第4章玻璃的粘度,表面性质
5 玻璃的表面性质

,一般降低20~30%, 为负值,且富积在玻璃表面。
能显著降低的称为表面活性物质
玻璃工艺学 4
5.阴离子:
(1)-OH
(3 )F-
不影响 降低
( 2 )SO42-
降低
引入1wt% , 800C时可使降710-3N/m。
玻璃工艺学
5
(二)温度对的影响
= 0(1– bT)
在温变过程中不发生缔合或解聚的液体 在一定范围内为直线关系。
玻璃工艺学 11
2.表面吸附 物理吸附 压力越大吸附量越多。(H2、N2、O2 、 CO2)
化学吸附 通过共有原子或离子实现。
3.与各种试剂反应 卤化反应 生成盐 Si-OH+SOCl2 Si-OH+Li+ Si-Cl+SO2+HCl
Si-O-Li+H+
玻璃工艺学
12
4.离子交换反应
属互扩散反应
一般d/dT< 0 (-0.06 10-3~0.06 10-3N/mc)
T升高100C, 约降低 1%
* 铅硅酸盐d/dT>0 (三)气氛对的影响 还原比氧化大20%左右。 (四)大气对的影响 水蒸气分压增大, 减小
玻璃工艺学
T
N/m 0.30 0.28 0.26 0.24 0.22 1 2
N/m103 320 280 240 200 Li2O Na2O
K2O R2O mol%
3
(R2O-SiO2 1300C)
玻璃工艺学
3.RO:
因场强较大,故CaO、MgO、ZnO等使增大。 PbO有吸附作用,可降低。
4.R2O3:
Al2O3使增大, B2O3使减小。
(完整版)玻璃物理化学性能计算

二、玻璃的组成对粘度的作用
玻璃成分与玻璃粘度之间存在卓复杂的关系,一般可以从硅氧比、离子的极化、键强、结构对称性以及配位数等方面来说明。现分述于如:
2.1氧硅比
当氧硅比增大(例如熔体中碱含量增大),使大型四面体群分成为小型四面体群,自由体空间随之增大,导致熔体粘度下降,
一些钠钙硅酸盐在1400℃的粘度
在碱硅二元玻璃中,当O/Si比很低时,对粘度其主要作用的是硅氧四面体[SiO4]间的键力。极化力最大的Li+是减弱Si-O-Si键的作用最大,故粘度按Li2O-Na2O-K2O顺序递增。
2.4结构的对称性
在一定的条件下,结构的对称性对粘度有着重要的作用。如果结构不对称就可能在结构中存在缺陷和弱点,因此使粘度下降。
于10%—12%时增加粘度。
(4)PbO、CdO、BiO、SnO2等降低玻璃粘度。
此外,Li2O、ZnO、B2O3等都有增加低温粘度,降低高温粘度的作用。
3、玻璃粘度参考点
在玻璃生产上常用的粘度参考点如下:
(1)应变点:应力能在几小时内消除的温度,大致相当于粘度为 1013.6Pa.s,时的温度。
(2)转变点:相当一粘度为, 1012.4Pa.s时的温度,通常用T表示。
氰化物如Na2SiF6、Na3AlF6,硫酸盐如芒硝,氯化物如NaCl等都能显著地降低玻璃的表面张力,因此,这些化合物的加入,均有利于玻璃的澄清和均化。
表面张力随着温度的升高而降低,二者几乎成直线关系,实际上可认为,当温度提高100℃时表面张力减少1%,然而在表面活性组分及一些游离的氧化物存在的情况下,表面张力能随温度升高而稍微增加。
例如,硅氧键和硼氧键的键强属于同一数量级的,然而石英玻璃的粘度却比硼氧玻璃大的多,这正是由于二者结构的对称程度不同所致。又如磷氧键和硅氧键键强也属于同一数量级的,但是磷氧玻璃的粘度比石英玻璃的小的多。主要磷氧玻璃四面体中又一带双键氧、结构不对称的缘故。
玻璃工艺学复习资料

玻璃⼯艺学复习资料第⼀章玻璃的定义与结构1、解释转变温度、桥氧、硼反常现象和混合碱效应。
转变温度:使⾮晶态材料发⽣明显结构变化,导致热膨胀系数、⽐热容等性质发⽣突变的温度范围。
⾮桥氧:仅与⼀个成⽹离⼦相键连,⽽不被两个成⽹多⾯体所共的氧离⼦则为⾮桥氧。
桥氧:玻璃⽹络中作为两个成⽹多⾯体所共有顶⾓的氧离⼦,即起“桥梁”作⽤的氧离⼦。
硼反常性:在钠硅酸盐玻璃中加⼊氧化硼时,往往在性质变化曲线中产⽣极⼤值和极⼩值,这现象也称为硼反常性。
混合碱效应:在⼆元碱玻璃中,当玻璃中碱⾦属氧化物的总含量不变,⽤⼀种碱⾦属氧化物逐步取代另⼀种时,玻璃的性质不是呈直线变化,⽽是出现明显的极值。
这⼀效应叫做混合碱效应。
2、玻璃的通性有哪些?各向同性;⽆固定熔点;介稳性;渐变性和可逆性;①.各向同性玻璃态物质的质点总的来说都是⽆规则的,是统计均匀的,因此,它的物理化学性质在任何⽅向都是相同的。
这⼀点与液体类似,液体内部质点排列也是⽆序的,不会在某⼀⽅向上发现与其它⽅向不同的性质。
从这个⾓度来说,玻璃可以近似地看作过冷液。
②.⽆固定熔点玻璃态物质由熔体转变成固体是在⼀定温度区域(软化温度范围)内进⾏的,(从固态到熔融态的转变常常需要经历⼏百度的温度范围),它与结晶态物质不同,没有固定的熔点。
③.介稳性玻璃态物质⼀般是由熔融体过冷⽽得到。
在冷却过程中粘度过急剧增⼤,质点来不及作有规则排列⽽形成晶体,因⽽系统内能尚未处于最低值⽽⽐相应的结晶态物质含有较⾼的能量。
还有⾃发放热转化为内能较低的晶体的倾向。
④.性质变化的渐变性和可逆性玻璃态物质从熔融状态到固体状态的过程是渐变的,其物理、化学性质变化是连续的和可逆的,其中有⼀段温度区域呈塑性,称“转变”或“反常”区域。
3、分别阐述玻璃结构的晶⼦学说和⽆规则⽹络学说内容。
答:(1)玻璃的晶⼦学说揭⽰了玻璃中存在有规则排列区域,即有⼀定的有序区域,这对于玻璃的分相、晶化等本质的理解有重要价值,但初期的晶⼦学说机械地把这些有序区域当作微⼩晶体,并未指出相互之间的联系,因⽽对玻璃结构的理解是初级和不完善的。
玻璃的基本原理

玻璃的基本知识玻璃结构理论:晶子学说(1930年Randell)近程有序(微晶尺寸1.0‐1.5nm)晶子学说的价值在于它第一次指出玻璃中存在微不均匀物,及玻璃中存在一定的有序区域,这对于玻璃分相、晶化等本质的理解有重要价值。
一、玻璃的结构[SiO4]石英晶体结构以及石英玻璃、钠硅酸盐玻璃晶子结构示意图2玻璃结构是指玻璃中质点在空间的几何位置、有序程度以及他们之间的结合状态。
1932年W.H.Zachariasen借助V.M. Goldschmidt的离子晶界化学原则,利用晶体结构来阐述玻璃结构,即查氏把离子结晶化学原则和晶体结构知识推演到玻璃结构,描述了离子-共价键的化合物,如熔融石英、硅酸盐玻璃、硼酸盐玻璃。
氧化物形成玻璃的四个条件:¾一个氧离子不能和两个以上的阳离子结合——氧的配位数不大于2;¾阳离子周围的阳离子熟不应多过3或4——阳离子的配位数为3或4;¾网络中氧配位多面体之间只能共顶角,不能共棱、共面。
¾如果网络是三维的,则网络中每一个氧配位多面体必须至少有三个氧离子与相邻多面体相连,以形成三维空间发展的无规则网络结构。
根据上述条件,B2O3、SiO2、P2O5是很好的玻璃形成体。
不符合上述条件的氧化物则属于网络改良体,如碱金属、碱土金属氧化物。
一些氧化物可以部分参与网络结构,称为网络中间体,如BeO、Al2O3、ZrO23无规则网络学说强调了玻璃中多面体之间互相排列的连续性、均匀性和无序性,而晶子学说则强调了不连续性、有序性和微不均匀性。
因此,玻璃的结构是连续性、不连续性,均匀性、微不均匀性,无序性、有序性几对矛盾的对立统一体,条件变化,矛盾双方可能相互转化。
Figure 1. (a) Crystalline material (regular) and (b) glassy material (irregular).无规则网络学说的玻璃结构模型B2O3玻璃在不同温度下的结构模型无序性(远程)与有序性(近程)、连续性与不连续性,均匀性与不均匀性是玻璃这个统一体的两个方面,而且根据玻璃成分、热处理等条件不同,可以相互转化。
第4章答案

第四章答案4-1 略。
4-2试简述硅酸盐熔体聚合物结构形成的过程和结构特点。
解:聚合物的形成是以硅氧四面体为基础单位,组成大小不同的聚合体。
可分为三个阶段:初期:石英的分化,架状[SiO4]断裂,在熔体中形成了各种聚合程度的聚合物。
中期:缩聚并伴随变形一般链状聚合物易发生围绕Si-O轴转动同时弯曲,层状聚合物使层本身发生褶皱、翘曲、架状聚合物热缺陷增多,同时Si-O-Si键角发生变化。
[SiO4]Na4+[Si2O7]Na6——[Si3O10]Na8+ Na2O(短键)3[Si3O10]Na8—— [Si6O18]Na12+2 Na2O(六节环)后期:在一定时间和温度范围内,聚合和解聚达到平衡。
缩聚释放的Na2O又能进一步侵蚀石英骨架而使其分化出低聚物,如此循环,直到体系达到分化-缩聚平衡为止。
4-3试用实验方法鉴别晶体SiO2、SiO2玻璃、硅胶和SiO2熔体。
它们的结构有什么不同?解:利用X射线检测。
晶体SiO2——质点在三维空间做有规律的排列,各向异性。
SiO2熔体——内部结构为架状,近程有序,远程无序。
SiO2玻璃——各向同性。
硅胶——疏松多孔。
4-4影响熔体粘度的因素有哪些?试分析一价碱金属氧化物降低硅酸盐熔体粘度的原因。
解:(1)影响熔体粘度的主要因素:温度和熔体的组成。
碱性氧化物含量增加,剧烈降低粘度。
随温度降低,熔体粘度按指数关系递增。
(2)通常碱金属氧化物(Li2O、Na2O、K2O、Rb2O、Cs2O)能降低熔体粘度。
这些正离子由于电荷少、半径大、和O2-的作用力较小,提供了系统中的“自由氧”而使O/Si比值增加,导致原来硅氧负离子团解聚成较简单的结构单位,因而使活化能减低、粘度变小。
4-5熔体粘度在727℃时是107Pa·s,在1156℃时是103 Pa·s,在什么温度下它是106 Pa·s?解:根据727℃时,η=107Pa·s,由公式得:(1)1156℃时,η=103 Pa·s,由公式得:(2)联立(1),(2)式解得∴A=-6.32,B=13324当η=106 Pa·s时,解得t =808.5℃。
第四章 表面与界面

材料的表面与界面
固体(晶体、玻璃体)的表面与内部有什么不同?
实际上晶体和玻璃体:处于物体表面的质点,其 环境和内部是不同的,表面的质点由于受力不均衡而 处于较高的能阶,所以导致材料呈现一系列特殊的性 质。
例如:石英的粉碎。1kg直径为10-2米变成10-9米 ,表面积和表面能增加107倍。
物理性质:熔点、蒸汽压、溶解度、吸附、润湿和烧 结等(微小晶体蒸汽压增大、熔点下降、溶解度增加, 表面上存在着吸附等现象)。
即用于增加物系的表面能。故:∆PdV=γdA
V=4/3πR3 A=4πR2
∴∆P= 2 (球形曲面)
R
对非球形曲面:∆P=
1 r1
1 r2
— 拉普拉斯公式
r1、r2—曲面的主曲率半径
方向:指向曲率中心
2、弯曲表面上的饱和蒸汽压
将一杯液体分散成为微小液滴时,液面就由平面变成凸面, 凸形曲面对液滴所施加的附加压力使液体的化学位增加,从 而使液滴的蒸气压随之增大。所以,液滴的蒸气压必然大于 同温度下平面的蒸气压。它们之间的关系可以用开尔文方程 来描述。
2、固体表面力场
固体内部:质点受到周围质点的控制, 静电平衡、存在力场、力场对称。
固体表面:周期性重复中断,力场对称性破坏, 产生指向空间的剩余力场。
剩余力场表现:固体表面对其它物质有吸引作用 (如润湿、吸附、粘附性)
固体表面上的吸引作用,是固体的表面力场和被吸引质点的力场相 互作用所产生的,这种相互作用力称为固体表面力。
2、浸湿(Soakage)
V S
L
G SL SV
浸湿过程
浸湿过程引起的体系自由能的变化为
G SL SV
如果用浸润功Wi来表示,则是
玻璃的黏度及表面性质

第4章 玻璃的粘度及表面性质4.1玻璃的粘度在重力、机械力和热应力等的作用下,玻璃液(或玻璃熔体)中的结构组元(离子或离子组团)相互间发生流动。
如果这种流动是通过结构组元依次占据结构空位的方式来进行,则称为粘滞流动。
当作用力超过“内摩擦”阻力时,就能发生粘滞流动。
粘滞流动用粘度衡量。
粘度是指面积为S 的两平行液面,以一定的速度梯度dxdV移动时需克服的内摩擦阻力f 。
dxdVSf η= (4-1) 式中: η—粘度或粘滞系数S —两平行液面间的接触面积dx dV /—沿垂直于液流方向液层间速度梯度粘度是玻璃的一个重要物理性质,它贯穿于玻璃生产的全过程。
在熔制过程中,石英颗粒的溶解、气泡的排除和各组分的扩散都与粘度有关。
在工业上,有时应用少量助熔剂降低熔融玻璃的粘度,以达到澄清和均化的目的。
在成形过程中,不同的成形方法与成形速度要求不同的粘度和料性。
在退火过程中,玻璃的粘度和料性对制品内应力的消除速度都有重要作用。
高粘度的玻璃具有较高的退火温度,料性短的玻璃退火温度范围一般较窄。
影响玻璃粘度的主要因素是化学组成和温度,在转变区范围内,还与时间有关。
不同的玻璃对应于某一定粘度值的温度不同。
例如粘度为1012s Pa •时,钠钙硅玻璃的相应温度为560℃左右,钾铅硅玻璃为430℃左右,而钙铝硅玻璃为720℃左右。
在玻璃生产中,许多工序(和性能)都可以用粘度作为控制和衡量的标志(见表4-1)。
使用粘度来描述玻璃生产全过程较温度更确切与严密,但由于温度测定简便、直观,而粘度和组成关系的复杂性及习惯性,因此习惯上用温度来描述和规定玻璃生产工艺过程的工艺制度。
4.1.1粘度与温度关系由于结构特性的不同,因而玻璃熔体与晶体的粘度随温度的变化有显著的差别。
晶体在高于熔点时,粘度变化很小,当到达凝固点时,由于熔融态转变成晶态的缘故,粘度呈直线上升。
玻璃的粘度则随温度下降而增大。
从玻璃液到固态玻璃的转变,粘度是连续变化的,其间没有数值上的突变。
玻璃的粘度,表面性质,力学和热学性质

C 玻璃的硬度主要取决于化学组成和结构,还与温度和 D 热处理历史有关。对玻璃冷加工影响非常大。 S
抗冲击强度
测量方法:落球法,压痕破坏法
5.1.4
玻璃的密度
密度主要取决于构成玻璃原子的质量, 也与原子的堆积紧密程度及配位数有关。
网络形成体
体积: [BO4]<[SiO4]<[AlO4]
影响热导率因素:
玻璃内部的导热包括:热传导,热辐射
低温时,热传导占主要地位,其大小主要取决 于玻璃的化学组成:键强越大,热传导性能越 好
高温时,热辐射占主要地位,温度越高,传导 性能越高。玻璃的颜色越深,导热性越差。
5.2.4
玻璃的热稳定性
玻璃经受剧烈的温度变化而不破坏的性能。
P K E cd
第4章
玻璃的粘度和表面性质
4.1
玻璃的粘度
定义 粘度是指面积为S的两平行液面,以一定的速 度梯度dV/dx移动时所需克服的内摩擦阻力f。 f=ηS dV
dx
粘度在玻璃生产过程中的作用
在熔制过程中,原料的溶解、气泡的排除、各组分的扩散均化
影响粘度的因素:化学组成、温度、热处理时间 在成形过程中,不同的成型方法与成形速度要求不同的粘度和料性
4.1.3
粘度与组成的关系
有利于形成大阴离子基团的组成使粘度增大(SiO2、 Al2O3、ZrO2等)
提供游离氧,破坏网络结构的,则使粘度减小;场 氧硅比较大,意味着大型的[SO4] 强较大的可能产生复杂的作用:高温降粘,低温增 群分解为小型[SO4]群,粘滞活化能降 粘 氧硅比 键强、离子的极化(R2O-SiO2) 结构的对称性(B2O3、P2O5、SiO2) 配位数(B2O3、Al2O3) 总体来说,键强大,则粘度大
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氧硅比
架状结构的作用
键强、离子的极化(R2O-SiO2)
结构的对称性(B2O3、P2O5、SiO2)
配位数(B2O3、Al2O3)总体来说,键强大,则粘度大
但网络外体在氧硅比不同的情况下,对粘度的影响
是不同的
) O/Si比
硅酸盐熔体的粘度首先取决于硅氧四面体网络 的聚合程度,即随O/Si比 而 。
不阴缔同离合子,组基产成团生玻不大璃断阴发离熔生子 体基随团,温因度此的不变是直化线 其关粘系 度变化的速 高度温————料未发性生缔合
在不同温度区域 玻璃粘度的变化
2. 粘度与熔体的关系
温度较高时
➢ 硅氧四面体群有较大的空隙,可以容纳小型体群通过——粘度减小 ➢ 高温时熔体中的碱金属和碱土金属氧化物以离子状态自由移动,同时减弱
1013.6Pa·s,退火下限温度 1012.4Pa·s,Tg
1012Pa·s,退火上限温度 1010~1011Pa·s
106~107Pa·s,操作温度下限
10Pa·s
4.1.2 粘度的理论解释
1、绝对速度理论 2、自由体积理论 3、过剩熵理论
1、绝对速度理论
流动度
φ0exp(E- /kT)
η 1/φ
熔 体 的 分 子 式 O/Si比 值 结 构 式
SiO2 Na2O· 2SiO2 Na2O· SiO2 2Na2O· SiO2
2∶ 1 2.5∶ 1 3∶ 1 4∶ 1
[SiO2] [Si2O5]2- [SiO3]2- [SiO4]4-
[SiO4]连 接 形 式 1400℃ 粘 度 值 ( Pa· s)
骨 架 状
109
层 状
28
链 状
1.6
岛 状
<1
2)碱金属氧化物
通常碱金属氧化物(Li2O、Na2O、K2O等)能降 低熔体粘度。
原因
这些正离子由于电荷少、半径大、和O2-的作用 力较小,提供了系统中的“自由氧”而使O/Si比值增 加,导致原来硅氧负离子团解聚成较简单的结构单位, 因而使活化能减低、粘度变小。
Na2O-Si2O系统中Na2O含量对粘滞活化能△u的影响
Δu(kJ/mol)
236 202
168 134
100
66 10
20 30 40 50 60 70
□=Li2O-SiO2 1400℃ ;○=K2O-SiO2 1600℃;△=BaO-SiO2 1700℃
Log η(η:P)
9 8
7 6
5 4 3
性)
玻璃的退火(粘滞流动、弹性松弛,对制品内应力的消除速度
有重要的影响)
玻璃的钢化、微晶化、分相、显色等过程中温度制度的 制定,都必须考虑粘度的影响。
玻璃生产中的粘度点
1)熔化温度范围:50~500泊 2)工作温度范围:103~107泊 3)退火温度范围:1012~1013泊
粘度参考点
102~103Pa·s,操作温度上限
2
1
0
0
10
20
30
40
50
金属氧化物(mol%)
简单碱金属硅酸盐系统(R2O-SiO2)中碱金属离子R+对粘度的影响
η(P)
10000
1000
100 10
1 0.1
0
K Na Li
Li
K Na
10
20 30
40
R2O(mol%)
1) 当 R 2O 含 量 较 低 时 ( O/Si 较 低),熔体中硅氧负离子团较大, 对粘度起主要作用的是四面体 [SiO4]间的键力。这时,加入的 正离子的半径越小,降低粘度的 作用越大,其次序是Li+>Na+ > K+。这是由于 R+除了能提供 “游离”氧,打断硅氧网络以 外 , 在 网 络 中 还 对 → Si - O - Si←键有反极化作用,减弱了上
基团,因此不是直线
关系
5
高温——未发生缔合
00.50 0.75
1.00 1.25(1/T)
2、自由体积理论
液体内分布着不规则,大小不等的空隙,液体流动必 须打开这些“空洞”,允许液体分子的运动。
自由体积:Vf = V - V0 V -温度 T时液体的表观体积。 V0 -温度T0时液体所具有的最小体积,即液体分子 作紧密堆积时的体积。
➢概念的引出:把玻璃熔体看作“牛顿型流体”,即在剪切应 力下产生的剪切速度 dv/dx 与剪应力σ成正比:
➢ 定义 粘度是指面积为S的两平行液面,以一定的速度梯度dV/dx
移动时所需克服的内摩擦阻力f。单位:Pa·s或N·s/m2。
f=ηS
dV dx
4.1.1 粘度在玻璃生产中的应用
玻璃的熔制(原料的溶解、气泡的排除、各组分的扩散均化) 玻璃的成形(不同的成型方法与成形速度要求不同的粘度和料
第4章 玻璃的粘度和表面性质
➢ 粘度 ➢ 表面张力 ➢ 润湿性 ➢ 表面离子交换
玻璃体的性质
粘度的含义、理论解释 粘度与温度的关系
玻
粘度 粘度与熔体结构的关系 粘度与组成的关系
璃
粘度对玻璃生产的影响
体
性
表面张力的含义
质 表面张力 表面张力与温度的关系 表面张力与组成的关系
表面张力对玻璃生产的影响
4.1 玻璃的粘度
式中,C -常数 D -势垒因子 S0-位形熵
说明:以上三个理论都是以简单流动过程为 基础来描述粘度与温度的关系,都是 经验公式。在实际生产中仍需要以实 际测量值为准。
4.1.3 影响粘度的因素 ➢温度 ➢熔体结构 ➢化学组成 ➢热处理时间
1. 粘度与温度的关系
晶体与玻璃熔体 的低粘温—度—随缔温合度基本变完成 化不同
VFT方程: = Bexa(p T K (0 T V 0))= AexT- p B T (0)
此式在玻璃Tg温度以上适用
➢在Tg温度附近:
WLF方程:
=Bexp( b
)
fg(TTg)
87
3、过剩熵理论
液体是由许多结构单元构成,液体的流动就是这 些结构单元的再排列过程。
粘度关系式: η Cexp D TS0
硅氧键的作用,因此使粘度减小。
温度降低时
➢ 空隙变小——粘度增大 ➢ 熔体随温度降低形成大阴离子团——粘度增大 ➢ 在低温时,某些金属氧化物可能起到积聚作用,使粘度增大。
3. 粘度与组成的关系
有利于形成大阴离子基团的组成使粘度增大(SiO2、 Al2O3、ZrO2等)
提 强 粘供较游大离的氧可,能破 产群坏 生分网 复氧解络 杂硅为结 的比小构作较型的用大[,:S,O则高意4使温]味群粘降着,度粘大粘减,型滞小低的活;温[化S场增O能4降]
粘度
ηη0exp(E/kT)
式中:△E— 质点移动的活化能
η0 — 与熔体有关的常数 k — 波尔兹曼常数
T — 绝对温度
将粘度公式取对数:
lgη A B T
式中:
Algη0
B(E/k)lge
钠钙硅酸盐玻璃的lgη~1/T关系曲线
15
低温——缔合基本完成
Lgη(dPa.s)
阴离子基团不断发生 10 缔合,产生大阴离子