实验三 线性系统的根轨迹

合集下载

自动控制原理第第四章 线性系统的根轨迹法

自动控制原理第第四章 线性系统的根轨迹法

2
自动控制原理
§4.1 根轨迹的基本概念
例:开环传递函数
Gs
k1
ss
a
开环系统两个极点为:P1 0, P2 a R(s)
闭环传递函数为:
GB s
s2
k1 as
k1
-
k1
C(s)
ss a
闭环特征方程: s2 as k1 0
闭环特征根:s1,2
a 2
a 2
2
k1
(闭环极点)
3
自动控制原理
在p5附近取一实验点sd, 则∠sd-p5可以认为是p5点的出射角 Sd Z Sd P1 Sd P2 Sd P3 Sd P4 Sd P5 1800
近似为 P5 Z P5 P1 P5 P2 P5 P3 P5 P4 p 1800
p Sd P5 1800
法则4 实轴上存在根轨迹的条件——
这些段右边开环零极点个数之和为奇
数。
m
n
证明:根据相角条件 S Z j S Pi 18002q 1
j 1
i 1
p4
j s平面
例:sd为实验点
p3
z2 sd
p2 z1 p1
p5
① 实验点sd右侧实 轴上零极点提供 1800相角
③ 共轭复零点,复极点提供的相角和为 3600。
2
s1=-1.172,s2=-6.828
33
自动控制原理
法则6 开环复数极点处根轨迹出射角为
p 1800
开环复数零点处根轨迹入射角为:
Z 1800
其中 z p(不包括本点)
34
自动控制原理
j p5
p5
p3 p3
p2

线性系统的根轨迹-自动控制原理实验报告

线性系统的根轨迹-自动控制原理实验报告

自动控制原理实验报告实验题目:线性系统的根轨迹班级:学号:姓名:指导老师:实验时间:一、实验目的1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。

2. 利用MATLAB 语句绘制系统的根轨迹。

3. 掌握用根轨迹分析系统性能的图解方法。

4. 掌握系统参数变化对特征根位置的影响。

二、实验内容同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围。

2.1绘制下面系统的根轨迹曲线)136)(22()(22++++=s s s s s Ks G程序:G=tf([1],[1 8 27 38 26 0]); rlocus (G); %绘制系统的根轨迹[k,r]=rlocfind(G) %确定临界稳定时的增益值k 和对应的极点r G_c=feedback(G,1); %形成单位负反馈闭环系统 step(G_c) %绘制闭环系统的阶跃响应曲线-12-10-8-6-4-20246-10-8-6-4-20246810Root LocusReal AxisI m a g i n a r y A x i s0204060801001201400.10.20.30.40.50.60.70.80.91Step ResponseTime (sec)A m p l i t u d e得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围:K>28.74252.2绘制下面系统的根轨迹曲线)10)(10012)(1()12()(2+++++=s s s s s K s G 程序:G=tf([1 12],[1 23 242 1220 1000]); rlocus (G); %绘制系统的根轨迹[k,r]=rlocfind(G) %确定临界稳定时的增益值k 和对应的极点r G_c=feedback(G,1); %形成单位负反馈闭环系统 step(G_c) %绘制闭环系统的阶跃响应曲线-60-50-40-30-20-100102030-50-40-30-20-1001020304050Root LocusReal AxisI m a g i n a r y A x i s01234560.0020.0040.0060.0080.010.012Step ResponseTime (sec)A m p l i t u d e得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围: K>1.1202e+032.3绘制下面系统的根轨迹曲线)11.0012.0)(10714.0()105.0()(2++++=s s s s s K s G 程序:G=tf([5 100],[0.08568 1.914 17.14 100 0]); rlocus (G); %绘制系统的根轨迹[k,r]=rlocfind(G) %确定临界稳定时的增益值k 和对应的极点r G_c=feedback(G,1); %形成单位负反馈闭环系统step(G_c) %绘制闭环系统的阶跃响应曲线-60-50-40-30-20-10010203040-60-40-200204060Root LocusReal AxisI m a g i n a r y A x i s012345670.10.20.30.40.50.60.70.80.91Step ResponseTime (sec)A m p l i t u d e得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围:K> 7.8321根据实验结果分析根轨迹的绘制规则:⑴绘制根轨迹的相角条件与系统开环根轨迹增益 值的大小无关。

线性系统的根轨迹法实验报告

线性系统的根轨迹法实验报告

线性系统的根轨迹法实验报告实验二线性系统的根轨迹法一,实验目的1,掌握matlab绘制根轨迹的方法。

2,观察k值变化对系统稳定性的影响。

3,掌握系统临界稳定情况下k值得求取。

4,了解增设零点对系统稳定的影响以及改善系统稳定性的方法。

二,实验原理根轨迹的概念:所谓根轨迹就是当开环系统某一参数从零变到无穷大时,闭环系统特征方程式的根在s平面上变化的轨迹。

根轨迹与系统性能:有了根轨迹就可以分析系统的各种性能了,稳定性的判定,当开环增益从零变到无穷大时,根轨迹不会越过虚轴进入s平面的右半平面,此时K的范围为系统稳定的范围,根轨迹与虚轴的交点处的K值,为系统的临界开环增益,开根轨迹进入s平面的右半平面时所对应的K值为系统不稳定的情况。

三,实验内容A、设单位负反馈系统的开环传递函数为G(s)=K/(s*(s+1)(s+5)) (1) 绘制系统的根轨迹,并将手工绘制结果与实验绘制结果比较; (2) 从实验结果上观察系统稳定的K 值范围;(3) 用simulink 环境观察系统临界稳定时的单位阶跃响应分析:绘制根轨迹的matlab文本为clfnum=1;den=conv([1 1 0],[1 5]); rlocus(num,den) %绘制系统根轨迹1,得到如图的根轨迹图:2,用鼠标点击根轨迹与虚轴处的交点可得到临界稳定的开环增益K=30,所以系统稳定的K值范围为0―30。

3,在simulink环境下按下图连接电路:取增益为30的时候在示波器下观察单位节约响应,输出波形为:由图可以看出单位阶跃响应的输出为等幅的震荡输出,所以此时系统为临界稳定状态。

当改变开环增益为50和20时观察示波器,得到输出波形分别为:由图可知当增益K为50时输出为不稳定的震荡输出,此时系统不稳定,当增益K为20时输出的波形震荡越来越缓慢,最后趋于稳定,所以此时的系统是稳定的。

B,设单位反馈控制系统的开环传递函数为G(S)=K(s+3)/s(s+1)(s+2)(1) 仿照上题绘制系统的根轨迹,并判断系统的稳定性; 参照第一题得到matlab命令文本为:clfnum=1;den=conv([1 1 0],[1 2]); rlocus(num,den) %绘制系统根轨迹得到如图的根轨迹图:1,由图可知根轨迹没有进入s平面右半平面,所以系统在K=0到K=?都是稳定的。

中南大学自动控制原理实验报告

中南大学自动控制原理实验报告

中南大学自动控制原理实验报告--------------------------------------------------------------------------作者: _____________--------------------------------------------------------------------------日期: _____________信息科学与工程学院本科生实验报告实验名称自动控制原理实验预定时间实验时间姓名学号授课教师实验台号专业班级实验一 1.1典型环节的时域分析实验目的:1.熟悉并掌握 TD-ACC+(或 TD-ACS)设备的使用方法及各典型环节模拟电路的构成方法。

2.熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。

对比差异、分析原因。

3.了解参数变化对典型环节动态特性的影响。

实验设备:PC 机一台, TD-ACC+(或 TD-ACS)实验系统一套。

模拟电路图如下:实验结果:当R0=200K;R1=100K。

输出电压约为输入电压的1/2,误差范围内满足理论波形,当R0 = 200K; R1 = 200K。

积分环节模拟电路图:当R0=200K;C=1uF。

实验结果:当R0 = 200K; C = 2uF。

比例积分环节 (PI)模拟电路图:取 R0 = R1 = 200K; C = 1uF。

实验结果取 R0=R1=200K; C=2uF。

惯性环节(T)模拟电路图:取 R0=R1=200K; C=1uF。

取 R0=R1=200K; C=2uF。

比例微分环节(PD)模拟电路图:取 R0 = R2 = 100K, R3 = 10K, C = 1uF; R1 = 100K。

取 R0=R2=100K, R3=10K, C=1uF; R1=200K。

比例积分微分环节(PID)模拟电路图:取 R2 = R3 = 10K, R0 = 100K, C1 = C2 = 1uF; R1 = 100K。

自控实验报告实验三线性系统的根轨迹

自控实验报告实验三线性系统的根轨迹
3. 依如实验结果分析闭环系统的性能,观看根轨迹上一些特殊点对应的K值,确信闭环系统稳固的范围。
4.写出实验的心得与体会。
三、实验内容
请绘制下面系统的根轨迹曲线同时得出在单位阶跃负反馈下使得闭环系统稳固的K值的范围。
一、
一、程序代码:
G=tf([1],[1,8,27,38,26]);
rlocus (G);
五、心得体会
本次实验咱们第一熟悉了MATLAB用于操纵系统中的一些大体编程语句和格式,随后又利用MATLAB语句绘制系统的根轨迹。讲义中介绍的手工绘制根轨迹的方式,只能绘制根轨迹草图,而用MATLAB能够方便地绘制精准的根轨迹图,并可通过自己添加零极点或改变根轨迹增益的范围来观测参数转变对特点根位置的阻碍。
+
k =
r =
+
-
+
-
3、结果分析:
根轨迹与虚轴有交点,因此在K从零到无穷转变时,系统的稳固性会发生转变。由根轨迹图和运行结果知,当0<K<时,系统老是稳固的。
二、
一、程序代码:
G=tf([1,12],[1,23,242,1220,1000]);
rlocus (G);
[k,r]=rlocfind(G)
G_c=feedback(G,1);
step(G_c)
二、实验结果:
selected_point =
+
k =
+03
r =
+
+
-
selected_point =
+
k =
+03
r =
+
-
+
-
3、结果分析:

自动控制理论实验指导书(仿真).详解

自动控制理论实验指导书(仿真).详解

实验一典型环节的MATLAB仿真Experiment 1 MATLAB simulation of typical link一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

3.定性了解各参数变化对典型环节动态特性的影响。

二、SIMULINK的使用MATLAB中SIMULINK是一个用来对动态系统进行建模、仿真和分析的软件包。

利用SIMULINK功能模块可以快速的建立控制系统的模型,进行仿真和调试。

1.运行MATLAB软件,在命令窗口栏“>>”提示符下键入simulink命令,按Enter 键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK仿真环境下。

2.选择File菜单下New下的Model命令,新建一个simulink仿真环境常规模板。

3.在simulink仿真环境下,创建所需要的系统。

以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。

点击simulink下的“Continuous”,再将右边窗口中“Transfer Fen”的图标用左键拖至新建的“untitled”窗口。

2)改变模块参数。

在simulink仿真环境“untitled”窗口中双击该图标,即可改变传递函数。

其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK,即完成该模块的设置。

3)建立其它传递函数模块。

按照上述方法,在不同的simulink的模块库中,建立系统所需的传递函数模块。

例:比例环节用“Math”右边窗口“Gain”的图标。

4)选取阶跃信号输入函数。

用鼠标点击simulink下的“Source”,将右边窗口中“Step”图标用左键拖至新建的“untitled”窗口,形成一个阶跃函数输入模块。

《模块化自控原理》线性系统的根轨迹分析实验

《模块化自控原理》线性系统的根轨迹分析实验

《模块化自控原理》线性系统的根轨迹分析实验模块化自控原理中的线性系统的根轨迹分析实验是探究线性系统的稳定性和动态特性的一种常用方法,通过实验观测和分析系统的根轨迹,可以得到系统的传递函数以及系统的稳定性等重要信息。

下面是对该实验的详细说明和分析。

1.实验目的1.1理解线性系统的根轨迹概念及其重要性;1.2学习使用根轨迹法进行系统的稳定性和动态特性分析;1.3掌握根轨迹分析实验的具体步骤;1.4提高实验操作和数据处理的能力。

2.实验原理2.1根轨迹的概念根轨迹是以参数变化为基础的线性系统稳定性和动态特性的分析方法之一、根轨迹是指在参数变化的范围内,系统传递函数极点的轨迹,可以用来判断系统的稳定性、响应特性和动态响应快慢等重要指标。

2.2根轨迹的画法根轨迹的画法需要先确定系统的开环传递函数,然后通过对传递函数进行拆项和配平,求解极点的位置。

根轨迹的位置可以通过极点的实部和虚部来表示,根据虚轴对称性和极点与零点的关系,可以画出根轨迹的大致形状和方向。

2.3根轨迹分析的应用根据根轨迹的形状、分布和方向可以判断系统的稳定性和动态特性:-根轨迹在左半平面则系统稳定;-根轨迹与虚轴交点奇数个则系统不稳定;-根轨迹的分布越往左上角或右上角,系统的动态特性越好。

3.实验装置和器材3.1实验装置数字控制系统实验台、计算机、示波器、信号发生器、数模转换器等。

3.2实验器材电脑、电源线、连接线、示波器探头等。

4.实验步骤4.1连接实验装置将数字控制系统实验台与计算机、示波器、信号发生器和数模转换器等设备进行连接。

4.2系统参数调整设置合适的实验参数,包括采样频率、控制周期、信号幅值等。

4.3系统根轨迹绘制在计算机上运行相应的根轨迹绘制软件,根据实验所给的开环传递函数和稳定域范围,绘制系统的根轨迹。

4.4根轨迹分析根据根轨迹的形状、位置和分布等信息,分析系统的稳定性和动态特性,并给出相应的结论和解释。

4.5记录实验数据记录实验中所绘制的根轨迹和分析结果,包括根轨迹的形状、交点、分布等重要特征。

自动控制原理第四章根轨迹法

自动控制原理第四章根轨迹法
仿真与实验研究
根轨迹法可用于仿真和实验研究,通过模拟和实验 验证系统的性能和稳定性,为实际系统的设计和优 化提供依据。
根轨迹法的历史与发展
历史
根轨迹法最早由美国科学家威纳于1940年提出,经过多年的 发展与完善,已经成为自动控制领域中一种重要的分析和设 计方法。
发展
随着计算机技术和数值分析方法的不断发展,根轨迹法的应 用范围和精度得到了进一步拓展和提高。未来,根轨迹法有 望与其他控制理论和方法相结合,形成更加完善和高效的控 制系统分析和设计体系。
根轨迹的性能分析
根轨迹的增益敏感性和鲁棒性
通过分析根轨迹在不同增益下的变化情况,可以评估系统的性能和鲁棒性。
根轨迹与性能指标的关系
通过比较根轨迹与某些性能指标(如超调量、调节时间等),可以评估系统的 性能。
04
根轨迹法与其他控制方法的比较
根轨迹法与PID制根轨迹图,直观地分析系统的稳定性、响应速度和超调量等性
特点
根轨迹法具有直观、简便、易于掌握等优点,特别适合用于分析 开环系统的稳定性和性能。
根轨迹法的应用场景
控制系统设计
根轨迹法可用于控制系统设计,通过调整系统参数 ,优化系统的性能指标,如稳定性、快速性和准确 性等。
故障诊断与排除
根轨迹法可用于故障诊断与排除,通过观察系统根 轨迹的变化,判断系统是否出现故障,以及故障的 类型和程度。
在绘制根轨迹时,需要遵循一定 的规则,如根轨迹与虚轴的交点 、根轨迹的分离点和汇合点等。
03
根轨迹分析方法
根轨迹的形状分析
根轨迹的起点和终点
根轨迹的起点是开环极点的位置,而 终点是闭环极点的位置。通过分析起 点和终点的位置,可以判断根轨迹的 形状。
根轨迹的分支数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三 线性系统的根轨迹一、实验目的1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。

2. 利用MATLAB 语句绘制系统的根轨迹。

3. 掌握用根轨迹分析系统性能的图解方法。

4. 掌握系统参数变化对特征根位置的影响。

二、基础知识及MATLAB 函数根轨迹是指系统的某一参数从零变到无穷大时,特征方程的根在s 平面上的变化轨迹。

这个参数一般选为开环系统的增益K 。

课本中介绍的手工绘制根轨迹的方法,只能绘制根轨迹草图。

而用MATLAB 可以方便地绘制精确的根轨迹图,并可观测参数变化对特征根位置的影响。

假设系统的对象模型可以表示为系统的闭环特征方程可以写成对每一个K 的取值,我们可以得到一组系统的闭环极点。

如果我们改变K 的数值,则可以得到一系列这样的极点集合。

若将这些K 的取值下得出的极点位置按照各个分支连接起来,则可以得到一些描述系统闭环位置的曲线,这些曲线又称为系统的根轨迹。

绘制系统的根轨迹rlocus ()MATLAB 中绘制根轨迹的函数调用格式为:rlocus(num,den) 开环增益k 的范围自动设定。

rlocus(num,den,k) 开环增益k 的范围人工设定。

rlocus(p,z) 依据开环零极点绘制根轨迹。

r=rlocus(num,den) 不作图,返回闭环根矩阵。

[r,k]=rlocus(num,den) 不作图,返回闭环根矩阵r 和对应的开环增益向量k 。

其中,num,den 分别为系统开环传递函数的分子、分母多项式系数,按s 的降幂排列。

K 为根轨迹增益,可设定增益范围。

例3-1:已知系统的开环传递函数32(1)()429s G s K s s s *+=+++,绘制系统的根轨迹的matlab 的调用语句如下: num=[1 1]; %定义分子多项式den=[1 4 2 9]; %定义分母多项式rlocus (num,den) %绘制系统的根轨迹grid %画网格标度线xlabel(‘Real Axis ’);ylabel(‘Imaginary Axis ’); %给坐标轴加上说明title(‘Root Locus ’) %给图形加上标题名则该系统的根轨迹如图3-1(a )所示。

若上例要绘制K 在(1,10)的根轨迹图,则此时的matlab 的调用格式如下,对应的根轨迹如图3-1(b )所示。

num=[1 1]; den=[1 4 2 9];k=1:0.5:10;rlocus (num,den,k)1)确定闭环根位置对应增益值K 的函数rlocfind ()在MATLAB 中,提供了rlocfind 函数获取与特定的复根对应的增益K 的值。

在求出的根轨迹图上,可确定选定点的增益值K 和闭环根r (向量)的值。

该函数的调用格式为:[k,r]=rlocfind(num,den)执行前,先执行绘制根轨迹命令rlocus (num,den ),作出根轨迹图。

执行rlocfind 命令时,出现提示语句“Select a point in the graphics window ”,即要求在根轨迹图上选定闭环极点。

将鼠标移至根轨迹图选定的位置,单击左键确定,根轨迹图上出现“+”标记,即得到了该点的增益K 和闭环根r 的返回变量值。

例3-2:系统的开环传递函数为23256()8325s s G s K s s s *++=+++,试求:(1)系统的根轨迹;(2)系统稳定的K 的范围;(3)K=1时闭环系统阶跃响应曲线。

则此时的matlab 的调用格式为:G=tf([1,5,6],[1,8,3,25]);rlocus (G); %绘制系统的根轨迹[k,r]=rlocfind(G) %确定临界稳定时的增益值k 和对应的极点rG_c=feedback(G,1); %形成单位负反馈闭环系统step(G_c) %绘制闭环系统的阶跃响应曲线则系统的根轨迹图和闭环系统阶跃响应曲线如图3-2所示。

其中,调用rlocfind ()函数,求出系统与虚轴交点的K 值,可得与虚轴交点的K 值为0.0264,故系统稳定的K 的范围为(0.0264,)K ∈∞。

2)绘制阻尼比ζ和无阻尼自然频率n ω的栅格线sgrid( )当对系统的阻尼比ζ和无阻尼自然频率n ω有要求时,就希望在根轨迹图上作等ζ或等n ω线。

matlab 中实现这一要求的函数为sgrid( ),该函数的调用格式为:sgrid(ζ,n ω) 已知ζ和n ω的数值,作出等于已知参数的等值线。

sgrid(‘new ’) 作出等间隔分布的等ζ和n ω网格线。

例3-3:系统的开环传递函数为1()(1)(2)G s s s s =++,由rlocfind 函数找出能产生主导极点阻尼ζ=0.707的合适增益,如图3-3(a)所示。

G=tf(1,[conv([1,1],[1,2]),0]);zet=[0.1:0.2:1];wn=[1:10];sgrid(zet,wn);hold on;rlocus(G)[k,r]=rlocfind(G)Select a point in the graphics windowselected_point =-0.3791 + 0.3602ik =0.6233r =-2.2279-0.3861 + 0.3616i-0.3861 - 0.3616i同时我们还可以绘制出该增益下闭环系统的阶跃响应,如图3-3(b)所示。

事实上,等ζ或等n ω线在设计系补偿器中是相当实用的,这样设计出的增益K=0.6233将使得整个系统的阻尼比接近0.707。

由下面的MATLAB 语句可以求出主导极点,即r(2.3)点的阻尼比和自然频率为G_c=feedback(G,1);step(G_c)dd0=poly(r(2:3,:));wn=sqrt(dd0(3));zet=dd0(2)/(2*wn);[zet,wn]ans =0.7299 0.5290 我们可以由图3-3(a)中看出,主导极点的结果与实际系统的闭环响应非常接近,设计的效果是令人满意的。

3)基于根轨迹的系统设计及校正工具rltool matlab 中提供了一个系统根轨迹分析的图形界面,在此界面可以可视地在整个前向通路中添加零极点(亦即设计控制器),从而使得系统的性能得到改善。

实现这一要求的工具为rltool ,其调用格式为:(a )根轨迹图形 (b )K=1时的阶跃响应曲线图3-2 系统的根轨迹和阶跃响应曲线(a )根轨迹上点的选择 (b )闭环系统阶跃响应图3-3 由根轨迹技术设计闭环系统rltool 或 rltool(G)例3-4:单位负反馈系统的开环传递函数输入系统的数学模型,并对此对象进行设计。

den=[conv([1,5],conv([1,20],[1,50])),0,0];num=[1,0.125];G=tf(num,den);rltool(G)该命令将打开rltool 工具的界面,显示原开环模型的根轨迹图,如图3-4(a )所示。

单击该图形菜单命令Analysis 中的Response to Step Command 复选框,则将打开一个新的窗口,绘制系统的闭环阶跃响应曲线,如图3-4(b )所示。

可见这样直接得出的系统有很强的振荡,就需要给这个对象模型设计一个控制器来改善系统的闭环性能。

单击界面上的零点和极点添加的按钮,可以给系统添加一对共轭复极点,两个稳定零点,调整它们的位置,并调整增益的值,通过观察系统的闭环阶跃响应效果,则可以试凑地设计出一个控制器:在此控制器下分别观察系统的根轨迹和闭环系统阶跃响应曲线。

可见,rltool 可以作为系统综合的实用工具,在系统设计中发挥作用。

三、实验内容1.请绘制下面系统的根轨迹曲线程序:>> G=tf([1],[1 8 27 38 26 0]);>> rlocus (G)>> grid>> [k,r]=rlocfind(G)Select a point in the graphics window selected_point = 0.0071 - 0.9627i k = 28.7425 r = -2.8199 + 2.1667i -2.8199 - 2.1667i-2.3313-0.0145 + 0.9873i-0.0145 - 0.9873i稳定时:K ∈(0,28.7425)程序:>>G=tf([1 12],[1 23 242 230 1000]);>>rlocus (G)>>grid>>[k,r]=rlocfind(G)Select a point in the graphics window selected_point = 0.0118 + 5.8696i k = 522.9427 r = -11.5988 + 8.8196i-11.5988 - 8.8196i0.0988 + 5.8529i0.0988 - 5.8529i稳定时:K ∈(522.9427)程序:>>G=tf([0.05 1],[0.0008568 0.01914 0.1714 1 0]); >> rlocus (G) >> grid >> [k,r]=rlocfind(G) Select a point in the graphics window selected_point = 0.0237 + 8.0745i k = 7.2730r =-0.2055 + 8.3831i-0.2055 - 8.3831i-10.9640 + 0.7119i-10.9640 - 0.7119i稳定时K ∈(0,7.2730)同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围。

a )原对象模型的根轨迹 (b )闭环系统阶跃响应图3-4 根轨迹设计工具界面及阶跃响应分析2. 在系统设计工具rltool界面中,通过添加零点和极点方法,试凑出上述系统,并观察增加极、零点对系统的影响。

四、实验报告1.根据内容要求,写出调试好的MATLAB语言程序,及对应的结果。

2. 记录显示的根轨迹图形,根据实验结果分析根轨迹的绘制规则。

3. 根据实验结果分析闭环系统的性能,观察根轨迹上一些特殊点对应的K值,确定闭环系统稳定的范围。

4.根据实验分析增加极点或零点对系统动态性能的影响。

5.写出实验的心得与体会。

五、预习要求1. 预习实验中的基础知识,运行编制好的MATLAB语句,熟悉根轨迹的绘制函数rlocus()及分析函数rlocfind(),sgrid()。

2. 预习实验中根轨迹的系统设计工具rltool,思考该工具的用途。

相关文档
最新文档