弹性力学平面应力平面应变问题 ppt课件

合集下载

弹性力学 第二章 平面问题的基本理论 ppt课件

弹性力学 第二章 平面问题的基本理论 ppt课件
4
§ 2-1 平面应力问题与平面应变问题
·平面应力问题
♢ 工程实例
平板坝的平板支墩
深梁
5
§ 2-1 平面应力问题与平面应变问题
·平面应变问题
♢ 几何特征 无限长的柱形体, 横截面不沿长度变化 ♢ 面力与约束 作用于柱面,平行横截面,不沿柱体长度方 向变化; ♢ 体力 作用于柱体内,平行横截面,不沿柱体长度 方向变化;
6
§ 2-1 平面应力问题与平面应变问题
·平面应变问题
♢ 简化分析
截面、外力、约束沿z不变,外力、 约束平行 xy面,柱体无限长
任何截面都是对称面
w=0, u、v ≠0
εz=0
τzx=0、 τzy=0
γzx=0、 γzy=0
εx 、εy 、γxy ≠ 0
★ 应变只存在平面应变,所以称为平面应变问题
·推导
(2) 坐标轴方向合力为0
方程两边同除dxdy 同理,ΣFy=0
平衡微分方程
12
·总结
§ 2-2 平衡微分方程
平衡微分方程
* 3个未知量,2个方程,还需另外方程 * 基于连续性、小变形假定 * 弹性体内任意区域都精确成立 * 平面应力和平面应变问题都适用
13
§ 2-3 平面问题中一点的应力状态
tanα2 = -
τxy σ1 - σx
∴ tanα1·tanα2 = -1
∴ σ1⊥ σ2
20
§ 2-3 平面问题中一点的应力状态
·最大最小正应力
O
x
σ2
由(2-4)式,得
σ1
σ1
y
σ2
τxy = 0 σx = σ1 σy = σ2
σn = l2 σx + m2 σy + 2lmτxy = l2 σ1 + m2 σ2 = l2 σ1 + (1 - l2) σ2 = l2 (σ1 – σ2) + σ2

弹性力学-平面应力-平面应变问题

弹性力学-平面应力-平面应变问题

平面应力问题的求解方法
解析法
实验法
通过数学分析的方法,将问题转化为 数学方程进行求解。适用于简单几何 形状和边界条件的问题。
通过实验测试来测量物体的应力分布, 通常需要制作模型并进行加载测试。 适用于无法通过理论分析求解的问题。
有限元法
将物体离散化为有限个小的单元,通 过求解每个单元的平衡方程来得到整 个物体的应力分布。适用于复杂几何 形状和边界条件的问题。
弹性力学的基本方程
描述物体在受力后的应力 与应变之间的关系。
描述物体在受力后发生的 位移和应变关系。
描述物体内部力的平衡关 系03
平面应力问题
平面应力问题的定义
平面应力问题是指在弹性力学中,物 体受到的应力作用在某一平面内,且 在该平面上没有作用力的问题。
平面应力问题通常适用于薄板、薄壳 等二维结构,其中应力分量在某一平 面内变化,而垂直于该平面的方向上 ,应力和应变均为零。
THANKS
感谢观看
04
平面应变问题
平面应变问题的定义
平面应变问题是指在弹性力学中,应变和应力都仅发生在某一平面内的现象。在 此情况下,应变和应力分量都与离开平面的距离无关。
平面应变问题通常出现在薄壁结构、板壳结构等二维结构中,其中主要的变形和 应力分布都在一个平面内。
平面应变问题的求解方法
1 2 3
有限元法
通过将问题离散化为有限个小的单元,利用弹性 力学的平衡方程和变形协调方程,求解每个单元 的应力、应变和位移。
跨学科的研究
与其他学科的交叉研究 可能会带来新的思想和 理论。例如,与物理学 、化学、生物学等学科 的交叉可能会为弹性力 学的研究提供新的视角 和思路。
实验与理论的结 合
实验技术的发展将有助 于更好地验证理论的正 确性和实用性。同时, 理论的发展也将为实验 提供更好的指导。因此 ,实验与理论的结合将 是未来研究的一个重要 方向。

弹性力学 第3讲 平面问题基本理论(2) PPT课件

弹性力学 第3讲 平面问题基本理论(2) PPT课件


或)(写X 为 :Y
x y
)
2( x y ) 0 ( 2 Laplace 算子)
(与E, μ无关,适合于平面应力和平面应变问题)
应力法方程: 2( x y ) 0
相容方程
x
m cos(90 ) sin
代入应力边界条件:
l(x cxo)ss m (yxyxs)ins X 0 m (ysiyn)s l(xyxyc)oss Y 0
x N

B
6
2. 圣维南原理
端部:只知合力而不知其分布,应力边界条 件难以给出。
21
22
思考:
若应变分量满足相容方程:
2 x
y2

2 y
x 2

2 xy
xy
那么由物理方程导出的应力分量是否一定满足 以应力表示的相容方程(不计体力):
(
2 x 2

2 y2
)(
x


y
)

0
23
24
•应力函数:(多数情况体积力为常量)
((xx2222yy2222))((xxyy))0(1
3
• 应力边界条件
ox y
X YN
X ,Y —已知面力
yx y
xy X
x
YN
l( x )s m( yx )s X m( y )s l( xy )s Y 内力和外力的平衡。
4
• 混合边界条件
vs v 0
o
x
( yx )s X 0
y
例:写出水坝OA、O1B的边界条件,设水的密度为 。

P A

弹性力学-平面应力-平面应变问题

弹性力学-平面应力-平面应变问题

化简得到
x yxzxX0
x y z
Y 0
xyy zyY0
x y z
Z 0
xzyzz Z0
x y z
平衡微分方程的矩阵形式为
回顾
σb0
其中,是微分算子
x
0
0
y
0 0
y x
0
z
z
0
0
0
0
z
y x
式中,b是体积力向量,b[XYZ]T
二维问题:平衡微分方程
x yx X0
x y
xy y Y 0
已知位移 u 边界上弹性体的位移为 u、 v、 w,
则有
uu vv ww (在 u 上)
用矩阵形式表示为:
uu (在 u 上)
小结
弹性力学基本方程的一般形式为
回顾
平衡微分方程 σb0 (在 内)
几何方程 物理方程
ε tu σDε
(在 内) (在 内)
边界条件
nσt
(在 t 上)
uu
(在 u 上)
工程上,一般将应变与应力间的关系表示为
xE 1xyz y E 1yz x
xy
1
G
xy
yz
1 G
yz
z E 1zxy
zx
1 G
zx
称它们为物理方程(广义虎克定律)。
x 1 E 1 1 2 x 1 y 1 z
y 1 E 1 1 2 1 x y 1 z
回顾
弹性力学目的:对弹性体中的位移、应力、应变进行 定义和表达,进而建立平衡方程、几何方程和材料物 理方程
研究的基本技巧
采用微小体积元dxdydz 的分析方法(针对任意 变形体)

弹性力学平面应力问题和平面应变问题

弹性力学平面应力问题和平面应变问题
在弹性力学平面应力问题和平面应变问题中,有限差分法常用于求解偏微 分方程,特别是对于规则的网格划分,计算效率较高。
有限差分法的精度取决于差分格式的选择和网格的划分,同时需要注意数 值稳定性和计算精度的问题。
边界元法
边界元法是一种基于边界积 分方程的数值分析方法,通 过将微分方程转化为边界积
分方程来求解。
变形特点
应用领域
在平面应力问题中,变形主要发生在作用 面上,而在平面应变问题中,变形可以发 生在整个结构中。
平面应力问题在桥梁、建筑和机械等领域 有广泛应用,而平面应变问题在岩土、地 质和材料等领域有广泛应用。
06
结论与展望
结论总结
平面应力问题和平面应变问题在弹性力学中具有重要地位,它们是描述物体在应力作用下的变形和应 力分布的基础。
弹性模量表示材料在受力作用下的刚度,是衡量材料抵 抗弹性变形能力的重要参数。
剪切模量表示材料在剪切力作用下的刚度,与弹性模量 和泊松比有关。
03
平面应变问题
应变状态分析
平面应变条件
应变分量中,只有$varepsilon_{x}$ 、$varepsilon_{y}$和 $gamma_{xy}$不为零,其余分量为 零。
有限元法在弹性力学平面应力问题和平面应变问题中广泛 应用,因为它能够处理复杂的几何形状和边界条件,且计 算精度高。
有限元法的实现需要建立离散化的模型、选择合适的单元 类型和求解算法,并进行数值稳定性和误差分析。
有限差分法
有限差分法是一种基于差分原理的数值分析方法,通过将微分方程转化为 差分方程来求解。
薄板弯曲问题
考虑一个矩形薄板,受到一对相距较远的集中力作用,使板发生弯曲。根据平面应力问题,可以分析 板的应力分布、中性面位置以及挠度等。

《弹性力学教学课件》2-1平面应力和平面应变问题

《弹性力学教学课件》2-1平面应力和平面应变问题

数学模型的比较
平面应力问题
需要建立三个方向的应力分量,即$sigma_{x}$、$sigma_{y}$ 和$tau_{xy}$,以及三个方向的应变分量,即$epsilon_{x}$、 $epsilon_{y}$和$gamma_{xy}$。
平面应变问题
需要建立两个方向的应变分量,即$epsilon_{x}$、 $epsilon_{y}$和$gamma_{xy}$,以及三个方向的应力分量, 即$sigma_{x}$、$sigma_{y}$和$tau_{xy}$。
04
弹性力学在工程中的应用
弹性力学在建筑领域的应用
结构设计
建筑结构中的梁、柱、板等构件 的受力分析,需要考虑弹性力学 的基本原理,以确保结构的稳定 性和安全性。
地震工程
地震工程中,建筑物的抗震设计 需要利用弹性力学的基本原理, 研究地震作用下的结构响应和破 坏机制。
弹性力学在机械领域的应用
机械零件设计
机械零件如轴承、齿轮、弹簧等的受 力分析,需要考虑弹性力学的基本原 理,以确保零件的稳定性和可靠性。
疲劳寿命预测
弹性力学在机械领域中广泛应用于疲 劳寿命预测,通过分析材料的应力分 布和应变历程,预测零件的疲劳寿命。
弹性力学在航空航天领域的应用
飞机结构分析
飞机结构中的机翼、机身等部件的受力分析,需要考虑弹性力学的基本原理,以确保飞机的安全性和稳定性。
假设物体在平面内的应力分量与垂直于平面的应力分量相比很小,因此可以忽略不 计。
平面应变问题的求解方法
基于弹性力学的基本方程,建 立平面应变问题的数学模型。
利用边界条件和初始条件,求 解数学模型中的未知量。
常用的求解方法包括有限元法、 有限差分法和变分法等数值计 算方法,以及解析法等理论计 算方法。

弹性力学平面应力问题和平面应变问题

弹性力学平面应力问题和平面应变问题
跨学科融合
弹性力学与材料科学、计算科学、生物学等学科的交叉融合,为解决 复杂工程问题提供了新的思路和方法。
数值模拟与计算
随着计算机技术的进步,数值模拟和计算在弹性力学领域的应用越来 越广泛,能够更精确地模拟和预测材料的力学行为。
多尺度分析
从微观到宏观的多尺度分析方法,能够更好地理解材料的微观结构和 宏观性能之间的关系。
它们简化了问题的复杂性,使得 弹性力学成为一种实用的工程工 具。
02
基本假设的局限性
03
限制条件的考虑
在某些情况下,这些假设可能不 成立,例如在处理非均匀、非各 项同性或大变形问题时。
在应用弹性力学时,必须考虑这 些限制条件,以确保结果的准确 性和可靠性。
06 弹性力学的发展趋势和未 来研究方向
弹性力学的发展趋势
非线性力学
随着工程结构的复杂性和非线性特征的增加,非线性力学的研究越来 越受到重视,为解决复杂工程问题提供了新的理论和方法。
未来研究方向
新材料和新结构的力学行为
智能材料的力学行为
研究新型材料和复杂结构的力学行为,探 索其性能优化和设计方法。
研究智能材料的响应机制和调控方法,探 索其在传感器、驱动器和自适应结构等领 域的应用。
生物医学中的弹性力学问题
研究生物组织的力学行为和生理功能,探 索其在生物医学工程和再生医学等领域的 应用。
环境与可持续发展的弹性力学问 题
研究环境因素对材料和结构的影响,探索 其在环保和可持续发展等领域的应用。
THANKS FOR WATCHING
感谢您的观看
材料力学性能的测试
材料弹性模量的测定
通过实验测定材料的弹性模量,可以了解材料的力学性能,为工程设计和材料选择提供依据。

弹性力学第二章.ppt

弹性力学第二章.ppt

定义 位移边界条件
§2-6 边界条件
边界条件 --表示在边界上位移与约 束,或应力与面力之间的关系。
位移边界条件 --设在su部分边界
上给定位移分量 u (s) 和 v(s) ,则有
(u)s u(s), (v)s v(s), (在 su上)。(2-14)
第二章 平面应力问题和平面应变问题
位移边界条件的说明:
第二章 平面应力问题和平面应变问题
斜面应力
(3)求主应力
设某一斜面为主面,则只有 σn σ, τn 0, 由此建立方程,求出:
σmax x y
σ min
2
tan 1

σ σ
1
2
xy
.

x

2
y
2


2 xy
,
(2-6)
第二章 平面应力问题和平面应变问题
平行xy面,柱体非常长;
故任何z 面(截面)均为对称面。
w 0, 只有u,v; (平面位移问题)
w 0 εz 0,

τzx, τzy 0 zx, zy 0,
只有 x , y , xy .
(平面应变问题)
第二章 平面应力问题和平面应变问题
平面应变
(2)由于截面形状、体力、面力及约束沿
故其物理方程为:
x


1 E
σx σ y
y


1 E
σy
σx

xy

21
E

xy
(2 12)
第二章 平面应力问题和平面应变问题
定义
对平面应变问题,由于 zy 0, zx 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

系,即 σx = Eεx 这就是虎克定律。 应力
(Hooke‘s Law)
Y
弹塑性范围
弹性范围
斜率, E
应变
工程上,一般将应变与应力间的关系表示为
xE 1xyz yE 1yzx
xy
1
G
xy
yz
1
G
yz
zE 1zxy
zx
1
G
zx
称它们为物理方程(广义虎克定律)。
x 1 E 1 1 2 x 1 y 1 z
1
0
对 1 0

1
2
对于平面应变问题的弹性矩阵,只须在上式
中,以 E
1 2
代E,
1
代μ即可。
小结
则有
uu vv ww (在 u 上)
用矩阵形式表示为:
uu (在 u 上)
小结
弹性力学基本方程的一般形式为
回顾
平衡微分方程 σb0 (在 内)
几何方程 物理方程
ε tu σDε
(在 内) (在 内)
边界条件
nσt
(在 t 上)
uu
(在 u 上)
其中 t u , 为弹性体的完整边界。
§2-3 平面应变和平面应力问题
平面应变问题
位移:按平面应变的定义,三个方向的位移函数是
uux,y vv(x,y) w0
应变:由几何方程应变-位移关系,得
x
u x
1x,
y,
y
v y
3x,
y,
xy yz
u y
v x
2x,
v w0 z y
y
z
w0, z
zx
u z
w0 x
不等于零的三个应变分量是εx、εy和γxy,而且应变仅发
由于认为板内 zx 0 zy 0 ,将其代入物理方程
yz
1
G
yz
zx
1
G
zx,则有
yz 0
zx 0
于是,物理方程的另外三式成为
x
1 E
( x
y )
y
1 E
( y
x )
xy
1
G
xy
21
E
μ
τxy
如果用应变分量来表示应力分量,上面三式变为
x
E
12
(x
y)
y
E
12
(x
y )
研究的基本技巧
采用微小体积元dxdydz 的分析方法(针对任意 变形体)
dz
dy
dx
弹性体的基本假设
回顾
为突出所处理的问题的实质,并使问题简单化和抽 象化,在弹性力学中,特提出以下几个基本假定。
(1) 物质连续性假定:物质无空隙,可用连续函数来描述; (2) 物质均匀性假定:物体内各个位置的物质具有相同特性; (3) 物质(力学)特性各向同性假定:物体内同一位置的物质在
y
y
o z
y
o z
y
o
x
o
x
平面应变问题
还有一种情况,当构件的纵向尺寸不很大 但两端面被刚性光滑面固定,不能发生纵向位 移时,若其他条件与上面所述相同,也属于平 面应变问题。 通常,只要是长的等直柱体或板,受到垂直于 其纵轴而且沿长度方向无变化的载荷作用时, 都可以简化为平面应变问题。下面是这种情况 下的应力、应变以及弹性力学的基本方程式。
X Y
nxx nyxy nxyx nyy
nnzzyxzz
Z
nxzx
nyzy
nzz
其矩阵表达式为
t nσ
(在 t 上)
其中,面积力向量 t[XYZ]T,方向余弦矩阵为
nn0x
0 ny
0 ny 0 nx
0 nz
n0z
0 0 nz 0 ny nx
5. 位移边界条件
回顾
已知位移 u 边界上弹性体的位移为 u、 v、 w,
可写成矩阵形式
D
其中
1
1
1

D
E1 1 1 2
1
0
1
0
1 0
1 2
21

0
0
00 0 00 0
1 2
21
0
1 2
21
称为弹性矩阵,由弹性常数E和 μ决定。
4. 应力边界条件
回顾
弹性体在应力边界 t 上单位面积的面力为X 、Y 、Z 。设
边界外法线的方向余弦为 nx、ny、nz ,则边界上弹性体 的应力边界条件可表示为
回顾
σb0
其中,是微分算子
x
0
0
y
0 0
y x
0
z
z
0
0
0
0
z
y x
式中,b是体积力向量,b[XYZ]T
二维问题:平衡微分方程
x yxX0
x y
xyy Y0
x y
回顾
2.几何方程:位移-应变的关系 回 顾
B1 θ2
θ1 A1
2.几何方程:位移-应变的关系 回 顾 六个应变分量与三个位移分量间的全部关系式:
yx
xy
yx
d’
a’
1.平衡微分方程
回顾
由力平衡条件 X0 有
xxxdxdy dzxdy dzyx yyxdydx dyzxdxd
zx zzxdzdx dzyxdx dXydxd 0ydz
化简得到
xyxzxX0
x y z
Y0
xyy zyY0
x y z
Z0
xzyzz Z0
x y z
平衡微分方程的矩阵形式为
三个。
平面应力问题
对于具有如下特征的构件,可作为平面应力 问题处理。
(1)物体沿一个坐标方向的尺寸(如沿z轴方向)远小 于沿其它两个方向的尺寸,如图所示的等厚度薄板;
(2)外力作用在周边上,并与xoy面平行,板的侧面 没有外力,体积力垂直于z轴;
(3)由于板的厚度很小,故外载荷面积力和体积力 都可看作是沿z轴方向均匀分布,并且为常量。

x
1
E
1 x
y
y
1
E
1 y
x
xy
1 G
x
y
21
E
xy
平面应变问题
应力:如果用应变分量来表示应力分量,则有
x
E(1) (1)(12)
x
1y
y
E(1) (1)(12)
1x
y
xy
E
2(1)
xy
E(1) (1)(12)
12 2(1)
xy
由上面的分析可知,独立的应力分量只有 σx、σy 和xy
y 1 E 1 1 2 1 x y 1 z
z 1 E 1 1 2 1 x 1 y z
xy 21Exy yz 21Eyz zx 21Ezx
若令
T x y z xy yzzx
T x y z xy yz zx
代表应变列阵和应力列阵,则应力-应变关系
体积力沿板厚不变,且沿z轴方向的分力Z=0。在板 的前后表面上没有外力作用。即
zh 时
2
z 0 zx 0
y
zy 0
y
hh
2
2
o
x
oz
h
平面应力问题
在平面应力问题中,认为 z 等于零,但沿z轴的应 变不等于零。这与平面应变的情况刚好相反。
将 z 0 代入物理方程,zE 1zxy有
z E xy
各个方向上具有相同特性; (4) 线性弹性假定:物体的变形与外来作用力的关系是线性的,
外力去除后,物体可恢复原状; (5) 小变形假定:物体变形远小于物体的几何尺寸。
以上基本假定将作为问题简化的出发点。
§2-2 弹性力学基本方程
回顾
b’ a’
b
zx zx
xz
a
xy
c
zy zy
c’ yz yz
xz
d
xy
Gxy
E
2(1)
xy
E
12
12xy
平面应变和平面应力问题物理方程比较:
x
E
12
(x
y)
平面
y 1E2 (x y)
应力
xy
Gxy

2(1E)xy
E
12
12xy
x
E(1) (1)(12)
x
1y
平面
y
E(1) (1)(12)
1
x
y
应变
xy
2(1E)xy
E(1) (1)(12)
21(12)xy
平面应变问题
设一构件(如图),其 纵向(z)尺寸远大于 横向(x,y)尺寸,且 与纵轴垂直的各截面都 相同;受到垂直于纵轴 但不沿长度变化的外力(包括体积力X、Y, 同时有Z=0)的作用,而且约束条件也不沿 长度变化。
平面应变问题
这时,可以把构件在纵向作为无限长看待。因此, 任一横截面都可以视为对称面,其上各点就不会 产生沿z向的位移,而沿x、y方向的位移也与坐标 z无关。则有
(2) 与纵向(z轴)垂直的各横截面的尺寸和形状均相同; (3) 所有外力均与纵轴(z轴)垂直,并且沿纵轴(z轴)没
有变化; (4) 物体的约束(支承)条件不随z轴变化。
在工程和机械中,许多结构或构件属于这一类问
题。如直的堤坝和隧道;圆柱形长管受到内水
(油)压力作用;圆柱形长辊轴受到垂直于纵轴
的均匀压力等,均可近似的视为平面应变问题。
如果用 E 和 分别代换平面应力物理
1 2
相关文档
最新文档