5.三角形的稳定性6.三角形的内角和定理7.三角形的外角8.三角形的外角性质定理9.多边形及其相关概念(多边形、对角线、正多边形)10.多边形的内角和定理11.多边形的外角和定理第八章《二元一次方程组》1.二元一次方程的概念2.二元一次方程(组)的解3.解二元一次方程(代入消元法、加减消元法)4.二元一次方程的应用5.三元一次方程组的概念6.三元一次方程组的解法第九章《不等式与不等式组》1.不等式的概念2.不等式的解3.解集4.一元一次不等式的概念5.不等式的性质6.一元一次不等式的解法7.一元一次不等式的应用8.一元一次不等式组的概念9.一元一次不等式组的解法第十章《数据的收集、整理与描述》1.收集数据(问卷)2.整理数据(表格)3.描述数据(条形统计图、扇形统计图)4.抽样调查的概念5.总体、个体、样本、样本容量6.简单随机抽样的概念7.直方图及其相关概念(直方图、组距、频数)8.画直方图的步骤八年级上册第十一章《全等三角形》1.全等形的概念2.全等三角形的相关概念(全等三角形、对应顶点、对应边、对应角)3.全等三角形的性质4.全等三角形的判定5.角平分线的性质6.角平分线的判定第十二章《轴对称》1.轴对称图形的概念2.关于直线对称的相关概念3.轴对称的性质4.线段垂直平分线的性质5.线段垂直平分线的判定6.作轴对称图形7.关于坐标轴对称点的特征8.等腰三角形的概念9.等腰三角形的性质10.等腰三角形的判定11.等边三角形的概念12.等边三角形的判定13.等边三角形的性质第十三章《实数》1.算术平方根的概念2.平方根的概念3.平方根的性质4.立方根的概念5.立方根的性质6.实数的概念7.实数的分类8.实数的相反数、绝对值9.实数与数轴的关系第十四章《一次函数》1.变量与常量2.函数与自变量3.函数的图像4.正比例函数的解析式5.正比例函数的图象及其性质6.一次函数的解析式7.一次函数的图象及其性质8.一次函数与一元一次方程的关系9.一次函数与一元一次不等式关系10.一次函数与二元一次方程组的关系第十五章《整式的乘除与因式分解》1.同底数的幂的乘法公式2.幂的乘方公式3.积的乘方公式整式的乘法法则4.单项式与多项式相乘的乘法法则5.多项式相乘的乘法法则6.平方差公式7.完全平方公式8.添括号法则9.同底数幂的除法法则10.单项式除单项式的法则第3 页共5 页11.多项式除以单项式法则12.因式分解的概念13.因式分解的方法(提取公因式法、公式法)八年级下册第十六章《分式》1.分式的概念2.分式的基本性质3.约分与通分4.最简分式5.分式乘除的法则6.分式加减的法则7.整数指数幂的运算性质8.分式方程的概念9.分式方程的解法10.分式方程的应用第十七章《反比例函数》1.反比例函数的概念2.反比例函数的图象及其性质3.反比例函数的应用第十八章《勾股定理》1.勾股定理2.勾股定理的逆定理第十九章《四边形》1.平行四边形的概念2.平行四边形的性质3.平行四边形的判定4.两条平行直线之间的距离5.矩形的概念6.矩形的判定7.矩形的性质8.菱形的概念9.菱形的性质10.菱形的判定11.正方形的概念12.正方形的性质与判定13.梯形概念14.梯形的分类15.等腰梯形的性质16.等腰绞刑的判定第二十章《数据的分析》1.平均数与加权平均数2.中位数3.众数4.方差九年级上册第二十一章《二次根式》1.二次根式的概念2.二次根式的两个重要公式3.代数式的概念4.二次根式的乘法法则5.二次根式的除法法则6.最简二次根式7.二次根式的加减法法则第二十二章《一元二次方程》1.一元二次方程的概念2.一元二次方程的根3.一元二次方程的解法(直接开方法、配方法、求根公式法、因式分解法)4.根的判别式5.一元二次方程根与系数的关系6.一元二次方程的应用(面积问题、连续增长问题)第二十三章《旋转》1.旋转的相关概念(旋转、旋转中心、旋转角)2.旋转的性质3.中心对称的相关概念(中心对称、对称中心、对称点)4.中心对称的性质5.中心对称图形的概念6.关于原点对称的点的坐标的特征第二十四章《圆》1.圆的相关概念(圆的两种定义、圆心、半径、弦、直径、圆弧、优弧、劣弧、半圆、等圆、等弧)2.垂径定理及其推论3.弧、弦、圆心角、弦心距之间的关系定理4.圆周角的概念5.圆周角定理及其推论6.圆内接多边形的概念7.圆内接四边形的性质8.点与圆的位置关系9.三点确定一个圆10.三角形的外接圆及外心11.直线与圆的位置关系及其相关概念12.切线的性质及判定定理13.切线长定理14.圆与圆的位置关系及其相关概念15.正多边形与圆的相关概念(正三角形与圆、正方形与圆、正六边形与圆)16.弧长公式及扇形面积公式17.圆锥及圆柱的侧面积及表面积第二十五章《概率》1.随机事件、不可能事件、必然事件的概念2.随机事件的性质3.概率的概念4.概率的计算公式5.用列表法、树形图计算概率6.频率与概率的关系第5 页共5 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乘法公式
教学目标:
1.掌握平方差公式的推导及应用.
2. 理解并掌握完全平方公式的推导过程。

3. 灵活应用平方差公式、完全平方公式进行计算.
4. 体验归纳添括号法则.
教学重难点:
重点:1.掌握平方差公式的推导及应用。

2. 理解并掌握完全平方公式的推导过程。

3.体验归纳添括号法则.
难点:1.掌握平方差公式的推导及应用。

2. 理解并掌握完全平方公式的推导过程。

教学过程:
设疑导入:
某同学在计算97×103时将其变成(100–3)(100+3)并很快得出结果,你知道他运用了什么知识吗?这节课,我们就来一起探讨上述计算的规律.
探究新知:
一、平方差公式
活动一:
带领学生复习,多项式与多项式相乘的法则。

让学生动手计算下列多项式的积,观察计算结果的特点,发现其中的规律
①(x+1)( x–1);
②(m+2)( m–2);
③(2m+1)(2m–1);
④(5y+z)(5y–z).
师生共同总结归纳:
平方差公式:
(a+b)(a−b)= a2−b2
两数和与这两数差的积,等于这两个数的平方差.
公式变形:
1.(a – b ) ( a + b) = a2–b2
2.(b + a )( –b + a ) = a2–b2
提示:
1.公式中的a和b,既可以是具体的数,也可以是单项
式或者多项式;
2. 左边是两个二项式的积,并且有一项完全相同,另
一项互为相反数;
3. 右边是相同项的平方减去相反项的绝对值的平方。

活动二:
动手完成填一填,注意提示符号的变化。

口答做一做,要求快问快答。

通过以上基本训练之后,让学生完成例题。

例1 计算:(1) (3x+2 )( 3x–2 ) ;
(2)(–x+2y)(–x–2y).
注意提示:(1)当相同项带有“负号”时,展开之后必须用括号括起来。

二、完全平分公式
活动一:
探究:一块边长为a米的正方形实验田,因需要将其边长增加b 米.形成四块实验田,以种植不同的新品种(如图). 用不同的形式表示实验田的总面积,并进行比较.
让学生通过两种方式求试验田的总面积。

直接求:总面积=(a+b)(a+b)
间接求:总面积=a2+ab+ab+b2
问题1:你有什么发现?(无论哪种求法,总面积是一样的)(a+b)2=a2+2ab+b2
这个式子是不是一定成立的呢?我们用多项式的乘法法则来计算一下下列多项式的积:
(1)(p+1)2=(p+1)(p+1)=
(2)(2) (m+2)2=(m+2)(m+2)= .
(3)(3) (p–1)2=(p–1)(p–1)= .
(4)(4) (m–2)2=(m–2)(m–2)= .
根据计算结果,你发现了什么?
归纳总结,完全平分公式:
(a+b)2= a2+2ab+b2
(a –b )2= a 2–2ab +b 2
也就是说,两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.这两个公式叫做(乘法的)完全平方公式. 口诀:“首平方,尾平方,积的2倍放中央” 。

活动二:
观察下面两个完全平方式,比一比,回答下列问题:
(1) 说一说积的次数和项数.(积为二次三项式)
(2) 两个完全平方式的积有相同的项吗?与a ,b 有什么关系?(积中两项为两数的平方和)
(3) 两个完全平方式的积中不同的是哪一项?与a , b 有什么关系?它的符号与什么有关?
例2 运用完全平方公式计算:
(1)(4m +n )2 (2)
例3 已知x –y =6,xy =–8.
求:(1) x 2+y 2的值; (2)(x +y )2的值.
提示:本题要熟练掌握完全平方公式的变式:
x 2+y 2=(x –y )2+2xy =(x+y )2–2xy ,(x –y )2=(x+y )2–4xy .
三、添括号法则
让学生自己回顾去括号法则
a +(
b +
c ) = a +b +c ;
a – (
b +
c ) = a – b – c .
问题1:将下列式子添括号变形
212y ⎛⎫- ⎪⎝⎭
a+b+c= a–b–c=
让学生自由发言,老师总结:
添括号时,如果括号前面是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都改变符号(简记为“负变正不变”).
例4 运用乘法公式计算:
(1) (x+2y–3)(x–2y+3) ; (2) (a+b+c)2.
巩固提高:
1. 利用完全平方公式计算:
(1)(5–a)2;(2)(–3m–4n)2;
(3)(–3a+b)2.
2.填空
(1)已知x+y=10,xy=24,则x2+y2=_____.
(2)如果x2+kx+81是运用完全平方式得到的结果,
则k=______
(3)已知ab=2,(a+b)2=9,则(a–b)2的值为______.
课堂小结:
说一说平方差公式内容,运用它的时候要抓住什么特征?有哪些可能出现的形式?
说一说完全平方公式的内容,它有哪些地方需要注意。

注意完全平方公式有几种常见的变形
a2+b2=(a+b)2–2ab=(a–b)2+2ab; 4ab=(a+b)2–(a–b)2.
板书设计:
平方差公式:(a+b)(a−b)= a2−b2
完全平方公式:
(a+b)2= a2+2ab+b2
(a–b)2= a2–2ab+b2
完全平方公式变形:
a2+b2=(a+b)2–2ab=(a–b)2+2ab;
4ab=(a+b)2–(a–b)2.
添括号法则:
a+(b+c) = a+b+c;
a– (b+c) = a–b–c.
课后作业:
本章节课后习题
教学反思:。

相关文档
最新文档