课件---指数与指数幂的运算教案

合集下载

指数及指数幂的运算经典PPT课件

指数及指数幂的运算经典PPT课件

3
(2) a4
(3)
3
a5
5a
4 a3
1
2、用分数指数幂表示下列各式:
5 a3
(4)
2
a3
1
3 a2
( 1 ) 4 (a b)3 (a b 0)( 2 )
3
(a b)4
3 (m n)2
2
(m n)3
( 3 ) (m n)4 (m n) ( 4 )
p6 q5 ( p 0)
m
4. a n 是 n am 的一种新的写法,分数指数
幂与根式表示相同意义的量,只是
形式上的不同而已.
39
40
2019/12/23
41
2 的过剩近似值
11.180 339 89 9.829 635 328 9.750 851 808 9.739 872 62 9.738 618 643 9.738 524 602 9.738 518 332 9.738 517 862 9.738 517 752 36
5 2的不足近似值 5 2的不足近似值
其中 n 1 , 且 n N * .
①当n为奇数时, a的n次方根只有1个,用 n a 表示
②当n为偶数时, 若a>0,则a的n次方根有2个, 用 n a (a 0)表示 若a=0,则0的n次方根有1个,是0 若a<0,则a的n次方根不存在
(1)27的立方根等于___-__3___ (4)25的平方根等于___±__5___ (2) -32的五次方根等于__-__2_ (5)16的四次方根等于____±_ 2
-1 -1
0
0
(1)3 1 03 0
-4 无
8

指数与指数幂的运算教案

指数与指数幂的运算教案

指数与指数幂的运算教案一、教学目标:知识与技能目标:1. 理解指数与指数幂的概念。

2. 掌握指数幂的运算性质和运算法则。

3. 能够运用指数幂的运算性质解决实际问题。

过程与方法目标:1. 通过观察、分析和归纳,培养学生发现和提出问题的能力。

2. 利用同底数幂的乘法、除法、乘方和积的乘方等运算法则,提高学生的逻辑思维能力。

情感态度与价值观目标:1. 培养学生对数学的兴趣和好奇心。

2. 培养学生勇于探索、合作的科学精神。

二、教学重点与难点:重点:1. 指数与指数幂的概念。

2. 指数幂的运算性质和运算法则。

难点:1. 理解指数幂的运算性质和运算法则。

2. 运用指数幂的运算性质解决实际问题。

三、教学准备:教师准备:1. 指数与指数幂的相关教学素材。

2. 教学课件或板书设计。

学生准备:1. 预习指数与指数幂的相关知识。

2. 准备好笔记本,用于记录重点知识和练习。

四、教学过程:1. 导入:教师通过引入日常生活中的实际问题,如“银行的复利计算”,引导学生思考指数与指数幂的概念。

2. 新课讲解:教师讲解指数与指数幂的概念,通过示例和图示,帮助学生理解指数幂的运算性质和运算法则。

3. 课堂练习:教师给出一些指数幂的运算题目,要求学生独立完成,并及时给予指导和反馈。

4. 应用拓展:教师提出一些实际问题,引导学生运用指数幂的运算性质解决,培养学生的应用能力。

五、课后作业:教师布置一些有关指数与指数幂的练习题目,要求学生在课后完成,巩固所学知识。

教学反思:教师在课后对自己的教学进行反思,了解学生的学习情况,针对存在的问题,调整教学方法和策略,以提高教学效果。

六、教学评估1. 课堂提问:教师通过提问了解学生对指数与指数幂概念的理解程度,以及学生对指数幂运算性质和运算法则的掌握情况。

2. 课堂练习:教师观察学生在练习过程中的表现,评估学生对指数幂运算的熟练程度。

3. 课后作业:教师批改课后作业,了解学生对课堂所学知识的掌握情况,发现问题及时给予反馈。

§2.1.1《指数与指数幂的运算》教案(第一课时)

§2.1.1《指数与指数幂的运算》教案(第一课时)

“目标导航,问题引领”自主学习法课堂模式备课设计高一数学组成员:周连平杨金银曹容菊何兴华苏春元郭婷秦丽§2.1.1《指数与指数幂的运算》教案(第一课时)高一数学备课组主备人:曹容菊时间:10月3日第二章基本初等函数(I)§2.1.指数函数§2.1.1指数与指数幂的运算一.教学目标(一)知识与技能目标:1、理解n次方根和根式的概念;2、理解有理数指数幂的意义,培养学生观察、分析、抽象等认知能力。

(二)过程与方法目标:通过师生共同讨论和探究的方法,使得学生参与到指数范围的扩充和完善的过程中,从而领会类比、从特殊到一般、分类讨论等数学思想方法的运用和提高分析解决问题的能力。

(三)情态与价值目标:1、体会数学模型与实际问题之间的关系,从而感受数学的应用价值;2、让学生体验数学的简洁美和统一美。

3、让学生学会用联系的观点看待问题。

二、教学重点和难点教学重点:理解有理数指数幂的意义。

教学难点:理解根式的概念、掌握根式与分数指数幂之间的转化三、学法与教学用具1、学法:根据本节课的特点,采用问题探究、引导发现和归纳概括相结合的教学方法。

2、教学用具:多媒体手段四、教学思路(第一课时)(一)创设情景,揭示课题.以实例引入,激发学生探究分数指数幂的兴趣与欲望。

问题1:百万富翁与“指数爆炸”:杰米是百万富翁,一天,一个叫的人对他说,我想和你订个合同,我将在整整一个月中每天给你10万元,而你第一天只需给我1分钱,以后你每天给我的钱是前一天的两倍.杰米欣喜若狂,同意了。

思考:杰米与韦伯一个月以后谁更有钱?问题2:当生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”。

根据此规律,人们想获得了生物体内碳14含量P 与死亡年数t 的关系。

引导学生得出关系式:573012t P ⎛⎫= ⎪⎝⎭基于时间的连续性和死亡生物体碳14含量变化的连续性,说明引进分数指数幂必要性,如6000573012P ⎛⎫= ⎪⎝⎭。

指数与指数幂的运算教案

指数与指数幂的运算教案

指数与指数幂的运算(一)课题:指数与指数幂的运算课型:新授课教学方法:讲授法与探究法教学媒体选择:多媒体教学教学目标:1.知识与技能:理解根式的概念及性质,掌握分数指数幂的运算,能够熟练的进行分数指数幂与根式的互化.2.过程与方法:通过探究和思考,培养学生推广和逼近的数学思想方法,提高学生的知识迁移能力和主动参与能力.3.情感态度和价值观:在教学过程中,让学生自主探索来加深对n次方根和分数指数幂的理解,而具有探索能力是学习数学、理解数学、解决数学问题的重要方面.教学重点:根式的概念及n次方根的性质;分数指数幂的意义及运算性质;分数指数幂与根式的互化.教学难点:n次方根的性质;分数指数幂的意义及分数指数幂的运算.教学流程图:教学过程设计:一.新课引入:(一)本章知识结构介绍(二)问题引入1.问题:当生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内含量P 与死亡年数t 之间的关系:(1)当生物死亡了5730年后,它体内的碳14含量P 的值为 (2)当生物死亡了5730×2年后,它体内的碳14含量P 的值为(3) 当生物死亡了6000年后,它体内的碳14含量P 的值为 (4)当生物死亡了10000年后,它体内的碳14含量P 的值为2.回顾整数指数幂的运算性质 整数指数幂的运算性质:3.思考:这些运算性质对分数指数幂是否适用呢?12212⎛⎫ ⎪⎝⎭6000573012⎛⎫⎪⎝⎭10000573012⎛⎫ ⎪⎝⎭【师】这就是我们今天所要学习的内容《指数与指数幂的运算》【板书】2.1.1 指数与指数幂的运算二.根式的概念:【师】下面我们来看几个简单的例子.口述平方根,立方根的概念引导学生总结n次方根的概念..【板书】平方根,立方根,n次方根的符号,并举一些简单的方根运算,以便学生观察总结.【师】现在我们请同学来总结n次方根的概念..1.根式的概念【板书】概念即如果一个数的n次方等于a(n>1,且n∈N*),那么这个数叫做a 的n次方根.【师】通过刚才所举的例子不难看出n的奇偶以及a的正负都会影响a的n次方根,下面我们来共同完成这样一个表格.【板书】表格n n是奇数n是偶数a的符号a<0 a>0 a<0 a>0 a的n次方无意义根【师】通过这个表格,我们知道负数没有偶次方根.那么0的n 次方根是什么?【学生】0的n 次方根是0.【师】现在我们来对 这个符号作一说明.例1.求下列各式的值【注】本题较为简单,由学生口答即可,此处过程省略. 三.n 次方根的性质【注】对于1提问学生a 的取值范围,让学生思考便能得出结论. 【注】对于2,少举几个例子让学生观察,并起来说他们的结论.44(3)(3);π-2(2)(10);-2(4)()().a b a b ->33(8);-(1)根指数被开方数根式1.n次方根的性质四.分数指数幂例:【师】这两个根式可以写成分数指数幂的形式,是因为根指数能整除被开方数的指数,那么请大家思考下面的问题.思考:根指数不能整除被开方数的指数时还能写成分数指数幂的形式吗?【师】如果成立那么它的意义是什么,我们有这样的规定.(一)分数指数幂的意义:1.我们规定正数的正分数指数幂的意义是:2.我们规定正数的负分数指数幂的意义是:3.0的正分数指数幂等于0,0的负分数指数幂没有意义.(二)指数幂运算性质的推广:五.例题例2.求值例3.用分数指数幂的形式表示下列各式(其中a>0)例4.计算下列各式(式中字母都是正数)【注】此处例2让学生上黑板做,例3待学生完成后老师在黑板板演,例4让学生黑板上做,然后纠正错误.六.课堂小结1.根式的定义;2.n次方根的性质;3.分数指数幂.七.课后作业P59习题2.1 A组1.2.4. 八.课后反思。

指数与指数幂的运算(第一课时)教案

指数与指数幂的运算(第一课时)教案

2.1 指数函数2.1.1 指数与指数幂的运算(第一课时)一、教材分析:本节是高中数学新人教版必修1的第二章2.1指数函数的内容. 二、学习目标:①理解n 次方根与根式的概念;②正确运用根式运算性质化简、求值; ③了解分类讨论思想在解题中的应用.三、教学重点:理解有理数指数幂的含义及其运算性质.四、教学难点:理解方根和根式的概念,掌握根式的性质,会进行简单的求n 次方根的运算.五、课时安排:2课时 六、教学过程(一)、自主导学(课堂导入)1、设计问题,创设情境问题:当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内碳14含量P 与死亡年数t 之间的关系,这个关系式应该怎样表示呢?我们可以先来考虑这样的问题:①当生物死亡了5730,2×5730,3×5730,…年后,它体内碳14的含量P 分别为原来的多少?21,,...)21(,)21(32 ②当生物体死亡了6000年,10000年,100000年后,它体内碳14的含量P 分别为原来的多少?573010000057301000057306000)21(,)21(,)21(③由以上的实例来推断生物体内碳14含量P 与死亡年数t 之间的关系式应该是什么?573021tp ⎪⎭⎫ ⎝⎛=考古学家根据上式可以知道,生物死亡t 年后,体内碳14含量P 的值.那么这些数21,,...)21(,)21(32,573010000057301000057306000)21(,)21(,)21(,573021t p ⎪⎭⎫ ⎝⎛=的意义究竟是什么呢?这正是我们将要学习的知识.2、学生探索,尝试解决问题1:什么是一个数的平方根?什么是一个数的立方根?一个数的平方根有几个,立方根呢?若x2=a,则x叫做a的平方根.同理,若x3=a,则x叫做a的立方根.根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数.问题2:如果x4=a,x5=a,又有什么样的结论呢?如果一个数的4次方等于a,那么这个数叫做a的4次方根;如果一个数的5次方等于a,那么这个数叫做a的5次方根.问题3:①如果x2=a,那么x叫做a的平方根;②如果x3=a,那么x叫做a的立方根;③如果x4=a,那么x叫做a的4次方根.你能否据此得到一个一般性的结论?一般地,如果x n=a,那么x叫做a的n次方根.问题4:上述结论中的n的取值有没有什么限制呢?方根的定义:一般地,如果x n=a,那么x叫做a的n次方根,其中n>1,且n∈N*.3、信息交流,揭示规律试根据n次方根的定义分别求出下列各数的n次方根.(多媒体显示,学生完成)(1)25的平方根是±5;(2)27的立方根是3;;(3)-32的5次方根是-2;(4)16的4次方根是±2;(5)a6的立方根是a2;(6)0的7次方根是0.问题5:观察并分析以上各数的方根,你能发现什么?①以上各数的对应方根都是整数;②第(1)(4)题的答案有两个,第(2)(3)(5)(6)题的答案只有一个;③第(1)(4)题的答案中的两个根互为相反数.问题6:请仔细分析上述各题,并结合问题5中同学们发现的结论,你能否得到一个一般性的结论?一个数的奇次方根只有一个;一个数的偶次方根有两个,且互为相反数.问题7:是否任何一个数都有偶次方根?0的n次方根如何规定更合理?因为任何一个数的偶次方都是非负数,所以负数没有偶次方根;0的n次方等于0,所以0的n次方根等于0.问题8:同学们能否把所得到的结论再总结得具体一些呢?n次方根的性质实际上是平方根和立方根性质的推广,因此跟立方根和平方根的情况一样,方根也有如下性质:(1)当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.这时,a的n次.(2)当n是偶数时,正数的n次方根有两个,这两个数互为相反数.这时,正数a的正的n次,负的n.正的n次方根与负的na>0).注:①负数没有偶次方根;②0的任何次方根都是0,记作n 0=0;③当a ≥0时,n a ≥0,所以类似416=±2的写法是错误的. 另外,我们规定:式子n a 叫做根式,其中n 叫做根指数,a 叫做被开方数. 问题9:利用上面所学n 次方根的知识,能否求出下列各式的值? (1)(5)2;(2)38-;(3)416;(4)33)3(-a (a>0). (1)5;(2)-2;(3)2;(4)a-3.问题10:上面的计算涉及了哪几类问题? 主要涉及了(a)n 与n a 的问题.组织学生结合例题及其解答,进行分析讨论,归纳出以下结论: (1)(n a )n =a.例如,(3)3=27,(-2)5=-32. (2)当n 是奇数时,nn a =a ;当n 是偶数时,nna =|a|=⎩⎨⎧<-≥)0(,)0(,a a a a 例如,33)2(-=-2,442=2;553=3,()883-=|-3|=3.4、类比前面的学习,给出并讲解分数指数幂的定义和运算性质 分数指数幂 正数的分数指数幂的意义 规定:)1,,,0(*>∈>=n N n m a a an m nm)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.(1).有理指数幂的运算性质①r a ·s r r a a +=),,0(Q s r a ∈>;②rss r a a =)(),,0(Q s r a ∈>;③srra a ab =)( ),0,0(Q r b a ∈>>.引导学生解决本课开头实例问题 让学生先看并一起分析讲解例题.(教材例2、例3、例4、例5)说明:让学生熟练掌握根式与分数指数幂的互化和有理指数幂的运算性质运用. 4. 无理指数幂结合教材实例利用逼近的思想理解无理指数幂的意义.指出:一般地,无理数指数幂),0(是无理数αα>a a 是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.(二) 、合作学习让学生合作做练习,教师巡视指导然后讲解例题.【例1】求下列各式的值:(1)33)8(-;(2)2)10(-; (3)44)3(π-;(4)2)(b a -(a>b ).解:(1)33)8(-=-8;(2)2)10(-=10-=10;(3)44)3(π-=;33-=-ππ(4)2)(b a -=.b a b a -=- 例2、 计算下列各式的值. (1)33)(a ;(2 (1n >,且n N *∈)(3)1n >,且n N *∈) 【解析】(1)a a =33)(.(2)当n =3π-;当n =3π-.(3)||x y -,当x y ≥时,x y -;当x y <时,y x -.【小结】(1)当n 为奇数时,a a nn =;当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a nn(2)不注意n 的奇偶性对式子n na 值的影响,是导致错误出现的一个重要原因.故要在理解的基础上,记准、记熟、会用、活用.(三)、当堂检测 1.课本.321,54题、、p2、(P 56,例2)求值:①238;②1225-;③51()2-;④3416()81-.学生思考,口答,教师板演、点评. 2、解:① 223338(2)=2323224⨯===; ② 1122225(5)--=12()121555⨯--===; ③ 5151()(2)2---=1(5)232-⨯-==;④334()44162()()813-⨯-=3227()38-==3、用分数指数幂的形式表或下列各式(a >0)①3a 2a 分析:先把根式化为分数指数幂,再由运算性质来运算.解:①117333222a a a a a +=⋅==②2223a a a =⋅28233aa +==;③421332()a a ====.(四)、课堂小结(教师根据学生具体的的学习接受情况提问并和学生一起做总结概括)先让学生独自回忆,然后师生共同总结.本节主要学习了根式与分数指数幂以及指数幂的运算,分数指数幂是根式的另一种表示形式,根式与分数指数幂可以进行互化.在进行指数幂的运算时,一般地,化指数为正指数,化根式为分数指数幂,化小数为分数进行运算,便于进行乘除、乘方、开方运算,以达到化繁为简的目的,对含有指数式或根式的乘除运算,还要善于利用幂的运算法则. 以下是本节课重要知识点及需要理解的概念: 1.分数指数是根式的另一种写法. 2.无理数指数幂表示一个确定的实数.3. 掌握好分数指数幂的运算性质,其与整数指数幂的运算性质是一致的.1.复习课本P 48~50内容,熟悉巩固有关概念和性质;2.课本P 59习题2.1A 组第1、2、4题. 八、教学反思:。

指数与指数幂的运算课件

指数与指数幂的运算课件

(1)10-3;
(2)(-0.25)-1;

(3)16
3 2
.
【解析】 (1)10-3=1103=1 0100=0.001. (2)(-0.25)-1=(-14)-1=-114=-4.
思考题4 求值.
(1)(12)-5;
3
(2)4 2 ;

(3)0.008
3 2
.
【答案】 (1)32 (2)8 (3)25
例5 用分数指数幂形式表示下列各式(式中a>0). (1)a2· a; (2)a3·3 a2; (3) a a;
【答案】
思考题5 用分数指数幂表示并化简
y2 x
x3 3 y6 y x3.
5
【答案】 y 4
【解析】 原式= 3- 22+ 3+ 22 =| 3- 2|+| 3+ 2| = 3- 2+ 3+ 2 =2 3.
思考题3 4- 15+ 4+ 15.
【解析】 原式=
8-2 2
15+

5- 2
3+
5+ 2
3=2 5= 2
10.
8+2 15 2
【答案】 10
题型二 分数指数幂的概念和性质
例4 求值.
要点3 分数指数幂的概念
m
(1)正数的正分数指数幂:a n

n am
(a>0,m,n∈N*,且
n>1);
1
(2)正数的负分数指数幂:a

m n

1
m
= n am (a>0,m,n∈
an
N*,且n>1);
(3)a0= 1 (a≠0).
要点4 有理数指数幂的性质 (1)aras= ar+s (a>0,r,s∈Q); (2)(ar)s= ars (a>0,r,s∈Q);

指数与指数幂的运算(教案)

2.1.1(1)指数与指数幂的运算(根式)
教学目标 知识与技能目标:
理解根式的概念及性质,能进行根式的运算,提高根式的运算能力。

过程与方法目标:
通过由特殊到一般,由平方根、立方根,采用类比的方法过渡到n 次方根;
通过对“当n 是偶数时,⎩⎨⎧<≥-==)0()
0(||a a a a a a n n ”的理解 ,培养学生分类讨论的意识。

情感、态度、价值观目标:
通过运算训练,培养学生严谨的思维,一丝不苟的学习习惯。

教学重点:对根式概念、性质的理解,运用根式的性质化简、运算。

教学难点:当n 是偶数时,⎩⎨⎧<≥-==)0()
0(||a a a a a a n n 的得出及运用。

教学过程:
板书设计:
2.1指数函数
2.1.1指数与指数幂的运算(一)
定义例1 例3
性质例2
教学反思:(课后完善)。

《指数与指数幂的运算》课件-完美版人教版1


讲授新课
1. 正数的正分数指数幂的意义:
m
a n n am (a>0, m, n∈N*, 且n>1).
注意两点: (1)分数指数幂是根式的另一种表示形式; (2)根式与分数指数幂可以进行互化.
《指数与指数幂的运算》完美ppt人教 版1-精 品课件 ppt(实 用版)
2. 对正数的负分数指数幂和0的分数指数 幂的规定:
3. 引例:当a>0时,
10
① 5 a10 5 (a2 )5 a2 a 5 ;
12
② 3 a123 (a4)3 a4a3;
2
2
③ 3 a2 3 (a3)3 a3;
1
1
④ a (a2)2 a2 是否可以呢?
讲授新课
1. 正数的正分数指数幂的意义:
m
a n n am (a>0, m, n∈N*, 且n>1).
复习引入
2. 根式的运算性质:
① 当n为奇数时, n an a;
复习引入
2. 根式的运算性质:
① 当n为奇数时, n an a;
当n为偶数时,
复习引入
2. 根式的运算性质:
① 当n为奇数时, n an a;
当n为偶数时, n
an
|
a
|
a(a a(a
0) 0).
复习引入
2. 根式的运算性质:
《指数与指数幂的运算》完美ppt人教 版1-精 品课件 ppt(实 用版)
《指数与指数幂的运算》完美ppt人教 版1-精 品课件 ppt(实 用版)
2. 对正数的负分数指数幂和0的分数指数 幂的规定:
(1)
m
a n
1
m
(a>0, m, n∈N*, 且n>1).

指数与指数幂的运算教学课件—【精品课件】


整数指数幂运算性质
由于整数指数幂,分数指数幂都有意义,因此, 有理数指数幂是有意义的,整数指数幂的运算性质, 可以推广到有理数指数幂,即:
(1)aras ars(a0,r,sQ) (2)(ar)s ars(a0,r,sQ) (3)(ab)r arbr(a0,b0,rQ)
例题
例1
求值
823;2512;
整数指数幂运算性质
1 求值:(其中a>0)
(1 ) 5 a 10 ;
10
(1)5a105(a2)5a2a5
(2 ) a 8; (3 ) 4 a 12 .
8
(2) a8 (a4)2a4a2
12
(3)4a124(a3)4a3a4
2 观察以上式子,并总结出规律,
小结:当根式的被开方数的指数能被根指数数整除时, 根式可以写成分数作为指数的形式(分数指数幂形式).
分析:先把根式化为分数指数幂,再由运算性质来运算.
解: (1)a3
a
a3
1
a2
3 1
a2
7
a2;
(2)a2 3
a2
2
a2 a3
2 2
a 3
8
a3;
(3) a 3 a
1
aa3
1
4 4 2
2
a3 a3 a3.
例题
例3 计算下列各式(式中字母都是正数)
21
11
15
(1)(2a3b2)(6a2b3)(3a6b6)
(2)(m14n83)8
例4 计算下列各式
(1)(3 25 125) 4 25 (2) a2 (a 0)
a 3 a2
小结
1 分数指数幂是根式的另一种写法.

指数与指数幂的运算公开课 ppt课件


4
a3 4
3
12
知识点二:分数指数幂
❖ 规定: 1、正数的正分数指数幂的意义为:
m
annam(a0,m ,n N *,n1)
2、正数的负分数指数幂的意义与负整数幂的意义相同
即 : am na 1 m nn1 am(a0,m ,n N *,n1) 3、0的正分数指数幂等于0,0的负分数指数幂无意义。
2020/12/2
7
概念理解
做一做
练习:试根据n次方根的定义分别求出下列 各数的n次方根.
(1)25的平方根是_______;
(2)27的三次方根是_____;
(3)-32的五次方根是____;
(4)15的四次方根是_____.
2020/12/2
8
2.根式的概念
根指数
na
被开方数
根式
2020/12/2
4
复习旧知
初中时平方根、立方根是如何定义的?有哪 些规定?
若 x2 4 则 x2 若 x2 5 则 x 5
若 x3 27 则 x 3
若 x3 27 则 x3
2020/12/2
2叫做4的平方根; 5叫做5的平方根; 3是27的立方根; -3是-27的立方根;
5
若 x3 10 则 x 3 10 若 x3 32 则 x 3 32
2020/12/2
13
例2 求值
2
(1) 8 3 ;
(3)
1
5

2
1
(2) 25 2 ;
(4) 16
3 4
.
81
2020/12/2
14
运算性质
(1)arasar s(a0 ,r,s Q )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学 必修1:指数与指数幂的运算[教学目标]1.知识与技能:理解根式的概念,掌握n 次方根的性质2.过程与方法:(1).通过师生之间、学生与学生之间互相交流,使学生逐步学会共同学习.(2)引导学生认真体会数学知识发展的逻辑合理性、严谨性,做一个具备严谨科学态度的人. (3)通过探究、思考,培养学生思维迁移能力和主动参与的能力 3.情感态度与价值观:(1).新知识的发现是因为面临的问题以原有的知识得不到解决所引发出来的思考,通过学习根式的概念,使学生认清基本概念的来龙去脉,加深对人类认识事物的一般规律的理解和认识,体会知识之间的有机联系,感受数学的整体性,激发学生的学习兴趣,培养学生严谨的科学精神.(2)在教学过程中,通过学生的自主探索,来加深理解n 次方根的性质,具有探索能力是学习数学、理解数学、解决数学问题的重要方面。

[教学重点与难点]:1.重点:1.根式的概念.。

2.n 次方根的性质。

2.难点:1.根式概念的理解。

2.n 次方根性质的理解。

[教学方法与手段]1.教学方法:启发式、探究式教学2.教学手段:运用多媒体教学 [教学过程]一、创设情景,引入新课师:你们知道考古学家是怎样来判断生物的发展与进化的吗? 生:对生物体化石的研究.师:那么他们是怎样来判断该生物体所处的年代的?你们知道吗? (众生摇头)师:考古学家是按照这样一个规律来推测的.问题:当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内碳14含量P 与死亡年数t 之间的关系,这个关系式应该怎样表示呢?我们可以先来考虑这样的问题:当生物死亡了5730,2×5730,3×5730,…年后,它体内碳14的含量P 分别为原来的多少?生:21,(21)2,(21)3,…. 师:当生物体死亡了6000年,10000年,100000年后,它体内碳14的含量P 分别为原来的多少?生:(21)57306000,(21)573010000,(21)5730100000.师:由以上的实例来推断关系式应该是什么?生:P =(21)5830t .师:考古学家根据上式可以知道,生物死亡t 年后,体内碳14含量P 的值.那么这些数(21)57306000,(21)573010000,(21)5730100000的意义究竟是什么呢?它和我们初中所学的指数有什么区别?生:这里的指数是分数的形式.师:指数可以取分数吗?除了分数还可以取其他的数吗?我们对于数的认识规律是怎样的? 生:自然数——整数——分数(有理数)——实数.师:指数能否取分数(有理数)、无理数呢?如果能,那么在脱离开上面这个具体问题以后,关系式P =(21)5830t 就会成为我们后面将要相继研究的一类基本初等函数——“指数函数”的一个具体模型.为了能水到渠成地研究指数函数,我们有必要认识一下指数概念的扩充和完善过程,这就是我们下面这节课将要研究的内容:整数指数幂.(引入课题,书写课题——指数与指数幂的运算) 二、讲解新课(一)探求n 次方根的概念师:若53=125,那么125对于5来说,扮演着什么角色?5对于125来说又扮演着什么角色呢? 生:125是5的立方数,5是125的立方根. 师:如果x2=a ,那么x 对于a 来说扮演着什么角色?生:x 是a 的平方根.师:能否用一句话描述你的结论?生:如果一个数的平方等于a ,那么这个数叫做a 的平方根. 师:如果x3=a ,那么x 对于a 来说又扮演着什么角色?生:x 是a 的立方根.师:能换一种说法表述你的结论吗?生:如果一个数的立方等于a ,那么这个数叫做a 的立方根. 师:如果x4=a ,x 5=a ,又有什么样的结论呢?生:如果一个数的四次方等于a ,那么这个数叫做a 的四次方根;如果一个数的五次方等于a ,那么这个数叫做a 的五次方根.师:①如果x2=a ,那么x 叫做a 的平方根;②如果x 3=a ,那么x 叫做a 的立方根;③如果x 4=a ,那么x 叫做a 的4次方根.你能否据此得到一个一般性的结论?生:一般地,如果xn=a ,那么x 叫做a 的n 次方根.师:上述结论中的n 的取值有没有什么限制呢?(生探索,完善n 次方根的定义,并强调n 的取值范围,师板书如下定义) 一般地,如果xn=a ,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.(二)概念理解 课堂训练:试根据n 次方根的定义分别求出下列各数的n 次方根.(1)25的平方根是________;(2)27的三次方根是________;(3)-32的五次方根是________;(4)16的四次方根是________;(5)a6的三次方根是________;(6)0的七次方根是________.(师组织学生紧扣n次方根的定义,完成以上各题)方法引导:在n次方根的概念中,关键的是数a的n次方根x满足x n=a,因此求一个数a的n次方根,就是求出哪个数的n次方等于a.(三)n次方根的性质合作探究:观察并分析以上各数的方根,你能发现什么?(学生交流,师及时捕捉与如下结论有关的信息,并简单板书)1.以上各数的对应方根都是有理数;2.第(1)、第(4)的答案有两个,第(2)、第(3)、第(5)、第(6)的答案只有一个;3.第(1)题的答案中的两个值互为相反数.师:请仔细分析以上各题,你能否得到一个一般性的结论?(提供一个比较发散的问题,给学生提供广阔的思维空间,培养学生理性思维能力和数学的分析问题、解决问题的能力)生甲:一个数的奇次方根只有一个.生乙:一个数的偶次方根有两个,且互为相反数.师:是否任何一个数都有偶次方根?0的n次方根如何规定更合理?生:因为任何一个数的偶次方都是非负数,所以负数没有偶次方根,0的n次实数方根等于0.师:你能否把你所得到的结论再叙述的具体一些呢?(组织学生交流,得出以下结论)n次方根的性质实际上是平方根和立方根性质的推广,因此跟立方根和平方根的情况一样,方根也有如下性质:(1)当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.这时,a的n次方根用符号n a表示.(2)当n是偶数时,正数的n次方根有两个,这两个数互为相反数.这时,正数a的正的n次方根用符号n a表示,负的n次方根用符号-n a表示.正的n次方根与负的n次方根可以合并写成±n a(a>0).注:①负数没有偶次方根;②0的任何次方根都是0,记作n0=0;③当a≥0时,n a≥0,所以类似416=±2的写法是错误的.(四)根式的概念式子n a叫做根式,其中n叫做根指数,a叫做被开方数.例如56叫做根式,其中5叫做根指数,6叫做被开方数.(五)n次方根的运算性质求下列各式的值:(1)(5)2;(2)33)2(-;(3)44)2(-;(4)2)3(a-(a>3).(生板演,师组织学生评析)解:(1)(5)2=5;(2)33)2(-=-2;(3)44)2(-=|-2|=2;(4)2)3(a-=|3-a|=a-3.师:上面的例题中涉及了哪几类问题?生:主要涉及了(n a)n与n na的问题.合作探究:(1)(n a)n的含义是什么?其化简结果是什么呢?(2)n na的含义是什么?其化简结果是什么呢?(组织学生结合例题及其解答,进行分析讨论、归纳出以下结论)(1)(n a)n=a.例如,(327)3=27,(532-)5=-32.(2)当n是奇数时,n na=a;当n是偶数时,n n a=|a|=⎩⎨⎧<-≥.0,,0,aaaa例如,33)2(-=-2,552=2;443=3,2)3(-=|-3|=3.(六)例题讲解(生板演,师组织学生进行课堂评价)【例1】求下列各式的值:(1)(38-)3;(2)2)10(-;(3)44)π3(-;(4)2)(ba-(a>b).解:(1)(38-)3=-8;(2)2)10(-=10;(3)44)π3(-=π-3;(4)2)(ba-=|a-b|=a-b.三、课堂练习1.若x∈R,y∈R,下列各式中正确的是A.44)(yx+=x+y B.33x-44y=x-yC.2)3(+x+2)3(-x=2x D.3-x+x-3=02.12--xx=12--xx成立的条件是A.12--x x ≥0B.x ≠1C.x <1D.x ≥23.在①42)4(n-;②412)4(+-n ;③54a ;④45a (各式中n ∈N ,a ∈R )中,有意义的是A.①②B.①③C.①②③④D.①③④4.当8<x <10时,2)8(-x -2)10(-x =________.参考答案:1.D2.D3.B4.2x -18 四、课堂小结师:请同学们互相交流一下你在本课学习中的收获. (生互相交流,而后由师多媒体显示如下内容) 1.若xn=a (n >1,n ∈N *),则x 叫做a 的n 次方根.当n 是奇数时,实数a 的n 次方根用符号na 表示;当n 是偶数时,正数a 的n 次方根用符号±na 表示,负数的偶次方根无意义.式子na叫做根式,其中n 叫做根指数,a 叫做被开方数.2.在实数范围内,正数的奇次方根是一个正数;负数的奇次方根是一个负数.正数的偶次方根是两个绝对值相等符号相反的数;负数的偶次方根没有意义;0的任何次方根都是0.3.(1)(na )n =a .(2)当n 为奇数时,nna =a ;当n 为偶数时,nn a =|a |=⎩⎨⎧<-≥.0,,0,a a a a 五、布置作业(一)复习课本第57~58页内容,熟悉巩固有关概念和性质; (二)书面作业:课本P 69习题2.1A 组第1题. 板书设计2.1.1 指数与指数幂的运算(1) 一、基本概念和性质 1.n 次方根的定义 2.n 次方根的性质3.根式的定义4.n 次方根的运算性质二、例题解析即学生训练板演 例1.求下列各式的值 例2.化简下列各式 目标检测评析布置作业。

相关文档
最新文档