2013中考专题复习探究题型

合集下载

中考数学专题复习:规律探索题

中考数学专题复习:规律探索题

中考链接 观察“田”字中各数之间的关系:
,…, ,则 的值为

七、学业检测
一.选择题(共4小题,每题10分,共40分) 1.教材上“阅读与思考”曾介绍“杨辉三角”(如图),
利用“杨辉三角”展开(1﹣3x)5= a0+a1x+a2x2+a3x3+a4x4+a5x5,那么a1+a2+a3+a4+a5=( )
“★”按一定规律组成的.已知第1个图形中有8个“●” 和1个“★”,第2个图形中有16个“●”和4个“★”,第 3个图形中有24个“●”和9个“★”,…,则第 个图 形中“★”的个数是“●”的个数的2倍.
类型三 图形变化类规律探索
针对训练4 4.我们将如图所示的两种排列形式的点
的个数分别称作“三角形数”(如1,3, 6,10…)和“正方形数”(如1,4,9, 16…),在小于200的数中,设最大 的“三角形数”为m,最大的“正方形数 ”为n,则m+n的值为 .
中考链接
将从1开始的连续自然数按以下规律排列:
第1行
1
第2行
234
第3行
56789
第4行
10 11 12 13 14 15 16
第5行 17 18 19 20 21 22 23 24 25
若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2) 表示6,则表示99的有序数对是 .
中考链接
如图,点B1在直线l:y=x上,点B1的横坐标为2,过点B1作 B1A1⊥l , 交x轴于点A1 , 以A1B1为边,向右作正方形A1B1B2C1 , 延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2 , 延 长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3 , 延长 B4C3交x轴于点A4;…;照这个规律进行下去,则第n个正方形 AnBnBn+1Cn的边长为 ________(结果用含正整数n的代数式表 示).

2013届全国中考数学3年中考2年模拟之热点题型:7.3开放探究题pdf版

2013届全国中考数学3年中考2年模拟之热点题型:7.3开放探究题pdf版
7 . 3 开放探究题
这类问题具有较强的综合性, 涉及的数学基础知识较为广 题型特点 ห้องสมุดไป่ตู้ 既能考查学生对基础知识掌握的熟练程度, 又能考查学生的 探究性问题为学生提供了广阔的思维空间, 有利于调动学 泛, 观察 、 分析 、 概括能力 , 能从具体 、 特殊的事实中探究其存在的规 生的创新意识和探究兴趣, 成为近几年中考的热点题型之一. 探 把藏在表面现象中的一般规律挖掘出来. 究型问题是指命题中缺少一定的条件或无明确的结论, 需要经 律, 过推断、 补充并加以证明的题型, 探究性问题具有以下特点: 1 .条件的不确定性. 2 .结构的多样性. 3 .思维的多向性. 4 .解答的层次性. 5 .过程的探究性. 6 .知识的探究性.

命题趋势 开放探究性问题是一个充满着观察、 归纳、 猜想、 尝试、 探究 的发现过程 , 需要学生对问题进行多方位 、 多角度 、 多层次的思 审视, 对培养学生的创造性思维能力、 推理能力、 直觉思维能 考、 力和全面提高学生的数学素养具有重要的意义, 倍受中考命题 是中考试题的热点之一. 者的青睐,
定圆心坐标. ( ) 若要它的面积 1 2 3 3 犅 犆 的面积可由犛△犕犅 犅 犆× 犺 表示, △犕 犆= , 烄 - 狓- 2 狔= 2狓 最大, , 2 狓= 2 需要使 取最大值 , 即点 到直线 的距离最大 , 若设 犺 犕 犅 犆 解得 烅 1 =- 3 . 狔 一条平行于 的直线 , 那么当该直线与抛物线有且只有一个交 犅 犆 , 4 狔= 2狓- 烆 该交点就是点 犕. 点时, , ) ∴ 犕( 2 - 3 . 【 误区警示 】 ) 问, 要注意条件的运 3 本题探究主要在第 ( 【 方法点拨】 ) 该函数解析式只有一个待定系数, 只需将 1 ( 用 , 当直线与抛物线只有一个交点时 , 联立方程组时取 ; 例 Δ=0 点 犅 坐标代入解析式中即可. 要想面积最大, 只要高最大即可. 外三角形底边一定, ( ) 首先根据抛物线的解析式确定点 犃 坐标, 然后通过证明 2 由此确 犅 犆 是直角三角形来推导出直径 犃 犅 和圆心的位置, △犃

2013年河北省中考探究题复习精选

2013年河北省中考探究题复习精选

专题三:实践探究性问题实践探究性问题是指学生经过实践,在动手操作过程中,经过观察、比较,由特殊到一般,再由一般到特殊,然后进行类比、猜想、归纳,探索出存在的规律,从而解决相关的问题。

实践探究性问题是河北省近年中考试题中比较常见的题目。

2009、2010、2011年均以圆的相关知识为背景,2012年变为直线型的探究问题,均考查学生对实验活动的探究能力。

解答这类问题的关键是牢固掌握基本知识,加强“一题多解”、“一题多变”等的训练;需要有较强的发散思维能力、创新能力。

重难点突破:解决此类问题需从题目文字提供的信息中找到关键性的语句,给自己的思考已明确的方向。

要运用类比、归纳、分类讨论等数学思想全面考虑问题,有时还借助图形、实物或实际操作来打开思路。

1.(09年河北)如图13-1至图13-5,⊙O 均作无滑动滚动,⊙O 1、⊙O 2、⊙O 3、⊙O 4均表示⊙O 与线段AB 或BC 相切于端点时刻的位置,⊙O 的周长为c .阅读理解:(1)如图13-1,⊙O 从⊙O 1的位置出发,沿AB 滚动到⊙O 2的位置,当AB = c 时,⊙O 恰好自转1周. (2)如图13-2,∠ABC 相邻的补角是n °,⊙O 在∠ABC 外部沿A -B -C 滚动,在点B 处,必须由 ⊙O 1的位置旋转到⊙O 2的位置,⊙O 绕点B 旋 转的角∠O 1BO 2 = n °,⊙O 在点B 处自转360n 周.实践应用:(1)在阅读理解的(1)中,若AB = 2c ,则⊙O 自转 周;若AB = l ,则⊙O 自转 周.在 阅读理解的(2)中,若∠ABC = 120°,则⊙O 在点B 处自转 周;若∠ABC = 60°,则⊙O 在点B 处自转 周. (2)如图13-3,∠ABC=90°,AB=BC=12c .⊙O 从⊙O 1的位置出发,在∠ABC 外部沿A -B -C 滚动 到⊙O 4的位置,⊙O 自转 周.拓展联想:(1)如图13-4,△ABC 的周长为l ,⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部,按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,⊙O 自转了多少周?请说明理由.图13-4图13-1AB图13-3(2)如图13-5,多边形的周长为l ,⊙O 从与某边相切于点D 的位置出发,在多边形外部,按顺时针方向沿多 边形滚动,又回到与该边相切于点D 的位置,直接..写 出⊙O 自转的周数.分析:此题本身显然还是直线与圆的位置关系问题,只不过不再是人们习惯的移动直线与圆相切,而是移动圆(本题是扇形)来讨论圆与真的位置关系。

2013届中考数学考前热点聚焦专题八《探究安徽中考汇总

2013届中考数学考前热点聚焦专题八《探究安徽中考汇总

行考查,预测在2013年中考题中仍会出现. 专题八I 探究安徽中考几何证明题I 考情分析丨 I几何证明题重在训练学生应用数学语言合情推理能力,几 何证明题和计算题在中考中占有重要地位.根据新的课程标 准,对几何证明题证明的方法技巧上要降低,繁琐性、难度方 面要降低.但是注重考查学生的创新能力,探究能力,所以探 究性几何证明题是目前较受命题专家“青睐”的题型.探究性几何证明题的特点是:(1)条件多余需要学生选择,条件不足需要学生补充;(2)一般没有明确的结论;(3)没有 定的形式和方法,需要自己通过观察、分析、比较、 理、判定等探究活动来确定所需求的有一定的综合性.安徽省在2011年和2012年第22题都专题八I 考情分析茴I热考探究例1 [2012•安徽]如图X8 — 1①,在△ABC中,D、E、F分别为三边的中点,G点在边4B上,△BDG与四边形ACDG的周长相等,设AC=b^ AB=c.(1)求线段〃G的长;(2)求证:DG平分ZEDF;⑶连接CG,如图X8-1②,若与△DFG相似,求证:BG丄CG・专题八I热点探究【题干关键词】三边的中点,周长相等.图X8—【提示】中位线定理,等式性质,等腰三角形性质,平行线性质,相似三角形的性质与判定.①ABG=A解:⑴TD 、C 、F 分别是Z\ABC 三边中点,.・.DE =|AB , DF =|AC ・又•・・ABDG 与四边形A CDG 周长相等, 即BD+DG+BG=AC + CD+DG + AG, ・・・BG=AC + AGVBG=AB —AG,专题八I 热点探究、十 m b+c b+c c b(2)证明:BG=p~, FG=BG —BF=——产㊁・・FG=DF, AZFDG=ZFGD ・ 又.・ DE 〃AB, ・・ZEDG=ZFGD,.\ZFDG=ZEDG,・・・DG 平分ZEDF ・(3)证明:在△DFG 中,ZFDG = ZFGD, △DFG 是等 腰三角形,VABDG 与△DFG 相似,/.ABDG 是等腰三角/.ZB=ZBGD, ・・・BD=DG, 则 CD = BD=DG,/. GD = |BC, AZBGC = 90° , ABG 丄CG例2 30°,专题八热点探究(1)含30。

2013届中考物理分类精粹之热点题型专项导练:专题四 开放类题型pdf版

2013届中考物理分类精粹之热点题型专项导练:专题四 开放类题型pdf版

5 船运动状态改变 力可以改变物体的运动状态

鱼叉尖锐
减 小 受 力 面 积 ,增 大 压 强
力,应当认真观察图 片,找 出 与 物 理 知 识 有 关 的 结 构、也 可 以
从自行车使用的过程中联系对应的物理知识. 【完 全 解 答 】问 题 1:轮 胎 上 为 什 么 刻 有 花 纹 ? 回 答 1:可 以 增 大 轮 胎 与 地 面 的 摩 擦 . 问 题 2:自 行 车 的 刹 车 把 手 是 省 力 杠 杆 还 是 费 力 杠 杆 ? 回 答 2:刹 车 把 手 是 省 力 杠 杆 . 问 题 3:铃 铛 是 怎 样 发 声 的 ? 回 答 3:是 铃 铛 在 振 动 发 声 . 问题4:尾灯的结构是怎样的? 是利用什么知识工作的? 回答4:尾 灯 是 相 互 垂 直 的 反 射 面,利 用 光 的 反 射 来
出的简图.
据发明者介绍,他制作了 一 个 “水 流 发 电 机”放 在 热 水
器的入水口,里面有一个涡 轮.当 自 来 水 冲 击 涡 轮 转 动 时,
转动的涡轮带动小型发电机发电,电压可 达 3V,供 给 热 水
器点火装置完成点火.请参照 示 例 写 出 这 种 热 水 器 在 使 用
过程中所涉及的物理现象和 对 应 的 物 理 知 识 (不 得 与 示 例
【例1】 (2012������四川自贡)自行车是一种 人 们 常 用 的、简
便无污染的交通工具.仔细观察自行车 的 构 造(如 图),想 想 你 的使用过程,结合所学有关知识,请提 出 两 个 与 物 理 知 识 有 关 的 问 题 ,并 针 对 提 出 的 问 题 作 出 简 要 的 回 答 .
【完 全 解 答 】
物理现象
对应的物理知识

2013年各地中考题类型规律探究题、开放探究题

2013年各地中考题类型规律探究题、开放探究题

规律探究题,开放探究题一、选择题1.(2013湖北十堰,8,3分)如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是()2.(2013湖北武汉,8,3分)两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有()A.21个交点B.18个交点C.15个交点D.10个交点答案:C解析:两条直线的最多交点数为:12×1×2=1,三条直线的最多交点数为:12×2×3=3,四条直线的最多交点数为:12×3×4=6,所以,六条直线的最多交点数为:12×5×6=15,二、填空题3.(2013湖南娄底,18,4分)如图,是用火柴棒拼成的图形,则第n个图形需2n+1根火柴棒.4.(2013绥化,8,3分)如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O 后F,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线OC上.5.(2013湖北恩施州,16,3分)把奇数列成下表,根据表中数的排列规律,则上起第8行,左起第6列的数是171.6.(2013牡丹江,26,8分)已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1).易证BD+AB=CB,过程如下:过点C作CE⊥CB于点C,与MN交于点E∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.∵四边形ACDB内角和为360°,∴∠BDC+∠CAB=180°.∵∠EAC+∠CAB=180°,∴∠EAC=∠BDC.又∵AC=DC,∴△ACE≌△DCB,∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=CB.又∵BE=AE+AB,∴BE=BD+AB,∴BD+AB=CB.(1)当MN绕A旋转到如图(2)和图(3)两个位置时,BD、AB、CB满足什么样关系式,请写出你的猜想,并对图(2)给予证明.(2)MN在绕点A旋转过程中,当∠BCD=30°,BD=时,则CD=2,CB=+1.BE=CBBE=CBBD=AB=BE=CBAB=DH=BH=BD=×=1CH=,CB=CH+BH=上一动点,设PC=x,作PE∥AB交BC于E,PF∥BC交AB于F.(1)证明:△PCE是等腰三角形;(2)EM、FN、BH分别是△PEC、△AFP、△ABC的高,用含x和k的代数式表示EM、FN,并探究EM、FN、BH之间的数量关系;(3)当k=4时,求四边形PEBF的面积S与x的函数关系式.x为何值时,S有最大值?并求出S的最大值.CM=CPCM=CP=,tanC=k=tanA=,tanA=EM+FN=﹣x(×难点.。

中考数学专题复习几何探究练习(三)

中考数学专题复习几何探究练习(三)学校:___________姓名:___________班级:___________考生__________评卷人得分一、解答题1.【感知】如图①,点C是AB中点,CD⊥AB,P是CD上任意一点,由三角形全等的判定方法“SAS”易证△P AC≌△PBC,得到线段垂直平分线的一条性质“线段垂直平分线上的点到线段两端的距离相等”【探究】如图①,在平面直角坐标系中,直线y=-13x+1分别交x轴、y轴于点A和点B,点C是AB中点,CD⊥AB交OA于点D,连结BD,求BD的长【应用】如图①(1)将线段AB绕点A顺时针旋转90°得到线段AB′,请在图①网格中画出线段AB;(2)若存在一点P,使得P A=PB′,且∠APB′≠90°,当点P的横、纵坐标均为整数时,则AP长度的最小值为______.2.如图,在正方形ABCD中,点E是边BC上任意一点(点E不与点B、C重合),连结DE,点C关于DE的对称点为C1,连结AC1并延长交DE的延长线于点M,F是AC1的中点,连结DF.【猜想】如图①,①FDM的大小为度.【探究】如图①,过点A作AM1①DF交MD的延长线于点M1,连结BM.求证:△ABM①①ADM1.【拓展】如图①,连结AC,若正方形ABCD的边长为2,则△ACC1面积的最大值为.3.问题呈现:下图是小明复习全等三角形时遇到的一个问题并引发的思考,请帮助小明完成以下学习任务.请根据小明的思路,结合图①,写出完整的证明过程.结论应用:(1)如图①,在四边形ABCD中,AB AD BC=+,DAB∠的平分线和ABC∠的平分线交于CD边上点P.求证:PC PD=;(2)在(1)的条件下,如图①,若10AB=,1tan2PAB∠=.当PBC有一个内角是45︒时,PAD△的面积是.4.【教材呈现】如图是华师版八年级下册数学教材第117页的部分内容.结合图①,补全证明过程.【应用】如图①,直线EF分别交矩形ABCD的边AD、BC于点E、F,将矩形ABCD 沿EF翻折,使点C的对称点与点A重合,点D的对称点为D′,若AB=3,BC=4,则四边形ABFE的周长为.【拓展】如图①,直线EF分别交▱ABCD的边AD、BC于点E、F,将▱ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为D′,若AB=22,BC=4,①C=45°,则EF的长为.5.在等腰直角三角形纸片ABC中,点D是斜边AB的中点,10,AB=点E为BC上一点,将纸片沿DE折叠,点B的对应点为点B'.()1如图①,连接,CD则CD的长为;()2如图①,'B E与AC交于点,//F DB BC'.①求证:四边形'BDB E为菱形;①连接',B C则'B FC的形状为;()3如图①,则CEF∆的周长为;6.【教材呈现】数学课上,赵老师用无刻度的直尺和圆规按照华师版教材八年级上册87页完成角平分线的作法,方法如下:【问题1】赵老师用尺规作角平分线时,用到的三角形全等的判定方法是.【问题2】小明发现只利用直角三角板也可以作①AOB的角平分线,方法如下:步骤:①利用三角板上的刻度,在OA、OB上分别截取OM、ON,使OM=ON.①分别过点M、N作OM、ON的垂线,交于点P.①作射线OP,则OP为①AOB的平分线.(1)请写出小明作法的完整证明过程.(2)当tan①AOB=43时,量得MN=4cm,直接写出MON△的面积.7.教材呈现:如图是华师版九年级上册数学教材第77页的部分内容.定理证明:请根据教材内容,结合图①,写出证明过程.定理应用:在矩形ABCD中,AB=2AD,AC为矩形ABCD的对角线,点E在边AB上,且AE=3BE.(1)如图①,点F在边CB上,连结EF.若13BFCF,则EF与AC的关系为.(2)如图①,将线段AE绕点A旋转一定的角度α(0°<α<360°),得到线段AE',连结CE′,点H为CE'的中点,连结BH.设BH的长度为m,若AB=4,则m的取值范围为.8.在等腰直角三角形纸片ABC中,点D是斜边AB的中点,AB=10,点E为BC上一点,将纸片沿DE折叠,点B的对应点为点B'.(1)如图①,连接CD,则CD的长为;(2)如图①,B'E与AC交于点F,DB'①BC.①求证:四边形BDB'E为菱形;①连接B'C,则①B'FC的形状为;(3)如图①,则①CEF的周长为.9.如图,在ABC中,中线BD,CE相交于点O,F,G分别是OB,OC的中点.(1)求证:四边形DEFG是平行四边形;(2)当四边形DEFG的形状为矩形时,ABC为______三角形;(3)连接OA,当OA BC时,四边形DEFG的形状为______.10.如图1,正方形ABCD的边长为8cm,点F从点B出发,沿射线AB方向以1cm/秒的速度移动,点E从点D出发,向点A以1cm/秒的速度移动(不与点A重合).设点E,F同时出发移动t秒.(1)基础探究:如图1,在点E、F移动过程中,连接CE、CF、EF,判断CE与CF的数量与位置关系,并说明理由.(2)应用拓展:如图2,点G、H分别在边AD、BC上,且217cmGH=,连接EF,当EF与GH交于点P,且45GPE∠=︒,若点P为EF的中点,则CF的长度为________,AP的长度为________.参考答案:1.探究:BD 的长为53;应用:(1)见解析;(2)5.【解析】 【分析】探究:根据直线解析式,求出点A 、B 坐标,得到BO 、AO 的长,设BD 的长为a ,根据勾股定理列方程可求出BD ;应用:(1)根据旋转的性质作图即可;(2)根据题意可知P 点坐标在AB’线段垂直平分线上,如图所示,点P’是垂直平分线上最近的格点,但是此时'’90AP B ∠=︒,不符合题意,根据网格特点可知垂直平分线上下一个格点位置,由网格特点和勾股定理可得符合题意的AP=5. 【详解】 解:探究: 由题意得:当x 0=时,y 1=;当y 0=时,x 3=;()A 3,0∴,()B 0,1. AO 3∴=,BO 1=.设BD 的长为a .①点C 是AB 中点,CD AB ⊥交OA 于点D ,DA DB a ∴==,OD 3a =-.在Rt BOD 中,BOD 90∠=︒,222BD BO DO ∴=+,()22213a a +-=,5a 3∴=,5BD 3=. BD ∴的长为53.应用:(1)如图,线段'AB 即为所求.(2)根据题意可知P点坐标在AB’线段垂直平分线上,如图所示,点P’是垂直平分线上最近的格点,但是此时'’90AP B∠=︒,不符合题意,根据网格特点可知垂直平分线上下一个格点位置,由网格特点和勾股定理可得符合题意的AP=5.【点睛】本题主要考查了线段垂直平分线的性质,熟知线段垂直平分线上的点到线段两端点的距离相等是解题关键.2.(1)45°;(2)证明见解析;(3)22﹣2.【解析】【分析】(1)证明①CDE=①C1DE和①ADF=①C1DF,可得①FDM=12①ADC=45°;(2)先判断出①DAM1=①BAM,由(1)可知:①FDM=45°,进而判断出①AMD=45°,得出AM=AM1,即可得出结论;(3)先作高线C1G,确定①ACC1的面积中底边AC为定值2,根据高的大小确定面积的大小,当C1在BD上时,C1G最大,其①AC1C的面积最大,并求此时的面积.【详解】(1)由对称得:CD=C1D,①CDE=①C1DE,在正方形ABCD中,AD=CD,①ADC=90°,①AD=C1D,①F是AC1的中点,①DF①AC1,①ADF=①C1DF,①①FDM=①FDC1+①EDC1=12①ADC=45°;故答案为:45;(2)①DF①AC1,①①DFM=90°,①①MAM'=90°,在正方形ABCD中,DA=BA,①BAD=90°,①①DAM1=①BAM,由(1)可知:①FDM=45°①①DFM=90°①①AMD=45°,①①M1=45°,①AM=AM1,在:△ABM和△ADM1中,①11BA DABAM DAMAH AM=⎧⎪∠=∠⎨⎪=⎩,①①ABM①①ADM1(SAS);(3)如图,过C1作C1G①AC于G,则1AC CS=12AC•C1G,在Rt△ABC中,AB=BC=2,①AC=2222+=22,即AC为定值,当C1G最大值,△AC1C的面积最大,连接BD交AC于O,当C1在BD上时,C1G最大,此时G与O重合,①CD=C1D=2,OD=12AC=2,①C1G=C1D﹣OD=2﹣2,①1AC CS=12AC•C1G=12×22(2﹣2)=22﹣2,故答案为:22﹣2.此题是四边形综合题,主要考查了正方形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是①AMD=45°.3.问题呈现:见解析;结论应用:(1)见解析;(2)403或8 【解析】【分析】问题呈现:由“SAS ”可证△MOP ≌△NOP ,可得PM =PN ;结论应用:(1)在AB 上截取AE =AD ,连接PE ,由“SAS ”可证△ADP ≌△AEP ,△BPC ≌△BPE ,可得PD =PE =PC ;(2)延长AP ,BC 交于点H ,由“ASA ”可证△ADP ≌△HCP ,可得CP =DP ,AD =CH ,S △ADP =S △CPH ,分三种情况讨论,由角平分线的性质和锐角三角函数可求解.【详解】问题呈现:证明:①OC 平分AOB ∠,①AOC BOC ∠=∠.在POM 和PON △中,OP OP POM PON OM ON =⎧⎪∠=∠⎨⎪=⎩.①POM PON △≌△.结论应用:在AB 上截取AE AD =,①AP 平分DAB ∠,①DAP BAP ∠=∠,①AP AP =,①ADP AEP △≌△.①PE PD=.①AB AD BC=+,①BE BC=,①BP平分ABC∠,①ABP CBP ∠=∠.①BP BP=.①PBE PBC△≌△.①PE PC=.①PC PD=.(2)由(1)可证∠D=∠AEP,∠PCB=∠PEB,∵∠AEP+∠PEB=180°,∴∠PCB+∠D=180°,∴AD∥BC,∵AB=10,tan∠P AB=PBPA=12,∴P A=2PB,∵P A2+PB2=AB2,∴PB=25,P A=45,如图③,延长AP,BC交于点H,∵AD∥BC,∴∠DAP=∠H,∴∠H=∠BAP,∴AB=BH=10,又∵PB平分∠ABC,∴BP⊥AP,AP=PH=45,∵∠DAP=∠H,AP=PH,∠DP A=∠CPH,∴△ADP≌△HCP(ASA),∴CP=DP,AD=CH,S△ADP=S△CPH,若∠PBC=45°时,则∠PBC=∠H=45°,∴PB=PH(不合题意舍去),若∠BPC=45°时,则∠HPC=∠BPC=45°,如图④,过点C作CN⊥BP于N,CM⊥PH于M,∴CM=CN,∵S△PBH=12×BP×PH=12×BP×CN+12×PH×CM,∴CM=CN=453,∴S△PCH=12×45×453=403=S△ADP;若∠PCB=45°时,如图⑤,过点P作PF⊥BC于F,∵∠P AB=∠H,∴tan H=tan∠P AB=12,∴12 PFFH,∴FH=2PF,∵PF2+FH2=PH2=80,∴PF=4,FH=8,∵PF⊥BC,∠BCP=45°,∴∠PCB=∠FPC=45°,∴CF=PF=4,∴CH=4,∴S△ADP=S△CPH=12×4×4=8,故答案为:8或403.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,角平分线的性质,勾股定理,锐角三角函数等知识,添加恰当辅助线构造全等三角形是本题的关键.4.【教材呈现】证明见解析;【应用】434;【拓展】2103;【解析】【分析】教材呈现:由“ASA”可证①AOE①①COF,可得OE=OF,由对角线互相平分的四边形是平行四边形可证四边形AFCE是平行四边形,即可证平行四边形AFCE是菱形;应用:过点F作FH①AD于H,由折叠的性质可得AF=CF,①AFE=①EFC,由勾股定理可求BF的长,EF的长,拓展:过点A作AN①BC,交CB的延长线于N,过点F作FM①AD于M,由等腰直角三角形的性质可求AN=BN=2,由勾股定理可求AE=AF=103,再利用勾股定理可求EF的长.【详解】解:【教材呈现】①四边形ABCD是矩形,①AE①CF,①①EAO=①FCO,①EF垂直平分AC,①AO=CO,①AOE=①COF=90°,①①AOE①①COF(ASA)①OE=OF,又①AO=CO,①四边形AFCE是平行四边形,①EF①AC,①平行四边形AFCE是菱形;【应用】如图,过点F作FH①AD于H,①将矩形ABCD沿EF翻折,使点C的对称点与点A重合,①AF=CF,①AFE=①EFC,①AF2=BF2+AB2,①(4﹣BF)2=BF2+9,①BF=78,①AF=CF=258,①AD①BC,①①AEF=①EFC=①AFE,①AE=AF=258,①①B=①BAD=①AHF=90°,①四边形ABFH是矩形,①AB=FH=3,AH=BF=78,①EH=94,①EF=22EH FH+=81916+=154,①四边形ABFE的周长=AB+BF+AE+EF=3+78+258+154=434,故答案为:434.【拓展】如图,过点A作AN①BC,交CB的延长线于N,过点F作FM①AD于M,①四边形ABCD是平行四边形,①C=45°,①①ABC=135°,①①ABN=45°,①AN①BC,①①ABN=①BAN=45°,①AN=BN=22AB=2,①将▱ABCD沿EF翻折,使点C的对称点与点A重合,①AF=CF,①AFE=①EFC,①AD①BC,①①AEF=①EFC=①AFE,①AE=AF,①AF2=AN2+NF2,①AF2=4+(6﹣AF)2,①AF=103,①AE=AF=103,①AN①MF,AD①BC,①四边形ANFM是平行四边形,①AN①BC,①四边形ANFM是矩形,①AN =MF =2,①AM =22AF MF -=10049-=83, ①ME =AE ﹣AM =23,①EF =22MF ME +=449+=2103, 故答案为:2103. 【点睛】本题是四边形综合题,考查了平行四边形的性质,菱形的性质,折叠的性质,全等三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造直角三角形是本题的关键. 5.(1)5;(2)①见解析;①等腰三角形;(3)52【解析】【分析】(1)利用直角三角形斜边上的中线等于斜边的一半即可求解;(2)①由翻折可知','45DB DB B B =∠=∠=︒,进而证得'//,B E AB 则有∴四边形'BDB E 为平行四边形,由',BD B D =即可得证;①连接CD,易证得','45DB DC DB E DCA =∠=∠=︒进而证得''FB C FCB ∠=∠,则有'FB FC =,即可得出结论;(3)由'FB FC =和'B E BE =得CEF ∆的周长=''CE FC EF CE B F EF CE B E CE BE BC ++=++=+=+=,由等腰直角三角形的性质可求得BC ,即可求得CEF ∆的周长.【详解】解:(1)①①ABC 是等腰直角三角形,D 为斜边AB 的中点,AB=10,①152CD AB ==, 故答案为:5;()2①证明:由翻折可知','45DB DB B B =∠=∠=︒'DB ①BC''45,B EC B ∴∠=∠=︒①'45,B EC B ∠=∠=︒①'EB ①BD∴四边形'BDB E 为平行四边形.又',BD B D =∴四边形'BDB E 为菱形;②如图2,连接CD ,则有CD=BD=AD,由翻折可知','45DB DB DB E B =∠=∠=︒①','45DB DC DB E DCA A =∠=∠=∠=︒,①''DB C DCB ∠=∠①DB E CB F DCA FCB ∠+∠=∠+∠'''①''CB F FCB ∠=∠①'FB FC =,①'B FC 的形状为等腰三角形;故答案为:等腰三角形;(3)如图3,由(2)知'FB FC =,'B E BE =,①CEF ∆的周长=''CE FC EF CE B F EF CE B E CE BE BC ++=++=+=+=,①①ABC 是等腰直角三角形,AB=10,①222100BC AB ==,解得:52BC =,①CEF ∆的周长为52,故答案为:52.【点睛】本题考查等腰直角三角形的性质、直角三角形斜边中线性质、折叠性质、菱形的判定与性质、等腰三角形的判定,解得的关键是认真审题,从图形中分析相关联信息,借助辅助线,利用基本图形的性质进行推理、计算.6.【问题1】SSS ;【问题2】(1)见解析;(2)8.【解析】【分析】问题1:根据SSS证明三角形全等即可.问题2:(1)根据HL证明三角形全等即可解决问题.(2)作MH①OB于H,连接MN.想办法求出ON,MH即可解决问题.【详解】解:问题1:由作图可知:OE=OD,EC=DC,OC=OC,①EOC DOC≌△△(SSS),故答案为SSS.问题2:(1)证明:由作图可知:OM=ON,①①ONP=①OMP=90°,OP=OP,①Rt ONP≌Rt OMP△(HL),①①PON=①POM,即OP平分①AOB.(2)解:作MH①OB于H,连接MN.①tan①AOB=4,3MHOH=①可以假设MH=4k,OH=3k,则OM=ON=5k,①HN=2k,在Rt MNH△中,①222,MN HN MH=+①()()222442,k k=+①255k=(负根已经舍弃),①ON=5k=25,MH=4k=855,①1185258.225MNO S ON MH ==⨯⨯= 【点睛】本题考查的是角平分线的作图与作图原理,三角形全等的判定与性质,锐角三角函数的应用,勾股定理的应用,掌握以上知识是解题的关键.7.定理证明:见解析;定理应用:(1)EF ∥AC ,EF =14AC ;(2)5﹣32≤BH ≤5+32 【解析】【分析】定理证明:延长DE 到F ,使FE =DE ,连接CF ,易证①ADE ①①CFE ,再根据全等三角形的性质,进一步可得出CF ①AB ,从而可证明四边形BCFD 是平行四边形,最后根据平行四边形的性质即可得证;定理应用:(1)取AB ,BC 的中点M ,N ,连接MN .再根据题目中的线段关系,可得出AM =BM ,CN =BN ,ME =EB ,FN =FB ,根据三角形的中位线定理即可得出答案; (2)如图①中,延长CB 到T ,连接AT ,TE ′.根据题意得出BH =12TE ′,再根据矩形的性质可求得AT 的值,结合题意求得AE 的值,最后根据三角形三边关系即可得出答案.【详解】 解:定理证明:如图①中,延长DE 到F ,使FE =DE ,连接CF ,在△ADE 和△CFE 中,AE EC AED CEF DE EF =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CFE (SAS ),∴∠A =∠ECF ,AD =CF ,∴CF ∥AB ,又∵AD =BD ,∴CF=BD,∴四边形BCFD是平行四边形,∴DF∥BC,DF=BC,∴DE∥BC,DE=12BC.定理应用:(1)如图①中,取AB,BC的中点M,N,连接MN.∵AE=3BE,BF:CF=1:3,∴AM=BM,CN=BN,ME=EB,FN=FB,∴MN∥AC,MN=12AC,EF∥MN,EF=12MN,∴EF∥AC,EF=14AC.故答案为:EF∥AC,EF=14AC.(2)如图①中,延长CB到T,连接AT,TE′.∵CH=HE′,CB=BT,∴BH=12TE′,∵四边形ABCD是矩形,∴∠ABC=∠ABT=90°,∵AB=4,BC=AD=BT=2,∴AT=22224225AB BT+=+=,∵AE=3BE,AB=4,∴AE=AE′=3,∴25﹣3≤TE′≤25+3,∴5﹣32≤BH≤5+32.故答案为:5﹣32≤BH≤5+32.【点睛】本题考查了矩形的性质、三角形三边关系、平行四边形的判定及性质、三角形中位线性质、旋转的性质、全等三角形的判定及性质,综合性比较强,添加合适的辅助线,是解题的关键.8.(1)5;(2)①见解析;①等腰三角形;(3)52.【解析】【分析】(1)由直角三角形斜边上的中线性质即可得出答案;(2)①由折叠的性质得B'D=BD,B'E=BE,①B'DE=①BDE,证出B'D=BE,得四边形BDB'E是平行四边形,进而得出结论;①证出CD=B'D,得①DCB'=①DB'C,证出DB'①AC,则①ACB'=90°-①DB'C,证出CD①B'E,则①EB'C=90°-①DCB',得①ACB'=①EB'C,即可得出结论;(3)连接B'C,由等腰直角三角形的性质得BC=22AB=52,①B=45°,CD=12AB=BD,①ACD=12①ACB=45°,证出CF=B'F,进而得出答案.【详解】(1)解:①①ABC是等腰直角三角形,点D是斜边AB的中点,AB=10,①CD=12AB=5,故答案为:5;(2)①证明:由折叠的性质得:B'D=BD,B'E=BE,①B'DE=①BDE,①DB'①BC,①①B'DE=①BED,①①BDE=①BED,①BD=BE,①B'D=BE,①四边形BDB'E是平行四边形,又①B'D=BD,①四边形BDB'E为菱形;①解:①①ABC是等腰直角三角形,点D是斜边AB的中点,AB=BD,①CD=12由折叠的性质得:B'D=BD,①CD=B'D,①①DCB'=①DB'C,①①ACB=90°,①AC①BC,①DB'①BC,①DB'①AC,①①ACB'=90°﹣①DB'C,由①得:四边形BDB'E为菱形,①AB①B'E,①CD①AB,①CD①B'E,①①EB'C=90°﹣①DCB',①①ACB'=①EB'C,①FB'=FC,即①B'FC为等腰三角形;故答案为:等腰三角形;(3)解:连接B'C,如图①所示:①①ABC 是等腰直角三角形,点D 是斜边AB 的中点,AB =10,①BC =22AB =52,①B =45°,CD =12AB =BD ,①ACD =12①ACB =45°, 由折叠的性质得:B 'D =BD ,①B '=①B =45°,①CD =B 'D ,①①DCB '=①DB 'C ,①①FCB '=①FB 'C ,①CF =B 'F ,①①CEF 的周长=EF +CF +CE =EF +B 'F +CE =B 'E +CE =BE +CE =BC =52;故答案为:52.【点睛】 本题是四边形综合题目,考查了菱形的判定与性质、平行四边形的判定与性质、等腰直角三角形的性质、折叠的性质、等腰三角形的判定与性质、直角三角形斜边上的中线性质等知识;本题综合性强,熟练掌握菱形的判定与性质和等腰三角形的判定与性质是解题的关键.9.(1)见解析;(2)等腰;(3)菱形.【解析】【分析】(1)由中线BD ,CE 相交于点O ,可得DE 是ABC 的中位线,可得//DE BC ,12DE BC =,由F 、G 分别是OB ,OC 的中点,可得FG 是OBC 的中位线,可得//FG BC ,12FG BC =,可推出//DE FG ,DE FG =即可; (2)由四边形DEFG 的形状为矩形,可得FD=EG ,OE=OF=OG=OD ,EF①ED ,①EOF=①DOG ,由F 、G 分别是OB ,OC 的中点,可得BO=CO ,,由中线CE ,E 为中点,F 是OB 的中点,可得EF①OA ,可推出OA①ED ,由等腰三角形性质可得OA 平分①EOD ,可证△AOB①①AOC (SAS ),可得AB=AC 即可;(3)连接OA ,由(1)知四边EFGD 为平行四边形,由中位线性质可得AO=2EF ,2BC FG =,由OA BC =,可得EF=FG 即可.【详解】证明:(1)①中线BD ,CE 相交于点O ,①E 、D 分别为AB 、AC 中点,①DE 是ABC 的中位线,①//DE BC ,12DE BC =, 又①F 、G 分别是OB ,OC 的中点,①FG 是OBC 的中位线,①//FG BC ,12FG BC =, ①//DE FG ,DE FG =,①四边形DEFG 是平行四边形;(2)连接OA ,如图①四边形DEFG 的形状为矩形,①FD=EG ,OE=OF=OG=OD ,EF①ED ,①EOF=①DOG , ①F 、G 分别是OB ,OC 的中点,①BO=CO ,①中线CE ,E 为中点,F 是OB 的中点,①EF①OA ,①OA①ED ,①OA 平分①EOD ,①①EOA=①DOA ,①①BOA=①EOF+①EOA=①DOG+①DOA=①COA ,①AO=AO ,①①AOB①①AOC (SAS ),①AB=AC ,①①ABC 为等腰三角形,故答案为:等腰;(3)当OA BC =时,四边形DEFG 的形状为菱形.由(1)知四边EFGD 为平行四边形,①中线CE ,E 为中点,F 是OB 的中点,①EF 为①ABO 的中位线,①AO=2EF ,又①F 、G 分别是OB ,OC 的中点,①FG 是OBC 的中位线,①2BC FG =,①OA BC =,①2EF=2FG ,①EF=FG ,①四边形DEFG 是菱形,故答案为:菱形.【点睛】本题考查平行四边形的判定与性质,等腰三角形的判定,菱形的判定,掌握平行四边形的判定方法与性质,等腰三角形的判定,菱形的判定定理,细心观察图形,利用数形结合从图形中分析线段之间和角之间关系是解题关键.10.(1)CE CF =,CE CF ⊥,理由见解析;(2)217,34;【解析】【分析】 (1)根据正方形的性质和运动的距离可证明()EDC FBC SAS ≌△△,可得CE CF =,再利用角之间的关系可证CE CF ⊥;(2)连接EC ,证明四边形GECH 是平行四边形,即可求出CF ,再利用直角三角形斜边上的中线等于斜边的一半即可求出AP .(1)解:①四边形ABCD为正方形,①CD CB=,90EDC ABC BCD∠=∠=∠=︒,①90FBC EDC∠=∠=︒,①ED FB t==,在EDC△和FBC中,90CD CBFBC EDCED FB=⎧⎪∠=∠=︒⎨⎪=⎩①()EDC FBC SAS≌△△,①CE CF=,ECD BCF=∠∠,①90ECD BCE∠+∠=︒,①90BCF BCE∠+∠=︒,即:90ECF∠=︒,①CE CF=,CE CF⊥,(2)解:连接CE,如图①CE CF=,CE CF⊥,①45CEF∠=︒,①45GPE∠=︒,①CEF GPE∠=∠,①CE GH∥,①GE CH∥,①四边形GECH是平行四边形,①217CE GH==,①CE CF =,①217CF =,①2234EF CF ==,①P 是EF 的中点,AFE △是直角三角形,①1342AP EF ==. 【点睛】本题考查正方形的性质,全等三角形的判定以及性质,平行四边形的判定及性质,直角三角形斜边上的中线等于斜边的一半.(1)的关键是证明()EDC FBC SAS ≌△△,(2)的关键是证明四边形GECH 是平行四边形.。

中考数学专题复习_几何探究题

专题复习几何探究问题一、结论探究【例1】如图①,已知△ABC是等腰直角三角形,∠BAC=900,点D是BC中点,作正方形DEFG,使点A、C分别在DG和DE上,连接AE、BG(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论(2)将正方形DEFG绕点D逆时针旋转一定角度后(旋转角大于00,小于或等于3600),如图②,通过观察和测量等方法判断(1)中的结论是否仍然成立如果成立,请予以证明;如果不成立,请说明理由。

(3)若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,求AF的值。

'变式练习:已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)直接写出线段EG与CG的数量关系;(2)将图1中△BEF绕B点逆时针旋转45º,如图2所示,取DF中点G,连接EG,CG.你在(1)中得到的结论是否发生变化写出你的猜想并加以证明.(3)将图1中△BEF绕B点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立(不要求证明)| A D]G图1FA[EG图2、AE图3DFEC BAB'C'二、条件探究【例2】已知两个全等的直角三角形纸片ABC 、DEF ,如图(1)放置,点B 、D 重合,点F 在BC 上,AB 与EF 交于点G ,∠C=∠EFB=900,∠E=∠ABC=300,AB=DE=4 (1)求证:△EGB 是等腰三角形(2)若纸片DEF 不动,问△ABC 绕点F 旋转最小 度时,四边形ACDE 成为以ED 为底的梯形(如图(2)),求此梯形的高。

,【例3】如图,Rt △AB C 是由Rt △ABC 绕点A 顺时针旋转得到的,连结CC 交斜边于点E ,CC 的延长线交BB 于点F . |(1)证明:△ACE ∽△FBE ;(2)设∠ABC =α,∠CAC =β,试探索α、β满足什么关系时,△ACE 与△FBE 是全等三角形,并说明理由.;E图1A:CD图2三、类比探究 【例4】(1)操作发现:如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在举行ABCD 内部.小明将BG 延长交DC 于点F ,认为GF =DF ,你同意吗说明理由. (2)问题解决:保持(1)中的条件不变,若DC =2DF ,求ABAD的值; /(3)类比探求:保持(1)中条件不变,若DC =nDF ,求ABAD的值.【例5】如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.如,平行四边形的一条对线所在的直线就是平行四边形的一条面积等分线.(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有________;((2)如图1,梯形ABCD 中,AB ∥DC ,如果延长DC 到E ,使CE =AB ,连接AE ,那么有S 梯形ABCD=S △ABE .请你给出这个结论成立的理由,并过点A 作出梯形ABCD 的面积等分线(不写作法,保留作图痕迹);(3)如图,四边形ABCD 中,AB 与CD 不平行,S △ADC >S △ABC ,过点A 能否作出四边形ABCD 的面积等分线若能,请画出面积等分线,并给出证明;若不能,说明理由.AB。

2013年全国中考数学试题分类解析汇编专题58开放探究型问题

专题58开放探究型问题一、选择题二、填空题1. (2012陕西省3分)在同一平面直角坐标系中,若一个反比例函数的图象与一次函数y=2x+6-的图象无.公共点,则这个反比例函数的表达式是 ▲ (只写出符合条件的一个即可). 【答案】5y x=(答案不唯一)。

【考点】开放型问题,反比例函数与一次函数的交点问题,一元二次方程根与系数的关系。

【分析】设反比例函数的解析式为:k y x =, 联立y=2x+6-和k y x =,得k 2x+6x-=,即22x 6x+k 0-= ∵一次函数y=2x+6-与反比例函数k y x= 图象无公共点, ∴△<0,即268k 0<--(),解得k >92。

∴只要选择一个大于92的k 值即可。

如k=5,这个反比例函数的表达式是5y x=(答案不唯一)。

2. (2012广东湛江4分) 请写出一个二元一次方程组 ▲ ,使它的解是x=2y=1⎧⎨-⎩. 【答案】x+y=1x+2y=0⎧⎨⎩(答案不唯一)。

【考点】二元一次方程的解。

【分析】根据二元一次方程解的定义,围绕x=2y=1⎧⎨-⎩列一组等式,例如: 由x +y=2+(-1)=1得方程x +y=1;由x -y=2-(-1)=3得方程x -y=3;由x +2y=2+2(-1)=0得方程x +2y=0;由2x +y=4+(-1)=3得方程2x +y=3;等等,任取两个组成方程组即可,如x+y=1x+2y=0⎧⎨⎩(答案不唯一)。

3. (2012广东梅州3分)春蕾数学兴趣小组用一块正方形木板在阳光做投影实验,这块正方形木板在地面上形成的投影是可能是▲ (写出符合题意的两个图形即可)【答案】正方形、菱形(答案不唯一)。

【考点】平行投影。

【分析】根据平行投影的特点:在同一时刻,平行物体的投影仍旧平行。

所以,在同一时刻,这块正方形木板在地面上形成的投影是平行四边形或特殊的平行四边形,例如,正方形、菱形(答案不唯一)。

4. (2012浙江衢州4分)试写出图象位于第二、四象限的一个反比例函数的解析式▲ .【答案】1y=x-(答案不唯一)。

2013中考化学专题复习—化学实验常用仪器和基本操作及实验探究(含答案)

2013中考化学专题复习—化学实验常用仪器和基本操作及实验探究(含答案)一、认识常用仪器的用途及使用方法1、取用原则:①“三不”原则:不用手摸药品、不凑近闻药品的气味,不尝药品的味道;②节约原则:要严格按实验规定的用量取药品;如果没有说明用量时,应按最少量取用:液体1~2mL,固体只需盖满试管底部;③处理原则:实验用剩的药品应放入指定容器内,既不能放回原瓶,也不能随意丢弃。

2、固体药品的取用:①取用粉末、小颗粒状药品时应用药匙或纸槽,步骤:“一斜、二送、三缓立”即将试管倾斜,用药匙或纸槽将药品送入试管底部,再把试管缓缓直立起来;②取用块状药品或密度较大的金属颗粒时应用镊子夹取,步骤:“一横、二放、三缓立”即将试管(或容器)横放,把药品放入试管(或容器)口后,再把试管(或容器)缓缓地竖立起来。

3、液体药品的取用:①取用较多量时,可用倾倒法,步骤:先拿下瓶塞,倒放在桌上;然后拿起瓶子,瓶口紧挨着试管口,使液体缓缓倒入试管。

倾倒液体时要注意以下几点:a.瓶塞要倒放;b.试管要倾斜且试剂瓶口紧挨着试管口;c.试剂瓶上的标签要朝着手心(防止残留的药液流下来腐蚀标签)。

②取少量液体时,可用胶头滴管吸取。

使用方法是:滴加时,胶头滴管在容器口的正上方垂直滴入。

取液后的滴管应保持橡胶胶帽在上,不要平放或倒置,沾污试剂或腐蚀橡胶胶帽;不要把滴管放在试验台或其他地方,以免沾污滴管。

用过的滴管要立即用清水冲洗干净,以备再用。

③取用定量液体:取用一定量的液体药品,常用量筒量出体积。

量液时,量筒必须放平,倒入液体到接近要求的刻度时,再用胶头滴管逐滴滴入量筒至刻度线。

读数时量筒必须放平稳,视线与量筒内液体的凹液面最低处保持水平,读出液体的体积。

若仰视读数,则读数偏小,若俯视读数,则读数偏大,仰视和俯视读数都不准确(如图下图所示)。

三、物质的加热1、酒精灯的使用:①酒精灯是化学实验中常用的加热工具,使用时应注意“两查、三禁、一不可”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何计算与证明1、已知菱形ABCD 的边长为1.∠ADC=60°,等边△AEF 两边分别交边DC 、CB 于点E 、F 。

(1)特殊发现:如图1,若点E 、F 分别是边DC 、CB 的中点.求证:菱形ABCD 对角线AC 、BD 交点O 即为等边△AEF 的外心;(2)若点E 、F 始终分别在边DC 、CB 上移动.记等边△AEF 的外心为点P . ①猜想验证:如图2.猜想△AEF 的外心P 落在哪一直线上,并加以证明;②拓展运用:如图3,当△AEF 面积最小时,过点P 任作一直线分别交边DA 于点M ,交边DC 的延长线于点N ,试判断11D MD N+是否为定值.若是.请求出该定值;若不是.请说明理由。

2、在△ABC 中,∠ACB=45º.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论.(2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC =3=BC ,CD=x ,求线段CP 的长.(用含x 的式子表示)3、已知正方形ABC D 中,E 为对角线BD 上一点,过E 点作EFBD⊥交BC 于F ,连接D F ,G为D F 中点,连接EG CG ,.(1)直接写出线段E G 与C G 的数量关系;(2)将图1中BEF ∆绕B 点逆时针旋转45︒,如图2所示,取D F 中点G ,连接EG CG ,,. 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中BEF ∆绕B 点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)图3图2图1FEABCDABCDEFGGFED CBA4、在A B C D 中,过点C 作CE ⊥CD 交AD 于点E,将线段EC 绕点E 逆时针旋转90 得到线段EF(如图1)(1)在图1中画图探究:①当P 为射线CD 上任意一点(P 1不与C 重合)时,连结EP 1绕点E 逆时针旋转90 得到线段EC 1.判断直线FC 1与直线CD 的位置关系,并加以证明;②当P 2为线段DC 的延长线上任意一点时,连结EP 2,将线段EP 2绕点E 逆时针旋转90 得到线段EC 2.判断直线C 1C 2与直线CD 的位置关系,画出图形并直接写出你的结论. (2)若AD=6,tanB=43,AE=1,在①的条件下,设CP 1=x ,S 11P FC =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围.5、如图,边长为5的正方形OABC 的顶点O 在坐标原点处,点A 、C 分别在x 轴、y 轴的正半轴上,点E 是OA 边上的点(不与点A 重合),EF ⊥CE ,且与正方形外角平分线AG 交于点P .(1)当点E 坐标为(3,0)时,试证明CE =EP ;(2)如果将上述条件“点E 坐标为(3,0)”改为“点E 坐标为(t ,0)(t >0)”,结论CE =EP 是否仍然成立,请说明理由;(3)在y 轴上是否存在点M ,使得四边形BMEP 是平行四边形?若存在,用t 表示点M 的坐标;若不存在,说明理由.6、点B 是线段AC 的中点,D 是线段CE 的中点,四边形BCGF 和四边形CDHN 都是正方形,AE 中点是M 。

(1)如图1E 、A 、C 共线N 与G 重合M 与C 重合。

求证FM=MH(2)将图1中的CE 绕C 顺时针旋转一个锐角,得到图2则(1)中的结论是否成立,若成立,请给出证明。

若不成立,请说明理由。

(3)将图2中的CE 缩短到图3的情况则(1)中的结论是否成立,(不必说明理由)7、两个大小相同且含30°角的三角板ABC 和DEC 如图①摆放,使直角顶点重合.将图①中△DEC 绕点C 逆时针旋转30°得到图②,点F 、G 分别是CD 、DE 与AB 的交点,点H 是DE 与AC 的交点.(1)不添加辅助线,写出图②中所有与△BCF 全等的三角形;(2)将图②中的△DEC 绕点C 逆时针旋转45°得△D 1E 1C ,点F 、G 、H 的对应点分别为F 1、G 1、H 1,如图③.探究线段D 1F 1与AH 1之间的数量关系,并写出推理过程; (3)在(2)的条件下,若D 1E 1与CE 交于点I ,求证:G 1I =CI .A 图1 D H G(N) F C(M A M E DH N G F B图2 A ME HDN GF B 图3 图① BA C D E 图②B F AC DEHG 图③BF A C DE H GF 1G 1D 1 H 1 IE 18、已知:△ABC 和△ADE 都是等腰直角三角形,∠ABC =∠ADE =90°,点M 是CE 的中点,连接BM .(1)如图①,点D 在AB 上,连接DM ,猜想BD 与BM 的数量关系,并说明理由; (2)如图②,点D 不在AB 上,(1)中的结论还成立吗?如果成立,请证明;如果不成立,请直接写出此时BD 与BM 的数量关系.9.在△ABC 中,AB =AC ,∠BAC =α,点D 是BC 上一动点(不与B 、C 重合),将线段AD 绕点A 逆时针旋转α后到达AE 位置,连接DE 、CE ,设∠BCE =β. (1)如图1,若α=90°,求β的大小;(2)如图2,当点D 在线段BC 上运动时,试探究α与β之间的数量关系,并证明你的结论;(3)当点D 在线段BC 的反向延长线上运动时,(2)中的结论是否仍然成立?若成立,请证明,若不成立,请写出α与β之间的数量关系,并说明理由.10\在△ABC 中,点M 为BC 的中点. (1)如图1,求证:AM <12(AB +AC ); (2)延长AB 到D ,使得BD =AC ,延长AC 到E ,使得CE =AB ,连接DE .①如图2,连接BE ,若∠BAC =60°,请你探究线段BE 与线段AM 之间的数量关系.写出你的结论,并加以证明;②请在图3中证明:BC ≥12DE .A B CDE图① MBCDEM 图② E D C B A图1 EA 图2ACBM 图1ACBMDE图2ACBMDE图311在□ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F。

(1)在图1中证明C E C F=;(2)若90ABC∠=︒,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若120ABC∠=︒,FG∥CE,F G C E=,分别连结DB、DG(如图3),求∠BDG的度数。

12、(1)如图1,在△ABC中,点D,E,Q分别在AB,AC,BC上,且DE∥B C,AQ交DE于点P.求证:QCPEBQDP=.(2)如图,在△A BC中,∠B AC=90°,正方形D EF G的四个顶点在△A BC的边上,连接AG,AF分别交DE于M,N两点.①如图2,若A B=AC=1,直接写出MN的长;②如图3,求证M N2=DM·EN.13、如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.⑴如图②,已知Rt△ABC中,∠ACB=90°,∠ACB>∠A,CD是AB上的中线,过点B作BE⊥CD,垂足为E,试说明E是△ABC的自相似点.⑵在△ABC中,∠A<∠B<∠C.①如图③,利用尺规作出△ABC的自相似点P(写出作法并保留作图痕迹);②若△ABC的内心P是该三角形的自相似点,求该三角形三个内角的度数.B B B CCC①②③(第题)14、如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,BC =5,CD =6,∠DCB =60°,等边△PMN (N 为固定点)的边长为x ,边MN 在直线BC 上,NC =8.将直角梯形ABCD 绕点C 按逆时针方向旋转到①的位置,再绕点D 1按逆时针方向旋转到②的位置,如此旋转下去. (1)将直角梯形按此方法旋转四次,如果等边△PMN 的边长为x ≥5+3 3,求梯形ABCD 与等边△PMN 重叠部分的面积;(2)将直角梯形按此方法旋转三次,如果梯形与等边三角形重叠部分的面积为19 32,求等边△PMN 的边长x 的取值范围;(3)将直角梯形按此方法旋转三次,如果梯形与等边三角形重叠部分的面积是梯形面积的一半,求等边△PMN 的边长x .15、如图1,在矩形ABCD 中,点E 在边AD 上,∠ABE =30°,BE =DE ,点P 为线段DE 上的任意一点,过点P 作PQ ∥BD ,交BE 于点Q . (1)若AB =2 3,求边AD 的长;(2)如图2,在(1)的条件下,若点P 为线段DE 的中点,连接CQ ,过点P 作PF ⊥QC 于F ,求线段PF 的长;(3)试判断BE 、PQ 、PD 这三条线段的长度之间有怎样的数量关系?请证明你的结论.16、.如图,在等腰梯形ABCD 中,AB ∥DC ,对角线AC ⊥BD ,垂足为O ,BC =132,设AB =a ,CD =b ,且a +b =34. (1)求:a 、b 的值;(2)设-62<t <62,是否存在实数m 、n ,使得方程组 ⎩⎨⎧x -2y =m +nx +y =m 2+n 2+2t 关于x 、y 的解恰好为 ⎩⎨⎧x =ay =b ?若存在,请说明理由,并判断点(m ,n )在第几象限?若不存在,AD Pl①②M N ③ B 1D 1A 1A B C D E P Q 图1 A B C D E P QF图2请给予证明.17、.正方形ABCD 中,点M 、N 分别在CB 、DC 的延长线上,且MN =DN -BM ,连接AM 、AN . (1)如图1,求证:∠MAN =45°;(2)如图2,过D 作DP ⊥AN 交AM 于点P ,连接PC 、求证:PA +PC =2PD ;(3)在(2)的条件下,若AB =1,C 为DN 的中点,如图3,求PC 的长.18.正方形ABCD 中,P 为AB 边上任一点,AE ⊥DP 于E ,点F 在DP 的延长线上,且DE =EF ,连接AF 、BF ,∠BAF 的平分线交DF 于G ,连接GC . (1)求证:△AEG 是等腰直角三角形; (2)求证:AG +CG =2DG ;(3)若AB =2,P 为AB 的中点,求BF 的长.19.已知:在四边形ABCD 中,AD ∥BC ,∠BAC =∠D ,点E 、F 分别在BC 、CD 上,且∠AEF =∠ACD .(1)如图1,若AB =BC =AC ,求证:AE =EF ; (2)如图2,若AB =BC ,(1)中的结论是否仍然成立?证明你的结论; (3)如图3,若AB =kBC ,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出AE 与EF 之间的数量关系,并证明.20、.如图,正方形ABCD 的边长为2,M 是AB 的中点,点P 是射线DC 上的动点,过P 作PE ⊥DM 于E .OD C A BM A C B N D 图1 M A C B N D 图2 PM A C B ND 图3 P A C B ED P FGE D C B AF 图1 E D C B A F 图2 E C B A F 图3ECD 图1ABCD图2(1)若以P 、E 、M 为顶点的三角形与△ABM 相似,求PD 的长;(2)若以C 为圆心,CP 为半径的⊙C 与线段DM 只有一个公共点,求PD 的长或PD 的取值范围.. 21、已知:线段OA ⊥OB ,点C 为OB 中点,D 为线段OA 上一点。

相关文档
最新文档