弹性力学平面应力问题和平面应变问题
合集下载
弹性力学-平面应力-平面应变问题

平面应力问题的求解方法
解析法
实验法
通过数学分析的方法,将问题转化为 数学方程进行求解。适用于简单几何 形状和边界条件的问题。
通过实验测试来测量物体的应力分布, 通常需要制作模型并进行加载测试。 适用于无法通过理论分析求解的问题。
有限元法
将物体离散化为有限个小的单元,通 过求解每个单元的平衡方程来得到整 个物体的应力分布。适用于复杂几何 形状和边界条件的问题。
弹性力学的基本方程
描述物体在受力后的应力 与应变之间的关系。
描述物体在受力后发生的 位移和应变关系。
描述物体内部力的平衡关 系03
平面应力问题
平面应力问题的定义
平面应力问题是指在弹性力学中,物 体受到的应力作用在某一平面内,且 在该平面上没有作用力的问题。
平面应力问题通常适用于薄板、薄壳 等二维结构,其中应力分量在某一平 面内变化,而垂直于该平面的方向上 ,应力和应变均为零。
THANKS
感谢观看
04
平面应变问题
平面应变问题的定义
平面应变问题是指在弹性力学中,应变和应力都仅发生在某一平面内的现象。在 此情况下,应变和应力分量都与离开平面的距离无关。
平面应变问题通常出现在薄壁结构、板壳结构等二维结构中,其中主要的变形和 应力分布都在一个平面内。
平面应变问题的求解方法
1 2 3
有限元法
通过将问题离散化为有限个小的单元,利用弹性 力学的平衡方程和变形协调方程,求解每个单元 的应力、应变和位移。
跨学科的研究
与其他学科的交叉研究 可能会带来新的思想和 理论。例如,与物理学 、化学、生物学等学科 的交叉可能会为弹性力 学的研究提供新的视角 和思路。
实验与理论的结 合
实验技术的发展将有助 于更好地验证理论的正 确性和实用性。同时, 理论的发展也将为实验 提供更好的指导。因此 ,实验与理论的结合将 是未来研究的一个重要 方向。
弹性力学-2-平面问题的基本理论

2015-1-16
4 弹性力学
2.1 平面应力问题与平面应变问题
弹性力学空间问题共有应力、应变和位
移共15个未知函数,且均为 f (x, y, z)。
弹性力学平面问题共有应力、应变和位
移8个未知函数,且均为f (x, y,)。
2015-1-16
5 弹性力学
2.1 平面应力问题与平面应变问题
什么条件下 空间问题可简化为平面问题
px n l l
py n m m
又由于:
px xl xy m p y xyl y m
32 弹性力学
2015-1-16
2.2 平面问题中一点的应力状态 问题3:若经过该点的某一斜面上的切应力为0, 求此斜面上的主应力σ和应力主方向α 从而可得
2015-1-16 25 弹性力学
2.2 平面问题中一点的应力状态 应力是与作用面有关的。σx,σy和τxy作为 基本未知函数,只是表示一点的坐标平面上的 应力分量(左图)。而校核强度时需要知道过 此点的任意斜面上的应力p。斜面上的应力p可 以按坐标轴分解为(px,py),也可沿法向和切 向分解为正应力σn和切应力τn(右图)。
z , zx , zy 0
2015-1-16 10 弹性力学
2.1 平面应力问题与平面应变问题
因此,此类问题的未知量只剩下Oxy面内 的三个应力分量: x , y , xy
所以此类问题称为平面应力问题。 由于板很薄,等厚度,外力和约束沿z 方向不变,因此应力也沿厚度z方向均匀分 布,应力x,y和xy只是坐标x, y的函数。
取如图所示的微分三角板或三棱柱
PAB,当平面AB无限接近于P点时, 该平面上的应力即为所求。
弹性力学平面应力平面应变问题 ppt课件

系,即 σx = Eεx 这就是虎克定律。 应力
(Hooke‘s Law)
Y
弹塑性范围
弹性范围
斜率, E
应变
工程上,一般将应变与应力间的关系表示为
xE 1xyz yE 1yzx
xy
1
G
xy
yz
1
G
yz
zE 1zxy
zx
1
G
zx
称它们为物理方程(广义虎克定律)。
x 1 E 1 1 2 x 1 y 1 z
1
0
对 1 0
称
1
2
对于平面应变问题的弹性矩阵,只须在上式
中,以 E
1 2
代E,
1
代μ即可。
小结
则有
uu vv ww (在 u 上)
用矩阵形式表示为:
uu (在 u 上)
小结
弹性力学基本方程的一般形式为
回顾
平衡微分方程 σb0 (在 内)
几何方程 物理方程
ε tu σDε
(在 内) (在 内)
边界条件
nσt
(在 t 上)
uu
(在 u 上)
其中 t u , 为弹性体的完整边界。
§2-3 平面应变和平面应力问题
平面应变问题
位移:按平面应变的定义,三个方向的位移函数是
uux,y vv(x,y) w0
应变:由几何方程应变-位移关系,得
x
u x
1x,
y,
y
v y
3x,
y,
xy yz
u y
v x
2x,
v w0 z y
y
z
w0, z
zx
u z
弹性力学第二章

(2)平面应变问题的物理方程 由于平面应力问题中:εz = γ zx = γ zy = 0
µ 1− µ2 σx − εx = σy 1− µ E 1− µ2 µ σy − εy = σy E 1− µ
——平面应变问题 ——平面应变问题 物理方程
第三节
平面问题中一点的应力状态
一点的应力
2. 一点的主应力与应力主向 (1)主应力 若某一斜面上τn = 0 ,则该斜面上的正应力σn 称为该点一个主应力σ; 当τn = 0 时,有 σn =σ = p
px =lσ py = m σ
lσx +m xy =lσ τ m y +lτxy = m σ σ
γ xy =
2(1+ µ) τ xy E
在z方向,εz = 0, σz = µ(σx +σy )
变换关系 : 平面应力物理方程 →平面应变物理方程:
E µ E→ , → µ 2 1− µ 1− µ
平面应变物理方程 →平面应力物理方程:
E→
E(1+ 2µ)
(1+ µ)2
, → µ 1+ µ
µ
思考题 1. 试证:由主应力可以求出主应变,且两者方 向一致。 2. 试证:三个主应力均为压应力,有时可以产 生拉裂现象。 3. 试证:在自重作用下,圆环(平面应力问题) 比圆筒(平面应变问题)的变形大。
E
µ
2.平面应变问题 2.平面应变问题 条件是:⑴很长的常截面柱体 ; ⑵体力、面力、约束平行于柱面横截面, 沿长度方向不变。 应力:
σz = µ(σx +σy )
τ zx =τ zy = 0
应变:
εz = 0 γ zx = 0 γ zy = 0
弹性力学平面应力问题和平面应变问题

特点
平面应力问题的定义
平面应力问题的基本假设
假设弹性体是连续的,没有空隙或裂缝。
假设弹性体的材料性质在空间中是均匀的,即各向同性。
假设弹性体的材料性质在不同方向上相同。
假设弹性体的变形是微小的,即变形前后的形状和尺寸变化不大。
连续性
均匀性
各向同性
小变形
解析法
01
通过数学公式和定理求解弹性力学问题的精确解。适用于简单形状和边界条件的平面应力问题。
平面问题的定义
02
CHAPTER
平面应力问题
在弹性力学中,平面应力问题是指应变场和应力场在二维平面上变化的问题。这类问题通常涉及到薄板、薄壳等二维结构,其厚度相对于结构的尺寸较小,可以忽略不计。
平面应力问题
平面应力问题具有对称性,即应变和应力在垂直于平面的方向上为零。同时,由于结构厚度较小,平面应力问题通常只考虑平面内的应变和应力分量,忽略垂直于平面的分量。
弹性力学简介
平面问题是指弹性物体在平面内的变形问题,其中物体与平面平行或与平面垂直。
平面应变问题是指物体在平行于平面的方向上发生变形,而垂直于平面的方向上变形较小或忽略不计。
平面问题可以分为平面应变问题和平面应力问题两类。
平面应力问题是指物体在垂直于平面的方向上发生变形,而平行于平面的方向上变形较小或忽略不计。
03
CHAPTER
平面应变问题
平面应变问题
模拟 aword/noun like "bleepileysing前进 on how toilet b. The first time you feel that there is a word-like "bleepilexamples the first time you具有重要的 first time you feel that there is a word's a word-like "bleepilexamples[c. The first time you feel that there is a word's a word-like b. The first time you feel that there is a word's a word's a word-like "bleepilexamples the first time you's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a way toilet's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's
平面应力问题的定义
平面应力问题的基本假设
假设弹性体是连续的,没有空隙或裂缝。
假设弹性体的材料性质在空间中是均匀的,即各向同性。
假设弹性体的材料性质在不同方向上相同。
假设弹性体的变形是微小的,即变形前后的形状和尺寸变化不大。
连续性
均匀性
各向同性
小变形
解析法
01
通过数学公式和定理求解弹性力学问题的精确解。适用于简单形状和边界条件的平面应力问题。
平面问题的定义
02
CHAPTER
平面应力问题
在弹性力学中,平面应力问题是指应变场和应力场在二维平面上变化的问题。这类问题通常涉及到薄板、薄壳等二维结构,其厚度相对于结构的尺寸较小,可以忽略不计。
平面应力问题
平面应力问题具有对称性,即应变和应力在垂直于平面的方向上为零。同时,由于结构厚度较小,平面应力问题通常只考虑平面内的应变和应力分量,忽略垂直于平面的分量。
弹性力学简介
平面问题是指弹性物体在平面内的变形问题,其中物体与平面平行或与平面垂直。
平面应变问题是指物体在平行于平面的方向上发生变形,而垂直于平面的方向上变形较小或忽略不计。
平面问题可以分为平面应变问题和平面应力问题两类。
平面应力问题是指物体在垂直于平面的方向上发生变形,而平行于平面的方向上变形较小或忽略不计。
03
CHAPTER
平面应变问题
平面应变问题
模拟 aword/noun like "bleepileysing前进 on how toilet b. The first time you feel that there is a word-like "bleepilexamples the first time you具有重要的 first time you feel that there is a word's a word-like "bleepilexamples[c. The first time you feel that there is a word's a word-like b. The first time you feel that there is a word's a word's a word-like "bleepilexamples the first time you's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a way toilet's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's
弹性力学简明教程 第2章 平面问题的基本理论

一 、求AB面上的正应力σn和切应力τn
设px、py为斜面AB的应力p在x、y 轴上的投影。斜面 AB的长度为 ds, 则AB=ds, PB=lds, PA=mds 。 由平衡条件∑Fx=0 得:
l ds m d s p x ds x l ds xy m ds f x 0 2
除以ds ,然后令ds→0, 得:
B'
一、位移与形变
刚体位移
如果各点(或部分点)间的相对距离发生变化, 则物体发生了变形。这种变形一方面表现在微 线段长度的变化,称为线应变;一方面表现在 微线段间夹角的变化,称为切应变。
O
A
O
A'
B
B'
二、几何方程
几何方程——描述任一点的微线段上形变分量 与位移分量之间的关系。 P点的形变分量与位移分量的关系?
0 l 1
当 l2 = 1 时,
0 l 2 1
n nmax 1 ( 1 2 ) 2 1
当 l2 = 0 时,
n n min 2
可见:两个主应力就是最大与最小的正应力。
五、求最大与最小的切应力
任意斜面上的切应力 n lm( y x ) (l 2 m 2 ) xy
y
二、几何方程
PA的线应变在小变形
时是由x 方向的位移 引起的,因此PA的线 应变为
P' A' PA x PA
o u
P
x
u
dx
v
P'
A
u dx x
A'
v
v dx x
y
u (u dx) u AA' PP' u x dx PA x v (v dx) v v x PA的转角为 dx x
弹性力学平面应力问题和平面应变问题

在弹性力学平面应力问题和平面应变问题中,有限差分法常用于求解偏微 分方程,特别是对于规则的网格划分,计算效率较高。
有限差分法的精度取决于差分格式的选择和网格的划分,同时需要注意数 值稳定性和计算精度的问题。
边界元法
边界元法是一种基于边界积 分方程的数值分析方法,通 过将微分方程转化为边界积
分方程来求解。
变形特点
应用领域
在平面应力问题中,变形主要发生在作用 面上,而在平面应变问题中,变形可以发 生在整个结构中。
平面应力问题在桥梁、建筑和机械等领域 有广泛应用,而平面应变问题在岩土、地 质和材料等领域有广泛应用。
06
结论与展望
结论总结
平面应力问题和平面应变问题在弹性力学中具有重要地位,它们是描述物体在应力作用下的变形和应 力分布的基础。
弹性模量表示材料在受力作用下的刚度,是衡量材料抵 抗弹性变形能力的重要参数。
剪切模量表示材料在剪切力作用下的刚度,与弹性模量 和泊松比有关。
03
平面应变问题
应变状态分析
平面应变条件
应变分量中,只有$varepsilon_{x}$ 、$varepsilon_{y}$和 $gamma_{xy}$不为零,其余分量为 零。
有限元法在弹性力学平面应力问题和平面应变问题中广泛 应用,因为它能够处理复杂的几何形状和边界条件,且计 算精度高。
有限元法的实现需要建立离散化的模型、选择合适的单元 类型和求解算法,并进行数值稳定性和误差分析。
有限差分法
有限差分法是一种基于差分原理的数值分析方法,通过将微分方程转化为 差分方程来求解。
薄板弯曲问题
考虑一个矩形薄板,受到一对相距较远的集中力作用,使板发生弯曲。根据平面应力问题,可以分析 板的应力分布、中性面位置以及挠度等。
有限差分法的精度取决于差分格式的选择和网格的划分,同时需要注意数 值稳定性和计算精度的问题。
边界元法
边界元法是一种基于边界积 分方程的数值分析方法,通 过将微分方程转化为边界积
分方程来求解。
变形特点
应用领域
在平面应力问题中,变形主要发生在作用 面上,而在平面应变问题中,变形可以发 生在整个结构中。
平面应力问题在桥梁、建筑和机械等领域 有广泛应用,而平面应变问题在岩土、地 质和材料等领域有广泛应用。
06
结论与展望
结论总结
平面应力问题和平面应变问题在弹性力学中具有重要地位,它们是描述物体在应力作用下的变形和应 力分布的基础。
弹性模量表示材料在受力作用下的刚度,是衡量材料抵 抗弹性变形能力的重要参数。
剪切模量表示材料在剪切力作用下的刚度,与弹性模量 和泊松比有关。
03
平面应变问题
应变状态分析
平面应变条件
应变分量中,只有$varepsilon_{x}$ 、$varepsilon_{y}$和 $gamma_{xy}$不为零,其余分量为 零。
有限元法在弹性力学平面应力问题和平面应变问题中广泛 应用,因为它能够处理复杂的几何形状和边界条件,且计 算精度高。
有限元法的实现需要建立离散化的模型、选择合适的单元 类型和求解算法,并进行数值稳定性和误差分析。
有限差分法
有限差分法是一种基于差分原理的数值分析方法,通过将微分方程转化为 差分方程来求解。
薄板弯曲问题
考虑一个矩形薄板,受到一对相距较远的集中力作用,使板发生弯曲。根据平面应力问题,可以分析 板的应力分布、中性面位置以及挠度等。
平面应力问题与平面应变问题

• (u,v)≠0,They are functions of x and y only u v 通常不为零,且只是x y的函数。
• Plane displacement problem 平面位移问题
2021/1/23
弹性力学 第二章
12
G. Stresses for plane strain problem 平面应变问题的应力
Symmetric condition对称条件:zx=0,zy=0
A
B
w0
2021/1/23
弹性力学 第二章
14
' zy
将mn作为对称面,按作用反作用关系,左部分某点若
有
zy
,右部分则有
' zy
,大小与 zy
相等。
'
由对称性,对称点切应力应具有相同方向,右边又可
zy
有
" zy
,而
" zy
' zy
y)
dx
F 2 ( x, y) 2!x 2
dx2
F (x, y) F (x, y) dx
F (x,
y
dy)
x F (x,
y)
ቤተ መጻሕፍቲ ባይዱ
F (x, y
y)
dy
F 2 (x, y) 2!y 2
dy 2
F (x, y) F (x, y) dy y
2021/1/23
弹性力学 第二章
27
Review: Taylor’s series: 泰勒级数
可见弹力的平衡微分方程的推导并不是全新的内容其所用的方法取单元体考虑单元体的平衡在材力中早已用过2013814弹性力学第二章25?弹力的单元体变小了所得方程从反力内力的四则运算和常微分关系变成了应力体力的偏微分关系
• Plane displacement problem 平面位移问题
2021/1/23
弹性力学 第二章
12
G. Stresses for plane strain problem 平面应变问题的应力
Symmetric condition对称条件:zx=0,zy=0
A
B
w0
2021/1/23
弹性力学 第二章
14
' zy
将mn作为对称面,按作用反作用关系,左部分某点若
有
zy
,右部分则有
' zy
,大小与 zy
相等。
'
由对称性,对称点切应力应具有相同方向,右边又可
zy
有
" zy
,而
" zy
' zy
y)
dx
F 2 ( x, y) 2!x 2
dx2
F (x, y) F (x, y) dx
F (x,
y
dy)
x F (x,
y)
ቤተ መጻሕፍቲ ባይዱ
F (x, y
y)
dy
F 2 (x, y) 2!y 2
dy 2
F (x, y) F (x, y) dy y
2021/1/23
弹性力学 第二章
27
Review: Taylor’s series: 泰勒级数
可见弹力的平衡微分方程的推导并不是全新的内容其所用的方法取单元体考虑单元体的平衡在材力中早已用过2013814弹性力学第二章25?弹力的单元体变小了所得方程从反力内力的四则运算和常微分关系变成了应力体力的偏微分关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)求( p x, p y) 由平衡条件,并略去高阶分量体力项,得
px lσ x mτ yx , p y mσ y lτ xy ,
其中:l=cos(n,x), m=cos(n,y)。
(a)
2、平面问题中一点的应力状态 x
37
yx yx
y xx
y y
A
斜面上应力分解为:
已知P点应力σxσyτxy 可求出过P点任意斜面上的
•正应力和剪应力(σNτN) 利用(2-4)(2-5) •应力在x,y轴上的投影(px,py) 利用(2-3)
第二章
平面应力问题和平面应变问题
斜面应力
(2)求( σ n , τ n )
将 p ( p x , p y ) 向法向,切向投影,得
2 2 n lpy mpx lm(σ y σ x ) (l m ) xy . σ n lpx mp y l σ x m σ y 2lm xy ,
x
p
n
y 斜面上应力分解为:
yx
x
p px py
xy
X p ds lds
x
mds f xldsmds/ 2 0
由∑Y=0得:
px xl xym
py y m xyl
(2-3)
第二章
平面应力问题和平面应变问题
斜面应力
将得出什么结果?
第二章
平面应力问题和平面应变问题
问题
§2-3
平面问题中一点的应力状态
问题的提出: 已知坐标面上应力σ x , σ y , xy , 求斜面上的应力。
第二章
平面应力问题和平面应变问题
问题
斜面应力表示:p ( p x , p y ), p (σ n , n ). 求解:取出一个三角形微分体(包含 x 面,
2
y x
B py
x y 2
2 xy
2
注意:①平面应力状态下,任一点一般都存在 两个主应力。二者方向互相垂直。 n ② σ1+σ2=σx+σy
③任一点主应力值是过该点各截面上正应力中的极值。 2 ④最大剪应力所在平面与主 x y 1 2 平面相交45°,其值为 2
其中一阶微量抵消,并除以 d x d y 得:
σ x yx f x 0. x y (a)
Fy0 ,同理可得:
σ y y xy x f y 0. (b)
第二章
平面应力问题和平面应变问题
平衡条件
Mc0, 得
1 xy d x 1 yx d y, xy yx 2 x 2 y
σ ,
zx
故接近平面应力问题。
第二章
平面应力问题和平面应变问题
第二种:平面应变问题
纵向轴 压力管道
纵向轴
水坝
第二章
平面应力问题和平面应变问题
平面应变
第二种:平面应变问题
条件是:
(1)很长的常截面柱体;
(2)体力作用于体内,平行于横截面,沿柱体 长度方向不变; (3)面力作用于柱面,平行于横截面,沿柱 体长度方向不变; (4)约束作用于柱面,平行于横截面,沿柱 体长度方向不变。
弹性力学
朱明礼 njzhu2004@
第一节
平面应力问题和平面应变问题
第二节
第三节 第四节
平衡微分方程
平面问题中一点的应力状态 几何方程 刚体位移
第五节
第六节
物理方程
边界条件
第七节
第八节
圣维南原理及其应用
按位移求解平面问题
第九节
第十节
按应力求解平面问题
常应力情况下的简化
相容方程
应力函数
z 0, 本题中: zx , zy 0
zx , zy 0.
故只有 ε x , ε y , γ xy ,
ox
z
且仅为 f x, y 。
故为平面应变问题。
y
第二章
平面应力问题和平面应变问题
定义
§2-2
平衡微分方程
平衡微分方程--表示物体内任一点
的微分体的平衡条件。
y 面, 面), n
边长 AB ds, PB lds , PA mds.
2、平面问题中一点的应力状态 x
35
yx yx
y
y y
A
几何参数:
cos(N , x) l ,cos(N , y) m,
xx
xy xy
P P
τN
B py
xy 设AB面面积=ds, PB面积=lds, p σN x PA面积=mds。
第二章
平面应力问题和平面应变问题
平面应力
如:
弧形闸门闸墩
计算简图:
F
深梁
计算简图:
fy
fy
第二章
平面应力问题和平面应变问题
平面应力
例题1:试分析AB薄层中的应力状态。
因表面无任何面力,
即:f
x
0, f
y
0
B
故表面上,有:
σ ,
z
z
zx
, zy 0.
, zy 0.
A
在近表面很薄一层内:
px l
σ2-(σx+σy)σ+(σxσy-τ2xy)=0
1
2
x y
2
x y 2
2
2 xy
第二章
平面应力问题和平面应变问题
斜面应力
(3)求主应力
设某一斜面为主面,则只有 σ n σ , τ n 0, 由此建立方程,求出:
第二章
平面应力问题和平面应变问题
平面应变
坐标系选择如图:
对称面
oz
x
ox
z
zy
y y
第二章
平面应力问题和平面应变问题
平面应变
简化为平面应变问题:
(1)截面、外力、约束沿z 向不变,外力、约束 平行xy面,柱体非常长; 故任何z 面(截面)均为对称面。
w 0, 只有u,v; (平面位移问题)
2 2
(b)
39
主平面主应力:剪应力等于零的平面叫主平 主平面上的应力叫主应力。
yx
P xy
y
A
x
y x
B py
p y m x l l xy m px x x l xy m lm l xym x l xy py y m xyl m y m xyl m xy px m y m xyl l y xy x n xy y
小变形假定─用变形前的尺寸代替变
形后的尺寸。
第二章
平面应力问题和平面应变问题
平衡条件
列出平衡条件: 合力 = 应力×面积,体力×体积; 以正向物理量来表示。 平面问题中可列出3个平衡条件。
第二章
平面应力问题和平面应变问题
平衡条件
F 0,
x
σ x (σ x d x)d y1 σ x d y1 x yx ( yx d y )d x1 yx d x1 f x d xd y10. y
第二章
平面应力问题和平面应变问题
平面应力
§2-1
平面应力问题和平面应变问题
弹性力学空间问题共有应力、应变和 位移15个未知函数,且均为 f x, y, z ; 弹性力学平面问题共有应力、应变和 位移8个未知函数,且均为 f x, y 。
第二章
平面应力问题和平面应变问题
z
zx
xy
当 d x, d y 0 时,得切应力互等定理,
xy yx .
(c)
第二章
平面应力问题和平面应变问题
说明
对平衡微分方程的说明:
⑴ 代表A中所有点的平衡条件,
因位( x ,)∈A; y ⑵ 适用的条件--连续性,小变形; ⑶ 应力不能直接求出; ⑷ 对两类平面问题的方程相同。
第二章
第二章
平面应力问题和平面应变问题
V
h
dx
理力( V )
材力(
V hd xb )
dx dy
弹力( dV d xd y1 )
第二章
平面应力问题和平面应变问题
思考题 1.试检查,同一方程中的各项,其量纲
必然相同(可用来检验方程的正确性)。
2.将条件 Mc0 ,改为对某一角点 M 0 ,将得出什么结果? 3.微分体边上的应力若考虑为不均匀分布,
px
xy
P P
xy
n
τN
B
py
σN x
p N N
yx ( 2 y mp 3) l 2 m2 2lm N lpx y N x y xy
p
(2-4)
(2 N lpy mpx 3) N lm( y x )(l 2 m2 ) xy(2-5)
max
2
⑤主平面上剪应力等于零,但τmax
作用面上正应力一般不为零。而是:
2
xy
x y
2
第二章
平面应力问题和平面应变问题
最大,最小应力
(4)求最大,最小应力 将x,y放在 σ1 , σ 2 方向,列出任一斜面上 应力公式,可以得出(设 σ1 σ 2 )
max min
x xy ij = yx y
u,
第二章
平面应力问题和平面应变问题
两类特殊问题