—学(上)门市七级质量检测数学参考答案

合集下载

福建省泉州市2019-2020学年度上学期教学质量跟踪监测考试七年级数学试题参考答案及评分意见

福建省泉州市2019-2020学年度上学期教学质量跟踪监测考试七年级数学试题参考答案及评分意见

泉州市2019-2020学年度上学期教学质量跟踪监测考试七年级数学试题参考答案及评分意见一、选择题(每小题4分,共40分)1.B 2.B 3.C 4.A 5.C 6.C 7.D 8.D9.C10.A二、填空题(每小题4分,共24分)11.>12.2413.-3 14.58 15.25(1)8πa-16.-2 三、解答题(共89分)17. 解:原式=()114311264⎛⎫−+⨯−−−⨯ ⎪⎝⎭ ······································································ 4分4323=−−−+ ······················································································· 7分 6=− ···································································································· 8分 18.解:原式22222243264x x xy y x xy y =−+−+−+ ·························································· 3分233xy y =−+ ··························································································· 5分当13x =,2y =-时原式()()2132323=−⨯⨯+⨯-- ··········································································· 6分212=+ ································································ 7分14= ···································································· 8分 19. 证明:∵//CE AB (已知)∴A ACE ∠=∠(两直线平行,内错角相等) ·················· 2分B DCE ∠=∠(两直线平行,同位角相等) ·················· 4分 ∵B 、C 、D 三点共线∴180ACE DCE ACB ∠+∠+∠=︒(平角的定义) ············· 6分∴180A B ACB ∠+∠+∠=︒(等量代换) ··························· 8分20. 解:(1) 如图线段BD 即为所求. ·········································· 1分(2)如图直线CE 即为所求,点C 到直线AB 的距离为2. ······ 3分 (3)如图直线AF 即为所求. ············································ 5分 (4)CBD ∠的同位角:BAF ∠,BAC ∠,CED ∠. ················ 8分21.(1)∵24AB =,且::3:2:1AC CD DB =,∴286CD AB ==,146DB AB ==, ·································· 1分∴12CB CD DB =+=, ···················································································· 2分 ∵N 为CB 的中点,∴162CN CB ==, ·························································································· 3分∴2ND CD CN =−= ························································································ 4分EB C DAE F D B C A(2)证明:∵M 为AC 的中点,N 为CB 的中点,∴12MC AC =,12CN CB =, ∴111222MN MC CN AC CB AB =+=+=, ··················································· 5分∵::3:2:1AC CD DB =,∴2163CD AB AB ==,16DB AB =,∴12CB CD DB AB =+=, ······································································· 6分∴11112224CN CB AB AB ==⨯=,∴1113412DN CD CN AB AB AB =−=−=,∴11566)3122CD DN AB AB AB +=⨯+=()(, ················································ 7分又155522MN AB AB =⨯=,∴56MN CD DN =+()············································································· 8分 22. 证明:(1) ∵AD ⊥BC ,∴∠ADB =90°, ···················································· 1分 又∵∠ADG =35°∴∠BDG =55° ······················································ 2分又∵∠C =55° ∴∠C =∠BDG ······················································ 3分∴DG ∥AC ·························································· 5分 (2)∵AD ⊥BC ,EF ⊥BC ∴AD ∥EF ··························································································· 6分 ∴∠FEC =∠DAC ················································································· 8分 由(1)可知,DG ∥AC ∴∠ADG =∠DAC ············································································································ 9分 ∴∠FEC =∠ADG ··········································································································· 10分23.解:(1)当600x ≥时,实际付款:()6000.80.7600x ⨯+−=(0.760x +)元答:当一次性购物x 元,600x ≥时,实际付款:(0.760x +)元 ····································· 4分 (2)①当300500a <≤时,则300800500a ≤−<,购物实际付款:0.8800⨯=640(元) ·································································· 6分 ②当500600a <<时,则200800300a <−<,购物实际付款:()0.80.9800a a +−=(0.1720a −+)元, ········································ 8分GE A D FC B M N BC D A③当600800a ≤<时,则0800200a <−≤,购物实际付款:()()6000.80.76000.9800a a ⨯+−+−=(0.2780a −+)元故本次实际付款=6403005000.1+7205006000.2+780600800a a a a a <≤⎧⎪−<<⎨⎪−≤<⎩, (),(),() ···························································· 10分24.解:(1)∵//BC AE ,∴180ABC BAE ∠+∠=. ·············································································· 1分 ∵//DE CF ,∴180CDE DCF ∠+∠=. ∵DCF ABC ∠=∠,∴CDE BAE ∠=∠. ······································· 2分 ∵180BDC CDE ADE ∠+∠+∠=180AED BAE ADE ∠+∠+∠=,∴BDC AED ∠=∠, ····················································································· 3分 ∵ED 平分AEC ∠,∴AED CED ∠=∠. ····················································································· 4分 ∴BDC CED ∠=∠. ····················································································· 5分 (2) 设,EDG DCG αβ∠=∠=∵DG 平分ADE ∠,CG 平分DCF ∠,∴2,2ADE DCF αβ∠=∠=. ····························· 6分 由(1)可知2180CDE DCF CDE β∠+∠=∠+=︒ ∴1802CDE β∠=︒−······································ 7分 ∴()180G GDE CDE DCG ︒∠=−∠+∠+∠()1801802αβββα︒=−+︒−+=− ·········· 9分又∵180AED ADE DAE ︒∠=−∠−∠∴()()1802180218022AED CDE ααββα︒︒︒∠=−−∠=−−−=−, ···················· 11分 ∴2ADE G ∠=∠. ···················································································· 12分 25.解:方法一:(1)①∵3n = ∴13a b c d a d −+−=−, ········································································· 1分 ∵a b c d <<<,∴1()3b a dcd a −+−=−,∴2()3c bd a −=− ······················································································ 2分∵6d a −=,∴4c b −=.······························································································· 3分baGE F A B C DbaEFABCD②∵b e c <<,49b e a d −=−∴4()9e b d a −=− ··················································································· 4分∵2()3c bd a −=−∴3()2d a c b −=− ··················································································· 5分∴432()()923e b c b c b −=⨯−=− ·································································· 6分∴2233e b c b −=− ··················································································· 7分 ∴2133e c b =+. ······················································································· 8分(2) ∵1a b c d a d n−+−=−,a b e c d <<<< ∴()1122e b c c b =−=−,()1122f a d d a =−=−,1()()()b a d c a d n −+−=− ∴f e > ·································································································· 9分 ∴()12e f f e d a c b −=−=−−+ ································································ 10分()()12b a d c =−+−⎡⎤⎣⎦ ····································································· 11分 11()2a d n=⋅− 1()2d a n=− ················································································· 12分 ∵110e f a d −>−, ∴11()()210d a d a n −>−,即210d a d a n −−>, ∴210n <,∴5n <, ································································································ 13分 ∵35n ≤<,且n 为正整数,∴n 的最大值为4. ····················································································· 14分方法二: (1)①把a ,b ,c ,d 四个数在数轴上分别用点A ,B ,C ,D 表示出来,如下图所示,································ 1分∵1a b c d a d n−+−=−, ∴AB +CD =1nAD ···················································································· 2分 dcbaA B C D又∵3n =,6d a −= ∴AD =6,AB +CD =2∴BC =b c −=4c b −=. ············································································ 3分 ②e (b e c <<)用点E 表示数e 在数轴上表述出来,点E 在线段BC 上, ∵49b e a d −=−, ∴BE =49AD ······························································································ 4分 又∵BC =23AD ,∴BE =49AD =4392⨯BC =23BC , ····································································· 5分 即23b e bc −=− ······················································································· 6分 ∵b e c <<∴2233e b c b −=− ······················································································ 7分∴2133e c b =+. ·························································································· 8分(2) ∵1a b c d a d n−+−=−,a b c d <<< ∴1(1)()c b d a n−=−−, ················································································ 9分∵11,,22e b c f a d =−=−且110e f a d −>−, ∴1112210b c a d a d −−−>− ···································································· 10分 ∴1111(1)2210a d a d a d n ⨯−−−>−- ∴11210a d a d n −>−,即210a d a d n −−> ······················································ 12分 ∵0a d −> ∴210n <∴5n < ··································································································· 13分 ∵35n ≤<,且n 为正整数,∴n 的最大值为4. ····················································································· 14分edcbaA B C D E。

七年级上学业质量数学试卷含答案(图片版)

七年级上学业质量数学试卷含答案(图片版)

学生学业质量调查分析与反馈七 年 级 数 学 参 考 答 案一、选择题(每小题3分,共24分)二、填空题(每小题2分,共16分)9.π 10.两点确定一条直线 11.4 12.513.75 14.2a+b 15.20 16.0、4、-4、-8三、解答题17. (本题满分8分)⑴解:原式=﹣1………………………………………………4分(2)解:原式=2………………………………………………4分18(本题满分8分)⑴解:x=﹣4………………………………………………4分⑵解:x=57…………………………………………………4分 19. (本题满分5分)解:原式=﹣ab 2 ………………………3分由题意可得a=﹣1,b=﹣2……………4分求值结果=4……………………………………5分20. (本题满分5分)解:(1)﹣8………………2分(2) x=3 ……………3分21. (本题满分6分)解:(1)300x (320x ﹣320)…………………………4分(2)当x=17时,300x=300×17=5100320x -320=320×17-320=5120…………………5分∴应选择甲旅行社……………………………6分22. (本题满分6分)(1)画图正确…………2分(2)画图正确…………4分(3) 3.5 …………6分23.(本题满分6分)解:设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150﹣x )元,…………………1分根据题意得:50%x+60%(150﹣x )=80,……………………4分解得:x=100,150﹣100=50(元).……………………5分答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.………6分24.(本题满分6分)解:(1)∵∠EOF=90°,∠EON=110°,∴∠FON=20°,∵∠MON=90°,∴∠MOF=70°,………………………………2分(2)∠EOM=∠FON ,∵∠EOM+∠MOF=∠FON+∠MOF=90°,∴∠EOM=∠FON ,………………………4分(3)∵∠EON+∠MOF=∠EOM+∠MOF+∠FON+∠MOF ,∴∠EON+∠MOF=∠EOF+∠MON=180°.…………6分25.(本题满分10分)解:(1)由题意可得,20t=5t+120解得t=8,即t=8min 时,射线OC 与OD 重合;…………2分(2)由题意得,20t+90=120+5t 或20t ﹣90=120+5t ,解得,t=2或t=14即当t=2min 或t=14min 时,射线OC ⊥OD ;…………4分(3)存在,由题意得,120﹣20t=5t 或20t ﹣120=5t+120﹣20t 或20t ﹣120﹣5t=5t ,解得t=4.8或t=748或t=12, 即当以OB 为角平分线时,t 的值为4.8min ;当以OC 为角平分线时,t 的值为748min , 当以OD 为角平分线时,t 的值为12min .…………10分以上仅为参考答案,学生如有其他解法,请酌情给分。

七年级上质检数学试卷含答案解析

七年级上质检数学试卷含答案解析

七年级(上)质检数学试卷(10月份)一.选择题(共10小题,每题3分,满分30分)1.如果收入200元记作+200元,那么支出150元记作()A.+150元B.﹣150元C.+50元D.﹣50元2.下列一组数:﹣8,2.7,,,0.66666…,0,2,0.080080008…,其中是无理数的有()A.0个B.1个C.2个D.3个3.在四包真空小包装火腿,每包以标准克数(450克)0为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准的是()A.+2 B.﹣3 C.﹣1 D.+44.下列各组数中,互为相反数的是()A.2与B.(﹣1)2与1 C.﹣1与(﹣1)3D.﹣(﹣2)与﹣|﹣2|5.下列运算正确的是()A. B.﹣7﹣2×5=﹣9×5=﹣45C.D.﹣(﹣3)2=﹣96.下列说法正确的是()①有理数包括正有理数和负有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小.A.②B.①③ C.①② D.②③④7.表示a,b两数的点在数轴上位置如图所示,则下列判断错误的是()A.a+b<0 B.a﹣b>0 C.a×b>0 D.a<|b|8.实数a,b在数轴上的位置如图所示,以下说法正确的是()A.|b|<|a| B.b<a C.ab>0 D.a+b=09.如果有理数a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是倒数等于它本身的数,那么式子a﹣b+c2﹣|d|的值是()A.﹣2 B.﹣1 C.0 D.110.在我校初一新生的体操训练活动中,共有123名学生参加.假如将这123名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1…的规律报数,那么最后一名学生所报的数是()A.1 B.2 C.3 D.4二.填空题12.的相反数是,的倒数是,+(﹣5)的绝对值为.13.平方等于25的数是.14.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为万元.15.甲、乙两人的住处与学校同在一条街道上,甲在离学校3千米的地方,乙在离学校5千米的地方,则甲、乙两人的住处相距千米.16.某冬天中午的温度是5℃,下午上升到7℃,由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是℃.17.若|a|=1,|b|=4,且a+b<0,则a+b= .18.绝对值不大于3的所有整数有.19.若(x﹣2)2+|y+3|=0,则y x的值是.20.如图所示是计算机某计算程序,若开始输入x=﹣1,则最后输出的结果是21.观察下列算式:71=7,72=49,73=343,74=2401,75=16807,76=117649,…,通过观察,用你发现的规律,写出72011的末位数字.三.简答题22.计算①﹣20+(﹣14)﹣(﹣18)﹣13②(﹣56)×(﹣+)③2×(﹣3)2﹣5÷(﹣)×(﹣2)④﹣9×36(用简便方法)⑤﹣14﹣(1﹣0.5)××[2﹣(﹣3)2].23.将有理数﹣12,0,20,﹣1.25,1,﹣|﹣12|,﹣(﹣5)分类.24.在数轴上把下列各数表示出来,并用“<”连接各数.﹣|﹣3.5|,1,0,﹣(﹣2),﹣(+1),425.已知a、b互为相反数且a≠0,c、d互为倒数,m的绝对值是最小的正整数,求的值.26.我们定义一种新运算:a*b=a2﹣b+ab.(1)求2*(﹣3)的值;(2)求(﹣2)*[2*(﹣3)]的值.27.一辆货车从超市出发,向东走了2km,到达小刚家,继续向东走了3km到达小红家,又向西走了9km到达小英家,最后回到超市.(1)请以超市为原点,以向东方向为正方向,用1个单位长度表示1km,画出数轴.并在数轴上表示出小刚家、小红家、小英家的位置;(2)小英家距小刚家有多远?(3)货车一共行驶了多少千米?28.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克?(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数)29.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示2和5两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣2的两点之间的距离表示为;(3)若x表示一个有理数,则|x﹣1|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.30.如图,数轴上有三个点A、B、C,它们可以沿着数轴左右移动,请回答:(1)将点B向右移动三个单位长度后到达点D,点D表示的数是;(2)移动点A到达点E,使B、C、E三点的其中任意一点为连接另外两点之间线段的中点,请你直接写出所有点A移动的距离和方向;(3)若A、B、C三个点移动后得到三个互不相等的有理数,它们既可以表示为1,a,a+b的形式,又可以表示为0,b,的形式,试求a,b的值.2016-2017学年江苏省苏州市昆山市七年级(上)质检数学试卷(10月份)参考答案与试题解析一.选择题(共10小题,每题3分,满分30分)1.如果收入200元记作+200元,那么支出150元记作()A.+150元B.﹣150元C.+50元D.﹣50元【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以,如果收入200元记作+200元,那么支出150元记作﹣150元.【解答】解:因为正”和“负”相对,所以,如果收入200元记作+200元,那么支出150元记作﹣150元.故选B.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.下列一组数:﹣8,2.7,,,0.66666…,0,2,0.080080008…,其中是无理数的有()A.0个B.1个C.2个D.3个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:,0.080080008…是无理数,故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.在四包真空小包装火腿,每包以标准克数(450克)0为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准的是()A.+2 B.﹣3 C.﹣1 D.+4【考点】正数和负数.【分析】实际克数最接近标准克数的是绝对值最小的那个数.【解答】解:A、+2的绝对值是2;B、﹣3的绝对值是3;C、﹣1的绝对值是1;D、+4的绝对值是4.C选项的绝对值最小.故选C.【点评】本题主要考查正负数的绝对值的大小比较.4.下列各组数中,互为相反数的是()A.2与B.(﹣1)2与1 C.﹣1与(﹣1)3D.﹣(﹣2)与﹣|﹣2|【考点】相反数;绝对值;有理数的乘方.【分析】根据只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【解答】解:A、2与不是互为相反数,故本选项错误;B、(﹣1)2与1相等,不是互为相反数,故本选项错误;C、﹣1与(﹣1)3相等,不是互为相反数,故本选项错误;D、﹣(﹣2)=2,﹣|﹣2|=﹣2,是互为相反数,故本选项正确.故选D.【点评】本题考查了相反数的定义,绝对值的性质,有理数的乘方,是基础题,熟记概念是解题的关键.5.下列运算正确的是()A. B.﹣7﹣2×5=﹣9×5=﹣45C.D.﹣(﹣3)2=﹣9【考点】有理数的混合运算.【专题】计算题.【分析】A、利用有理数的加法法则计算即可判定;B、利用有理数的混合运算法则计算即可判定;C、利用有理数的乘除法则计算即可判定;D、利用有理数的乘方法则计算即可判定.【解答】解:A、,故选项错误;B、﹣7﹣2×5=﹣7﹣10=﹣17,故选项错误;C、,故选项错误;D、﹣(﹣3)2=﹣9,故选项正确.故选D.【点评】此题主要考查了有理数的混合运算法则:有括号首先计算括号,然后计算乘除,接着计算加减即可求解.6.下列说法正确的是()①有理数包括正有理数和负有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小.A.②B.①③ C.①② D.②③④【考点】有理数;数轴;相反数;有理数大小比较.【分析】根据有理数的分类,相反数,绝对值的定义进行判断.【解答】解:①有理数包括正有理数,负有理数和0,原来的说法不正确.②说法正确.③数轴上原点两侧的数不一定互为相反数,原来的说法不正确.④两个数比较,绝对值大的可能大,原来的说法不正确.故选A.【点评】主要考查相反数,绝对值的定义,只有符号不同的两个数互为相反数,0的相反数是0;一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.7.表示a,b两数的点在数轴上位置如图所示,则下列判断错误的是()A.a+b<0 B.a﹣b>0 C.a×b>0 D.a<|b|【考点】数轴.【分析】先根据a、b两点在数轴上的位置判断出a、b的符号及绝对值的大小,再对各选项进行逐一分析即可.【解答】解:由图可知,b<0<a.|b|>|a|,A、∵b<0<a,|b|>|a|,∴a+b<0,故本选项正确;B、∵b<0<a,∴a﹣b>0,故本选项正确;C、∵b<0<a,∴a×b<0,故本选项错误;D、∵b<0<a.|b|>|a|,∴a<|b|,故本选项正确.故选C.【点评】本题考查的是数轴,先根据a、b两点在数轴上的位置判断出a、b的符号及绝对值的大小是解答此题的关键.8.实数a,b在数轴上的位置如图所示,以下说法正确的是()A.|b|<|a| B.b<a C.ab>0 D.a+b=0【考点】实数与数轴.【分析】先根据各点在数轴上的位置判断出a、b的符号,进而可得出结论.【解答】解:由数轴可知:﹣2<a<﹣1,0<b<1,|a|>|b|,b>a,ab<0,a+b<0,正确的是A选项,故选A.【点评】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.9.如果有理数a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是倒数等于它本身的数,那么式子a﹣b+c2﹣|d|的值是()A.﹣2 B.﹣1 C.0 D.1【考点】代数式求值.【分析】先根据题意确定a、b、c、d的值,再把它们的值代入代数式求值即可.【解答】解:∵a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是倒数等于它本身的数,∴a=1,b=﹣1,c=0,d=±1,∴原式=a﹣b+c2﹣|d|=1﹣(﹣1)+02﹣|±1|=2﹣1=1.故选D.【点评】能由语言叙述求出字母的数值,再代入代数式求值.10.在我校初一新生的体操训练活动中,共有123名学生参加.假如将这123名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1…的规律报数,那么最后一名学生所报的数是()A.1 B.2 C.3 D.4【考点】规律型:数字的变化类.【分析】观察这组数的特点,每6个数为一轮,1、2、3、4、3、2,再用123除以6,看余数,即可确定答案.【解答】解:∵1、2、3、4、3、2六个数字一循环,123÷6=20…3,∴最后一名学生所报的数是3.故选:C.【点评】此题主要考查了数字变化规律,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律解决问题.二.填空题12.的相反数是,的倒数是 2 ,+(﹣5)的绝对值为 5 .【考点】倒数;相反数;绝对值.【分析】根据相反数的性质,互为相反数的两个数和为0;倒数的性质,互为倒数的两个数积为1;绝对值的定义,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.求解即可.【解答】解:的相反数是,=,的倒数是2,+(﹣5)=﹣5,﹣5的绝对值5.故答案为:,2,5.【点评】考查了相反数,倒数,绝对值的定义. a的相反数是﹣a,a的倒数是;一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.13.平方等于25的数是±5 .【考点】有理数的乘方.【分析】利用平方根定义计算即可得到结果.【解答】解:∵(±5)2=25,∴平方等于25的数是±5,故答案为:±5.【点评】此题考查了有理数的乘方,熟练掌握运算法则是解本题的关键.14.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为 5.4×106万元.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.【解答】解:5 400 000=5.4×106万元.故答案为5.4×106.【点评】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).15.甲、乙两人的住处与学校同在一条街道上,甲在离学校3千米的地方,乙在离学校5千米的地方,则甲、乙两人的住处相距2或8 千米.【考点】数轴.【分析】分甲、乙两人的住处在学校的同侧和异侧两种情况计算即可.【解答】解:当甲、乙两人的住处在学校的同侧时,甲、乙两人的住处之间的距离=5﹣3=2;当甲、乙两人的住处在学校的异侧时,甲、乙两人的住处之间的距离=3+5=8.故答案为:2或8.【点评】本题主要考查的是数轴的认识,分类讨论是解题的关键.16.某冬天中午的温度是5℃,下午上升到7℃,由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是﹣2 ℃.【考点】有理数的加减混合运算.【专题】应用题.【分析】用7减去9即可求解.【解答】解:根据题意得:7﹣9=﹣2(℃).故答案是:﹣2.【点评】本题考查了有理数的减法,正确理解题意是关键.17.若|a|=1,|b|=4,且a+b<0,则a+b= ﹣3或﹣5 .【考点】有理数的加法;绝对值.【专题】计算题.【分析】根据题意,利用绝对值的代数意义及加法法则判断求出a与b的值,即可确定出a+b的值.【解答】解:∵|a|=1,|b|=4,且a+b<0,∴a=1,b=﹣4;a=﹣1,b=﹣4;a=﹣1,b=﹣4,则a+b=﹣3或﹣5.故答案为:﹣3或﹣5.【点评】此题考查了有理数的加法,以及绝对值,熟练掌握加法法则是解本题的关键.18.绝对值不大于3的所有整数有0,±1,±2,±3 .【考点】绝对值;数轴.【分析】根据绝对值、整数的定义直接求得结果.【解答】解:根据题意得:绝对值不大于3的所有整数有0,±1,±2,±3.故答案为:0,±1,±2,±3.【点评】此题主要考查了绝对值的定义.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.19.若(x﹣2)2+|y+3|=0,则y x的值是9 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣2=0,y+3=0,解得x=2,y=﹣3,所以,y x=(﹣3)2=9.故答案为:9.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.20.如图所示是计算机某计算程序,若开始输入x=﹣1,则最后输出的结果是﹣14【考点】代数式求值.【专题】图表型.【分析】把x=﹣1代入式子x×3﹣(﹣1)判断其结果与﹣5的大小,如果比﹣5大,再进行一次计算,直到比﹣5小,得出结果.【解答】解:当x=﹣1时,3x﹣(﹣1)=3×(﹣1)+1=﹣2>﹣5;当x=﹣2时,3x﹣(﹣1)=3×(﹣2)+1=﹣5=﹣5;当x=﹣5时,3x﹣(﹣1)=3×(﹣5)+1=﹣14<﹣5;所以最后结果为﹣14,故答案为:﹣14.【点评】本题主要考查有理数的运算,解题的关健是看出其算式的运算情况.21.观察下列算式:71=7,72=49,73=343,74=2401,75=16807,76=117649,…,通过观察,用你发现的规律,写出72011的末位数字 3 .【考点】尾数特征.【分析】从运算的结果可以看出位数以7、9、3、1四个数字一循环,用2011除以4,余数是几就和第几个数字相同,由此解决问题即可.【解答】解:2011÷4=502…3,所以72011的末位数字是3.故答案为:3.【点评】此题考查幂的尾数特征,注意从简单的情形入手,找出循环的规律,解决问题.三.简答题22.(20分)(2016秋•玉山县校级月考)计算①﹣20+(﹣14)﹣(﹣18)﹣13②(﹣56)×(﹣+)③2×(﹣3)2﹣5÷(﹣)×(﹣2)④﹣9×36(用简便方法)⑤﹣14﹣(1﹣0.5)××[2﹣(﹣3)2].【考点】有理数的混合运算.【专题】计算题.【分析】①③⑤根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.②④应用乘法分配律,求出每个算式的值各是多少即可.【解答】解:①﹣20+(﹣14)﹣(﹣18)﹣13=﹣34+18﹣13=﹣16﹣13=﹣29②(﹣56)×(﹣+)=(﹣56)×﹣(﹣56)×+(﹣56)×=﹣32+21﹣4=﹣11﹣4=﹣15③2×(﹣3)2﹣5÷(﹣)×(﹣2)=2×9+10×(﹣2)=18﹣20=﹣2④﹣9×36=(﹣9﹣)×36=(﹣9)×36﹣×36=﹣324﹣35=﹣359⑤﹣14﹣(1﹣0.5)××[2﹣(﹣3)2]=﹣1﹣0.5××[﹣7]=﹣1+=【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.23.将有理数﹣12,0,20,﹣1.25,1,﹣|﹣12|,﹣(﹣5)分类.【考点】有理数.【分析】根据整数,负数的定义写出即可.【解答】解:如图所示:.【点评】本题考查了有理数的应用,能理解有理数的有关内容是解此题的关键,注意:有理数包括整数和分数,整数包括正整数、0、负整数,分数包括正分数负分数.24.在数轴上把下列各数表示出来,并用“<”连接各数.﹣|﹣3.5|,1,0,﹣(﹣2),﹣(+1),4【考点】有理数大小比较;数轴.【分析】先在数轴上表示出来,再比较大小即可.【解答】解:在数轴上把各数表示出来为:用“<”连接各数为:﹣|﹣3.5|<﹣(+1)<0<1<﹣(﹣2)<4.【点评】本题考查了数轴和有理数的大小比较的应用,能理解有理数的大小比较法则是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.25.已知a、b互为相反数且a≠0,c、d互为倒数,m的绝对值是最小的正整数,求的值.【考点】代数式求值;相反数;绝对值;倒数.【分析】由已知求a+b,cd,m的值,再代值计算.【解答】解:依题意,得a+b=0,cd=1,m=±1,∴m2=1, =﹣1,∴=1﹣(﹣1)+0﹣1=1.(要有简单过程,直接写答案只给一半分数)【点评】本题考查了代数式求值,相反数,绝对值,倒数的定义.关键是求出所求代数式中式子的值.26.我们定义一种新运算:a*b=a2﹣b+ab.(1)求2*(﹣3)的值;(2)求(﹣2)*[2*(﹣3)]的值.【考点】代数式求值.【专题】新定义.【分析】(1)根据新定义规定的运算求值;(2)根据新定义运算,将(1)的结果代入中括号里.【解答】解:(1)2*(﹣3)=22﹣(﹣3)+2×(﹣3)=4+3﹣6=1;(2)(﹣2)*[2*(﹣3)]=(﹣2)*1=(﹣2)2﹣1+(﹣2)×1=4﹣1﹣2=1.【点评】本题考查了代数式求值.关键是根据新定义规定的运算,准确代值计算.27.一辆货车从超市出发,向东走了2km,到达小刚家,继续向东走了3km到达小红家,又向西走了9km到达小英家,最后回到超市.(1)请以超市为原点,以向东方向为正方向,用1个单位长度表示1km,画出数轴.并在数轴上表示出小刚家、小红家、小英家的位置;(2)小英家距小刚家有多远?(3)货车一共行驶了多少千米?【考点】有理数的加法;数轴.【专题】应用题.【分析】(1)以超市为原点,以向东方向为正方向,用1个单位长度表示1km,依此画出数轴.并在数轴上表示出小刚家、小红家、小英家的位置;(2)小英家距小刚家在数轴上的位置所表示的数的绝对值之和;(3)注意要用绝对值来表示距离.【解答】解:(1);(2)小英家距小刚家有4+2=6km;(3)货车一共行驶了2+3+9+4=18千米.【点评】本题主要考查了数轴在实际生活中的应用,注意表示距离要用绝对值.28.(2012秋•保康县期末)有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克?(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数)【考点】有理数的加法.【专题】应用题;图表型.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:(1)最重的一筐超过2.5千克,最轻的差3千克,求差即可2.5﹣(﹣3)=5.5(千克),故最重的一筐比最轻的一筐多重5.5千克;(2)列式1×(﹣3)+4×(﹣2)+2×(﹣1.5)+3×0+1×2+8×2.5=﹣3﹣8﹣3+2+20=8(千克),故20筐白菜总计超过8千克;(3)用(2)的结果列式计算2.6×(25×20+8)=1320.8≈1320(元),故这20筐白菜可卖1320(元).【点评】此题的关键是读懂题意,列式计算,注意计算结果是去尾法.29.(2012秋•宜宾县期中)点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示2和5两点之间的距离是 3 ,数轴上表示1和﹣3的两点之间的距离是 4 ;(2)数轴上表示x和﹣2的两点之间的距离表示为|x+2| ;(3)若x表示一个有理数,则|x﹣1|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.【考点】绝对值;数轴.【分析】本题应从绝对值在数轴上的定义(绝对值定义是坐标轴上的点到原点的距离)下手,分别解出答案.【解答】解:(1)数轴上表示2和5两点之间的距离是|5﹣2|=3,数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4;(2)根据绝对值的定义有:数轴上表示x和﹣2的两点之间的距离表示为|x﹣(﹣2)|=|x+2|或|﹣2﹣x|=|x+2|;(3)根据绝对值的定义有:|x﹣1|+|x+3|可表示为点x到1与﹣3两点距离之和,根据几何意义分析可知:当x在﹣3与1之间时,|x﹣1|+|x+3|有最小值4.【点评】本题考查学生的阅读理解能力及知识的迁移能力.30.(2011秋•永春县期末)如图,数轴上有三个点A、B、C,它们可以沿着数轴左右移动,请回答:(1)将点B向右移动三个单位长度后到达点D,点D表示的数是 1 ;(2)移动点A到达点E,使B、C、E三点的其中任意一点为连接另外两点之间线段的中点,请你直接写出所有点A移动的距离和方向;(3)若A、B、C三个点移动后得到三个互不相等的有理数,它们既可以表示为1,a,a+b的形式,又可以表示为0,b,的形式,试求a,b的值.【考点】数轴;平移的性质.【专题】计算题.【分析】(1)将点B向右移动三个单位长度后到达点D,则点D表示的数为﹣2+3=1;(2)分类讨论:当点A向左移动时,则点B为线段AC的中点;当点A向右移动并且落在BC之间,则A点为BC的中点;当点A向右移动并且在线段BC的延长线上,则C点为BA的中点,然后根据中点的定义分别求出对应的A点表示的数,从而得到移动的距离;(3)根据题意得到a≠0,a≠b,则有b=1,a+b=0,a=,即可求出a与b的值.【解答】解:(1)1;(2)当点A向左移动时,则点B为线段AC的中点,∵线段BC=3﹣(﹣2)=5,∴点A距离点B有5个单位,∴点A要向左移动3个单位长度;当点A向右移动并且落在BC之间,则A点为BC的中点,∴A点在B点右侧,距离B点2.5个单位,∴点A要向右移动4.5 单位长度;当点A向右移动并且在线段BC的延长线上,则C点为BA的中点,∴点A要向右移动12个单位长度;(3)∵三个不相等的有理数可表示为1,a,a+b的形式,又可以表示为0,b,,∴a≠0,a≠b,显然有b=1,∴a+b=0,a=,∴a=﹣1,b=1.【点评】本题考查了数轴:数轴三要素(原点、正方向和单位长度);数轴上左边的点表示的数比右边的点表示的数要小.也考查了平移的性质.。

(正式)2019—2020学年(上)期末厦门市初一年质量检测数学参考答案及评分标准

(正式)2019—2020学年(上)期末厦门市初一年质量检测数学参考答案及评分标准

2019—2020学年(上)期末厦门市初一年质量检测数学参考答案及评分标准一、选择题(本大题共10小题,每小题4分,共40分)11. (1)5;(2)2-;(3)10;(4)8-;(5)2-;(6)2. 12.44.1610⨯ 13. 30,24 14.2 15.1;10 16. 18065m- 三、解答题(本大题有9题,共78分) 17.(本题满分16分,每小题4分)(1)计算:42(3)(9)+⨯---;解:原式4(6)9=+-+……………………………2分29=-+……………………………3分 7=……………………………4分(2)计算:(22)(35)x x x +--+;解:原式2235x x x =+---……………………………2分7=-……………………………4分(3)计算:321(2)(35)2(3⎡⎤-+-⨯÷-⎣⎦);解:原式[](8)(95)2(3=-+-⨯⨯-)……………………………1分(842)(3)=-+⨯⨯-(88)(3)=-+⨯-……………………………2分 0(3)=⨯-……………………………3分0=……………………………4分(4)5931y y +=-.解:5319y y -=--……………………………2分210y =-……………………………3分 5y =-……………………………4分18.(本题满分7分)解:原式222561222x x y x y =--+-……………………………2分214x y =-……………………………4分当127x y =-=,时,原式21(2)147=--⨯……………………………5分 42=-……………………………6分2=……………………………7分19.(本题满分7分) 解:由题意得,14124x x+--=……………………………1分 2(1)44x x +-=-……………………………3分 2244x x +-=-……………………………4分 2424x x +=-+……………………………5分36x =……………………………6分2x =∴当2x =,112x +-和44x-的值相等.……………………………7分 20.(本题满分7分)解:正确画出射线OD ……………………………2分 下结论 ……………………………3分∵OC 平分∠AOB ,∠AOB =128°∴111286422AOC AOB ∠=∠=⨯︒=︒………5分 ∵∠COD 和∠AOC 互余∴90AOC COD ∠+∠=︒ ……………………………6分∴909064=26COD AOC ∠=︒-∠=︒-︒︒ ……………………………7分21.(本题满分7分)解:设木头长为x 尺,则绳子长为( 4.5)x +尺,……………………………1分根据题意得1( 4.5)12x x ++=……………………………4分 4.522x x ++= ……………………………5分 6.5x = ……………………………6分答:木头长为6.5尺. ……………………………7分22.(本题满分7分) 解:(1)原式5(2)4=+-⊕34=⊕……………………………1分34=+7=……………………………2分(2)①新运算“⊕”具有交换律.……………………………3分 理由如下:∵a b a b ⊕=+,b a b a⊕=+,=a b b a ++又∵∴a b b a⊕=⊕∴新运算“⊕”具有交换律. ……………………………4分 ②新运算“⊕”不具有结合律.……………………………5分 反例如下:∵[]12(3)12(3)3(3)3(3)0⊕⊕-=+⊕-=⊕-=+-=……………………………6分[]12(3)12(3)11112⊕⊕-=⊕+-=⊕=+=∴[][]12(3)12(3)⊕⊕-≠⊕⊕-∴新运算“⊕”不具有结合律.……………………………7分23. (本题满分8分)解:(1)0.52000.55(350200)0.8(400350)⨯+-+-……………………………2分10082.540=++222.5=∴小辰家2019年5月需交电费222.5元……………………………3分 (2)设小辰家8月份用电x 度当450x =时,小辰家2019年8月和9月共需交电费为0.52000.55(450200)0.52000.55(350200)0.8(450350)⨯+-+⨯+-+-……4分 0.5(200200)0.55(250150)0.8(450350)=⨯++++-20022080=++500660=<∴450x >……………………………5分解法1: 5000.8(450)0.8(450)660x x +-+-=……………………………7分5000.8(2900)660x +-=0.8(2900)160x -=2900200x -=550x =答:小辰家8月份用电550度. ……………………………8分解法2:0.52000.55(450200)0.8(450)0.52000.55(350200)0.8(350)660x x ⨯+-+-+⨯+-+-= ……………………………7分0.5(200200)0.55(250150)0.8(2800)660x ⨯++++-=2002200.8(2800)660x ++-=0.8(2800)240x -=2800300x -=550x =答:小辰家8月份用电550度. ………………………8分24.(本题满分9分)解(1)正确作图 ……………………1分下结论 ……………………2分 (2)① 解法1∵点O 是线段BC 的中点,∴BO =CO ∵BO =2EO ∴CO =2EO ∵CO =CE+EO∴CE=EO ………………………3分 ∵CE=2AC ∴EO=2AC ∴BO =CO=4AC∵AC CO BO AB ++=∴4412AC AC AC ++=………………………4分 ∴43AC =………………………5分 解法2∵点O 是线段BC 的中点∴BO =C O ∵BO =2EO ∴CO =2EO ∵CO =CE+EO∴CE=EO ………………………3分 ∵CE=2AC ∴EO=2ACOCBA设AC x =,则4BO CO x ==∵AB AC CO BO =++∴4412x x x ++=………………………4分43x =∴ ∴43AC =………………………5分 ②点E 是线段CD 的中点.理由如下: 设AC x =,则2CE x = ∵12AB =,∴12BC AB AC x =-=- ∵点O 是线段BC 的中点∴111(12)6222CO BC x x ==-=-………………………6分 ∴1562622OE CO CE x x x =-=--=-………………………7分∵2912OD AC =-∴962OD x =-………………………8分∴9566222DE OD OE x x x =+=-+-=∴DE CE =∴点E 是线段CD 的中点………………………9分25. (本题满分10分)解:(1)63………………………2分 (2)当OM 与ON 第一次重合时,t=90(45)10÷+=………………………3分 ∵t <10∴射线OM 在∠AOB 内,射线ON 在∠BOC 内.∴AOM MON BON AOC ∠+∠+∠=∠ ∴4590t m t ++=410.8590t t ++=………………………4分解得8.8t =………………………5分(3)∵∠AOC =90°,∠BOC =2∠AOB 又∵∠AOB+∠BOC =90°∴1230,6033AOB AOC BOC AOC ∠=∠=︒∠=∠=︒………………………6分图8分四种情况讨论①如图8-1,当t 大于0且不大于10时, ∵AOM MON CON AOC ∠+∠+∠=∠ ∴4590t m t ++=∴909m t =-………………………7分②当射线ON 运动到与OB 重合时,60125t == 如图8-2,当t 大于10且不大于12时, ∵AOM CON MON AOC ∠+∠-∠=∠ ∴4590t t m +-=∴990m t =- ………………………8分③当射线OM 运动到与OC 重合时,9022.54t ==如图8-3,当t 大于10且不大于22.5时, ∵AOB BON MON AOM ∠+∠+∠=∠ ∴305(12)4t m t +-+=∴30m t =-+………………………9分④当射线ON 运动到与OC 重合时,602245t ⨯== 如图8-4,当t 大于22.5且不大于24时,∵BON MON BOC ∠+∠=∠ ∴5(12)60t m -+=∴5120m t =-+………………………10分BN(M )OA图8-4CA。

2024-2025学年人教版初一数学上册质量检查试卷及答案

2024-2025学年人教版初一数学上册质量检查试卷及答案

2024-2025学年人教版初一数学上册质量检查试卷班级:________________ 学号:________________ 姓名:______________一、单选题(每题3分)1.下列数中,是正整数的是()A. -3B. 0C. 2D. 1/2答案:C2.下列各式中,是方程的是()A. 2x + 1B. 3 + 5 = 8C. 4x = 2yD. 2 > 1答案:C3.下列计算正确的是()A. 3a + 2b = 5abB. 5a^2 - 2b^2 = 3C. 7a + a = 7a^2D. 2x^2 - x^2 = x^2答案:D4.下列调查中,适合采用全面调查(即普查)的是()A. 对市场上某种饮料质量情况的调查B. 对乘坐飞机的旅客是否携带违禁品的调查C. 对某市中学生目前使用手机情况的调查D. 对某类烟花爆竹燃放安全情况的调查答案:B5.下列各组数中,不能构成直角三角形的是()A. 3, 4, 5B. 6, 8, 10C. 5, 12, 13D. 8, 15, 17答案:D(因为82+152≠172,不满足勾股定理的逆定理)二、多选题(每题4分)1.下列二次根式中,与√3是同类二次根式的是( )A. √6B. √12C. √(1/3)D. √27答案:B, C解析:A. √6 与√3 不同类;B. √12 = 2√3,与√3 同类;C. √(1/3) = √3/3,与√3 同类;D. √27 = 3√3,虽然包含√3,但系数不同,通常不视为严格同类。

2.下列计算正确的是( )A. √8 - √2 = √6B. 3√2 + 2√3 = 5√5C. (√3 + √2)^2 = 5 + 2√6D. √(a^2 + b^2) = a + b答案:C解析:A. √8 - √2 = 2√2 - √2 = √2 ≠ √6;B. 3√2 和2√3 不是同类二次根式,不能合并;C. (√3 + √2)^2 = 3 + 2√6 + 2 = 5 + 2√6;D. √(a^2 + b^2) 与 a + b 不等,除非 a, b 满足特定条件(如直角三角形的两直角边)。

成都市高新区2022-2023学年度七上期末试题参考答案及评分意见

成都市高新区2022-2023学年度七上期末试题参考答案及评分意见

2022-2023学年上学期期末学业质量检测试题七年级数学参考答案及评分意见说明:(一)考生的解法与“参考答案”不同时,可参照“答案的评分标准”的精神进行评分.(二)如解答的某一步计算出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得分数的二分之一;如属严重的概念性错误,则不给分.(三)以下解答各行右端所注分数表示正确做完该步骤应得的分数.(四)评分的最小单位是1分,得分或扣分都不能出现小数.A卷(共100分)第Ⅰ卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分)题号12345678答案D C B D C B A A第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.910.−311.>12.60°13.−7.三、解答题(本大题共5个小题,共48分)14(本小题满分10分,每题5分)解:(1)原式=32−116+73...................3分=2.....................5分(2)原式=16÷(−8)−12..................2分=−2−12..................3分=−52.....................5分15.(本小题满分10分,每题5分)解:(1)原式=2+1−6+3.....................3分=5x-5.....................5分(2)两边同时乘以6得:10x+x-3=6-6x.....................2分11x+6x=6+3.....................3分17x=9x=917.....................5分16.(本小题满分8分)解:(1)∵爷爷赢了a盘,且每盘都分出了胜负.∴孙子赢了(8-a)盘.....................2分又∵孙子赢1盘记3分∴孙子的得分数为(24-3a)分.....................4分(2)设爷爷赢了x盘,孙子赢了(8-x)盘.....................5分由题意得:x=24-3x.....................6分解得:x=6.....................7分答:爷爷赢了6盘......................8分17.(本小题满分10分)÷=(户).解:(1)本次调查家庭数量是:2020%100∴参与本次调查的家庭数量是100户.....................2分(2)扇形统计图中“B”部分家庭数量是:100-20-25-15=40(户)..........3分补全条形统计图如下:.....................4分扇形统计图中“C”部分所占的百分比为:25100×100%=25%..............5分(3)调查小组的估计合理.理由如下:由题意可知小区1周内使用7个及以上环保塑料袋约占总数的15%,现小区有1500户居民,⨯=(户).............8分所以150015%225(答案不唯一,合理即可)18.(本小题满分10分)解:(1)∠AOC和∠BOD的大小相等.理由如下:.....................1分由题意可得:射线OD、射线OC和射线OB在射线OA同侧∵∠COD=60°,∠AOD=90°∴∠AOC=∠AOD﹣∠COD=30°又∵∠AOB=120°∴∠BOD=∠AOB﹣∠AOD=30°∴∠AOC=∠BOD.....................3分(2)∵射线OC恰好平分∠AOE,∴∠AOC=∠EOC=,∴∠AOE=2∠AOC=2,∵射线OE为∠AOD的平分线,∴∠DOE=∠AOE=2,∴∠COD=∠COE+∠DOE=3,∵∠COD=60°,∴3=60°,.....................5分∴=20°,∴∠BOD=∠AOB﹣∠AOD=120°﹣4=40°.....................6分(3)①如图1,当0°<<60°,∵∠BOD=∠AOB﹣∠COD﹣∠AOC=120°﹣60°﹣α=60°﹣α,∵∠AOD=α+60°,射线OE为∠AOD的平分线,∴∠AOE=12∠AOD=12(α+60°),∴∠COE=∠AOE﹣∠AOC=12(α+60°)﹣α=12(60°﹣α),∴∠COE=12∠B;.....................8分②如图1,当60°<<120°,∵∠BOD=∠AOC+∠COD﹣∠AOB=60°+α﹣120°=α﹣60°,∵∠AOD=α+60°,射线OE为∠AOD的平分线,∴∠AOE=12∠AOD=12(α+60°),∴∠COE=∠AOC﹣∠AOE=α﹣12(α+60°)=12(α﹣60°),∴∠COE=12∠B;综上所述,∠COE=12∠B......................10分B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.202320.144°21.1622.赚,1523.8或4二、解答题(本大题共3个小题,共30分,解答题写在答题卡上)24.(本小题满分8分)解:(1)375.....................2分(2)设长方形的宽为x厘米,则长为(x+4)厘米2(x+4+x)=80.....................4分解得x=18长方形的面积:x(x+4)=396平方厘米.....................6分(3)∵375<396∴当长方形的长和宽越接近时,面积越大(答案不唯一,合理即可).....................8分25.(本小题满分10分)解:(1)−+1.....................2分(2)∵=−22−3−1=−22−3+3∴=−5+3.....................4分则关于x的方程=0有−5+3=0∴x=35.....................6分(3)由=2−2−22+6整理得到:=−2−22+2+6∴=−2+6+6.....................8分则关于的方程=2+6∴−2+6+6=2+6−2+4=0.....................9分∵=−2−22+2+6是关于的二次多项式∴≠2∴−2+4≠2故关于的方程=2+6的解为=0......................10分26.(本小题满分12分)解:(1)=−5,=3,B=8;.....................3分(2)设点对应的数为,∵点对应的数为−5,点对应的数为3,∴B =−−5=+5,B =−3∵点到点的距离是点到点的距离的3倍∴B =3B∴−3=3+5解得=−9或=−3∴点对应的数为−9或−3......................7分(3)=2,理由如下:.....................8分设运动时间为秒,根据题意得:A =B ,B =B ,∴B =B +B =8+B ,∵点为线段B 的中点,∴1(8+)4,22n AC QC nt t ===+∴4,2nPC AC AP t mt =-=+-.....................10分∵线段PC 的长度总为一个固定的值,∴4=4,22n n PC t mt m t =+-+(-)的值与的值无关,∴=02nm -,∴=2......................12分。

苏科版七年级数学上册期末学业水平质量检测【含答案】

苏科版七年级数学上册期末学业水平质量检测【含答案】

苏科版七年级数学上册期末学业水平质量检测一、选择题。

(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)﹣的倒数是( )A.﹣B.C.﹣3D.32.(2分)下列式子中,与ab2是同类项的是( )A.ab B.a2b C.ab2c D.﹣2ab23.(2分)下列语句中,不正确的是( )A.0是单项式B.多项式xy2z+y2z+x2的次数是4C.的系数是D.﹣a的系数和次数都是14.(2分)已知关于x的方程2x+m﹣9=0的解是x=3,则m的值为( )A.3B.4C.5D.65.(2分)将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( )A.B.C.D.6.(2分)有下列生活,生产现象:①用两个钉子就可以把木条固定在墙上.②从A地到B地架设电线,总是尽可能沿着线段AB架设.③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有( )A.①②B.①③C.②④D.③④7.(2分)某车间有21名工人生产螺栓和螺母,每人每小时能生产螺栓12个或螺母18个,现分配x名工人生产螺栓,其余的工人生产螺母,并使得每小时生产的螺栓和螺母可按1:2配套,则所列方程为( )A.12x=18(21﹣x)B.2×12x=18(21﹣x)C.2×18x=12(21﹣x)D.12x=2×18(21﹣x)8.(2分)整式mx﹣n的值随x取值的变化而变化,下表是当x取不同值时对应的整式的值:x﹣10123 mx﹣n﹣8﹣4048则关于x的方程﹣mx+n=8的解为( )A.x=﹣1B.x=0C.x=1D.x=3二、填空题。

(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(2分)计算:1﹣2= .10.(2分)地球与月球的平均距离大约384000km,用科学记数法表示这个距离为 km.11.(2分)下列各数①﹣2.5,②0,③,④,⑤(﹣4)2,⑥﹣0.5252252225……,是无理数的序号是 .12.(2分)如图,直线CD经过点O,若OC平分∠AOB,则∠AOD=∠BOD,依据是 .13.(2分)若代数式2a﹣b的值是3,则多项式6a﹣(3b+8)的值是 .14.(2分)比较大小:3x2+5x+1 2x2+5x﹣1.(用“>、=或<”填空)15.(2分)用代数式表示图中阴影部分的面积 .16.(2分)如图,直线AB、CD相交于点O,∠AOC=70°,∠BOE=25°,则∠DOE= °.17.(2分)如图,C是线段AB上一点,D是线段CB的中点,AB=10,AD=7.若点E在线段AB上,且CE=2,则BE= .18.(2分)如图,已知数轴上点A、B、C所表示的数分别为a、b、c,C是线段AB的中点,且AB=4,如果原点在线段AC上,那么|b﹣2|+|c﹣2|= .三、解答题。

福建省泉州市鲤城区2023-2024学年上学期七年级期末教学质量跟踪监测数学试题参考答案

福建省泉州市鲤城区2023-2024学年上学期七年级期末教学质量跟踪监测数学试题参考答案

鲤城区2023-2024学年上学期七年级期末教学质量跟踪监测数学参考答案及评分标准一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合要求的。

1.B 2.C 3.A 4.C 5.C 6.B 7.D 8.D 9.A 10.B二、填空题:本题共6小题,每小题4分,共24分。

11.50-12.>13.18︒14.绸15.316.7三、解答题:本题共9小题,共86分。

解答应写出文字说明、证明过程或演算步骤。

17.(8分)解:(1)原式57320=-++-···········································································2分15=-·······························································································4分(2)原式6225255=-⨯⨯+···········································································6分122=-+··························································································7分10=-·······························································································8分18.(8分)解:原式22221553x y xy xy x y =---·····································································2分22126x y xy =-···························································································4分当1,12x y ==-时·······················································································5分原式()()2111216122⎛⎫=⨯⨯--⨯⨯- ⎪⎝⎭································································6分33=--·····························································································7分6=-·································································································8分19.(8分)解:(1)如图所示,直线AB 即为所求;·····························································2分(2)如图所示,射线BC 即为所求;·····························································4分(3)如图所示,线段AC 即为所求;····························································6分如图所示,点P 即为所求;·································································8分20.(8分)(每空1分)证明:∵180ADC DCE ∠+∠=︒,(已知)∴//AD CE ,(同旁内角互补,两直线平行)·················································3分∴2E ∠=∠,(两直线平行,内错角相等)··················································4分∵1E ∠=∠,(已知)··············································································5分∴12∠=∠,(等量代换)··········································································6分∴AB ∥DE ,(内错角相等,两直线平行)··················································7分∴B CDE ∠=∠.(两直线平行,同位角相等)···············································8分21.(8分)解:(1)35214211+--++=(间)答:退房前民宿共有未入住房间11间.·······················································4分(2)()542321136+++++⨯+-+-⨯=()(分钟)答:退房的手续时间共36分钟.································································8分22.(10分)解:(1)∵10AB =,32PA PB =,∴4PA =,6PB =,················································································2分∵M 是PA 的中点,N 是PB 的中点,∴122PM PA ==,142PN PB ==,······························································4分∵235MN PM PN =+=+=.·····································································6分(2)证明:∵M 是PA 的中点,N 是PB 的中点,∴12PM PA =,12PN PB =,·······································································8分∴1111()2222MN PM PN PA PB PA PB AB =+=+=+=.···································10分23.(10分)解:(1)18,49.5··························································································4分(2)()20 1.810 2.730 5.4 5.499m m ⨯+⨯+-⨯=-··············································7分当40m =时原式 5.4409921699117=⨯-=-=(元)····················································10分24.(12分)(1)回收站到1号楼的距离;·····································································3分(2)当34x ≤≤时,min 5319S =++=答:当回收站在3号楼4号楼之间时S 的最小值是9.····································8分(3)设小区所有用户到回收站的距离之和为S ,则201182163224185196S x x x x x x =-+-+-+-+-+-···························10分当4x =时min 203182161181192168S =⨯+⨯+⨯+⨯+⨯=.答:回收站建在4号楼,小区所有住户到回收站的距离之和最小,最小值为168.···········································································································12分25.(14分)解:(1)15DOE ∠=︒······················································································3分(2)设AOC β∠=,则180BOC β∠=︒-,①当OC 在直线AB 上方时,∵OE 平分BOC ∠,∴1111180902222COE BOC ββ⎛⎫∠=∠=︒-=︒- ⎪⎝⎭,···········································4分∵OC OD ⊥,∴90COD ∠=︒,∴11909022DOE COD COE ββα⎛⎫∠=∠-∠=︒-︒-== ⎪⎝⎭,∴2AOC α∠=.·······················································································5分②当OC 在直线AB 下方,OD 在AOC ∠外部时,由①知90COE COD DOE α∠=∠-∠=︒-,∵OE 平分BOC ∠,∴()22901802BOC COE αα∠=∠=︒-=︒-,∴()180********AOC BOC αα∠=︒-∠=︒-︒-=.············································7分③当OC 在直线AB 下方,OD 在AOC ∠内部时,∵OE 平分BOC ∠,180BOC β∠=︒-,∴()11118090222COE BOC ββ∠=∠=︒-=︒-,∵90COD ∠=︒∴11909018022DOE COD COE ββα⎛⎫∠=∠+∠=︒+︒-=︒-= ⎪⎝⎭,∴3602AOC α∠=︒-,综上,AOC ∠的度数为2α或3602α︒-.·······················································9分(3)由(2)知AOC β∠=,1902COE β∠=︒-,∴11909022AOE AOC COE βββ⎛⎫∠=∠+=+︒-=︒+ ⎪⎝⎭,···································11分∵OF 是AOE ∠的角平分线,∴111190452224AOF AOE ββ⎛⎫∠=∠=︒+=︒+ ⎪⎝⎭,············································12分∵11909022DOE OCD COE ββα⎛⎫∠=∠-∠=︒-︒-== ⎪⎝⎭,∴1452AOF α∠=︒+.··············································································14分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015—2016学年(上) 厦门市七年级质量检测数学参考答案
说明:
1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分.
2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后续部分但未改变后继部分的测量目标,视影响的程度决定后继部分的给分,但原则上不超过后续部分应得分数的一半. 3.解答题评分时,给分或扣分均以1分为基本单位.
一、选择题(本大题有11小题,每小题4分,共40分)
二、填空题(本大题有6小题,每小题4分,共24分)
11. 3.14; 12.58 ; 13.8; 14. 答案不唯一(如:A =x ,B =-x +1) ; 15.4; 16. 4, 0.6.
三、解答题(本大题有11小题,共86分) 17.(本题满分7分)
解:原式=10+2×3×(-2) (2)
=10+6×(-2) ...........................3 =10+(-12) ..............................5 =-2. (7)
备注:1.写出正确答案,至少有一步过程,不扣分.
2.只有正确答案,没有过程,只扣1分.
3.没有写出正确答案的,若过程不完整,按步给分. 18.(本题满分7分)
解: 原式=b a b a 3334-++ (4)
=b b a a 3334-++ (5)
=7a . (7)
备注:1.写出正确答案,至少有一步过程,不扣分.
2.只有正确答案,没有过程,只扣1分.
3.没有写出正确答案的,若过程不完整,按步给分.
4.第一步运算中,若答案为“b a b a -++334”视为理解去括号为乘法运算,但使用分配侓运算出错,给2分. 19.(本题满分7分)
解: )2()1()1()1()2(0)2()3(++++-+-++++-++ ..............................2 =4. (4)
8)484(÷+⨯ ……………………5 =36÷8 ……………………6 =4.5.
答: 这8名男生平均每人做了4.5个引体向上. ……………………7 备注:若解题过程为5.48368)65336427(=÷=÷+++++++,给6分. 20.(本题满分7分)
解: ∵大圆的面积为2
R π (1)
小圆的面积为2
2
3
R π ……………………2 ∴圆环的面积=2
2
3
2R R ππ- ……………………3 2
3
1R π=
. ……………………4 当3=R 时, 圆环的面积233
1
⨯=
π ……………………5 93
1
⨯=π ……………………6 π3=.
答: 圆环的面积为π3. ……………………7 21.(本题满分7分)
=-3-2×1+1 (5)
=-5+1 ……………………6 =-4 ……………………7 22.(本题满分7分)
解: )1(3)12(26+=-x x - (2)
33246+=+x x - ……………………4 62334--=-x x - ……………………5 57-=x - ……………………6 7
5
=
x ……………………7 23.(本题满分7分)
解:设应计划使用x m 3
木料制作桌面,则使用(6-x )m 3
木料制作桌腿. (1)
依据题意,得
300)6(154⨯-=⨯x x (3)
解方程,得5=x ........................5 16=-x (6)
答:应计划使用5m 3木料制作桌面,使用1m 3
木料制作桌腿. (7)
24.(本题满分7分) 解
:


COD=x
°
,


BOC=(2x +10)°. (1)
∵OB 是∠AOC 的平分线,OD 是∠COE 的平分线
∴∠BOC=∠AOB=12∠AOC ,∠COD=1
2∠COE ……………2 ∴∠BOC+∠COD=12∠AOC+1
2∠COE =1
2∠AOE (3)
O
B
A
E
D C
(第24题)
B
A
= 1
2×140°=70°……………………4 ∴70102=++x x ……………………5 解方程,得20=x ……………………6 ∴∠AOB=(2x +10)°=50° ……………………7 25.(本题满分7分) 解:
当x 大于5且不大于8时,
方式一收费为42)3(210+=-+x x ;……………………1 方式二收费为 13)3(38-=-+x x .……………………2 两种收费之差为x x x -=--+5)13(42.……………………3 因为x 大于5,所以x -5小于0,此时方式一省钱. ……………………4 当x 大于8时,
方式一收费为43)8()8(2)38(210-=-+-+-⨯+x x x ; ……………………5 方式二收费为31x -.
两种收费之差为3-,而3-小于0,此时还是方式一省钱. ……………………6 所以当x 大于5时,方式一省钱. ……………………7 备注:
1.若仅结论正确或分类正确,可得1分;
2.对于第一种情况,若列出方程)3(38)3(210-+=-+x x ,等同于列出收费一和二的代数式,给2分.若此解方程得出5=x ,就直接推出方式一省钱,可得3分;
3.对于第二种情况,若列出方程102(83)2(8)(8)31x x x +⨯-+-+-=-,评分参照第一种情况.
26.(本题满分11分)
解: (1)∵点C 是线段AB 的中点, 6=AB ,
∴321
==
AB BC . ……………………2 ∵BC BD 31
=,
∴133
1
=⨯=BD . (3)
(第26(1)题)
E
D C
A
∴213=-=-=BD BC CD . ……………………4 (2)设x BD x AD 3,2==,……………………5 则x AB 5=. ……………………6 ∵点C 是线段AB 的中点,
∴x AB AC 2
521==. (7)
∴x x x AD AC CD 2
1
225=-=-=. (8)
∵BE AE 2=,
∴x AB AE 3
10
32==. (9)
∴x x x AC AE CE 65
25310=-=-=. (10)
∴CD :12CE =:5
6
3:5= (11)
27.(本题满分12分)
解:(1)设
x AOC =∠,则
x BOD 2=∠. (1)
∵射线OB 是COD ∠的平分线,
∴BOC BOD ∠=∠. ……………………2 依题意得,
x x +=302. (4)
∴30=x . (5)
答:AOC ∠的度数为30.
(2)设甲运动的时间为t 秒,则AOC ∠=
t 5,
t BOD 10=∠. 当COD ∠第一次为90时(如图1), 依题意得,
9010305=++t t . ........................6 ∴4=t . (7)
当COD ∠第二次为90时(如图2), 依题意得,
3609030105=+++t t . ........................8 ∴16=t (9)
(第26(2)题)
图1
A
A
C
D
图2
当COD ∠第三次为90时时(如图3), 依题意得,
∴3609030105=-++t t . ........................10 ∴28=t . (11)
∵当乙机器人到达点B 时,甲、乙同时停止运动,
∴两个机器人运动的时间为360°÷10°=36秒.
故以上三种情况,t 的取值均符合题意. (12)
结合图形可知,当机器人运动时间大于28秒,且小于或等于36秒时,COD ∠的度数均大于90°.
所以在机器人运动的整个过程中,若COD ∠=90,甲运动的时间分别为4秒,16秒,28秒.
图3
A
(第27(2)题)。

相关文档
最新文档