深圳市南山区初二数学-《分式》练习
初二分式练习题及答案

初二分式练习题及答案在初二阶段,分式是一个重要的数学概念。
掌握分式的运算方法对学生的数学学习至关重要。
下面是几道初二分式练习题及其答案,希望能帮助同学们巩固和加深对分式的理解和运用能力。
练习题一:计算下列分式的值,并将结果化简到最简形式:1. $\frac{3}{4} + \frac{5}{8}$2. $\frac{2}{3} - \frac{1}{6}$3. $\frac{3}{2} + \frac{1}{4} - \frac{1}{8}$4. $\frac{a}{2} - \frac{2a}{3}$5. $\frac{x-1}{5} - \frac{x+2}{3}$练习题二:将下列分数改写为带分数,并化简到最简形式:1. $\frac{11}{4}$2. $\frac{8}{3}$3. $\frac{12}{5}$4. $\frac{25}{6}$5. $\frac{10a}{3}$练习题三:将下列带分数改写为分数,并化简到最简形式:1. $1\frac{1}{2}$2. $2\frac{2}{3}$3. $5\frac{1}{4}$4. $3\frac{5}{6}$5. $4\frac{2a}{3}$练习题四:计算下列表达式的值,并将结果化简到最简形式:1. $\frac{2}{3} \times \frac{6}{5}$2. $\frac{3}{4} \div \frac{2}{5}$3. $\frac{1}{2} \times \frac{4}{7} \div \frac{2}{5}$4. $\frac{a}{2} \times \frac{3a}{4}$5. $\frac{x-1}{5} \times \left(\frac{x+2}{3}+\frac{3}{2}\right)$练习题五:解下列方程:1. $\frac{2x-1}{3} = \frac{x+4}{2}$2. $\frac{1}{x} + \frac{1}{2x} = \frac{3}{4}$3. $\frac{1}{2a} - \frac{1}{3a} = \frac{1}{6}$4. $\frac{3}{x-1} - \frac{1}{3} = \frac{2}{x}$5. $\frac{1}{x+2} + \frac{1}{2} = \frac{x}{2} - \frac{1}{x+2}$答案如下:练习题一:1. $\frac{13}{8}$2. $\frac{1}{2}$3. $\frac{21}{8}$4. $\frac{a}{6}$5. $\frac{-3x-3}{15}$练习题二:1. $2\frac{3}{4}$2. $2\frac{2}{3}$3. $2\frac{2}{5}$4. $4\frac{1}{6}$5. $\frac{10a}{3}$练习题三:1. $\frac{3}{2}$2. $\frac{8}{3}$3. $\frac{21}{4}$4. $\frac{23}{6}$5. $\frac{10a+8}{3}$练习题四:1. $\frac{4}{5}$2. $\frac{15}{8}$3. $\frac{2}{7}$4. $\frac{3a^2}{8}$5. $\frac{x^2+x-3}{10}$练习题五:1. $x = \frac{5}{2}$2. $x = \frac{2}{3}$3. $a = \frac{1}{4}$4. $x = \frac{5 \pm \sqrt{37}}{2}$5. 方程无解以上是初二分式练习题及答案,通过做题的过程,希望同学们能够熟练掌握分式的运算规则,提高数学解题能力。
初二数学《分式》练习题及答案

分式练习题一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。
每题3分,共24分):1.下列运算正确的是( )A.x 10÷x 5=x 2B.x -4·x=x -3C.x 3·x 2=x 6D.(2x -2)-3=-8x 62. 一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲、乙两人合作完成需要( )小时.A. B. C. D.11a b +1ab 1a b +ab a b+3.化简等于( )a b a b a b --+A. B. C. D.2222a b a b +-222()a b a b +-2222a b a b -+222()a b a b +-4.若分式的值为零,则x 的值是( )2242x x x ---A.2或-2 B.2 C.-2 D.45.不改变分式的值,把分子、分母中各项系数化为整数,结果是( )52223x y x y -+A. B. C. D.2154x y x y -+4523x y x y -+61542x y x y -+121546x y x y-+6.分式:①,②,③,④中,最简分式有( )223a a ++22a b a b --412()a a b -12x -A.1个 B.2个 C.3个 D.4个7.计算的结果是( )4222x x x x x x ⎛⎫-÷⎪-+-⎝⎭A. - B. C.-1 D.112x +12x +8.若关于x 的方程 有解,则必须满足条件( )x a c b x d-=-A. a≠b ,c≠d B. a≠b ,c≠-d C.a≠-b , c≠d C.a≠-b , c≠-d9.若关于x 的方程ax=3x-5有负数解,则a 的取值范围是( )A.a<3B.a>3C.a≥3D.a≤310.解分式方程,分以下四步,其中,错误的一步是( )2236111x x x +=+--A.方程两边分式的最简公分母是(x-1)(x+1)B.方程两边都乘以(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=1二、填空题:(每小题4分,共20分)11.把下列有理式中是分式的代号填在横线上 .(1)-3x ;(2);(3);(4)-;(5) ; (6);(7)-; (8)y x 22732xy y x -x 8135+y 112--x x π-12m .5.023+m 12.当a 时,分式有意义.321+-a a13.若-1,则x+x -1=__________.14.某农场原计划用m 天完成A 公顷的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种_________公顷.15.计算的结果是_________.1201(1)5(2004)2π-⎛⎫-+-÷- ⎪⎝⎭16.已知u=(u≠0),则t=___________.121s s t --17.当m=______时,方程会产生增根.233x m x x =---18.用科学记数法表示:12.5毫克=________吨.19.当x 时,分式的值为负数.xx --2320.计算(x+y)· =____________.2222x y x y y x+--三、计算题:(每小题6分,共12分)21.; 22..23651x x x x x+----2424422x y x y x x y x y x y x y ⋅-÷-+-+四、解方程:(6分)23.。
初二数学分式练习题及答案

初二数学分式练习题及答案分式是数学中的重要概念,也是初中数学的基础知识之一。
在初中数学学习中,分式的运算是一个关键的内容。
为了帮助同学们更好地掌握分式的运算,以下将提供一些初二数学分式练习题及答案。
一、基础练习题1. 计算下列分式的值:(1) $\frac{2}{3}+\frac{1}{6}$(2) $\frac{5}{7}-\frac{2}{7}$(3) $\frac{3}{4}\times\frac{2}{5}$(4) $\frac{6}{13}\div\frac{2}{3}$2. 按照要求变换下列分式:(1) 化简:$\frac{4x^2-2x}{2x}$(2) 分解:$\frac{5}{xy}-\frac{7}{yx}$(3) 合并:$\frac{a}{b}\times\frac{b}{c}$(4) 变形:$\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}$3. 求解方程:(1) $\frac{7}{10}x=\frac{35}{4}$(2) $\frac{5}{6}+\frac{x}{4}=\frac{7}{8}$(3) $\frac{3}{x}-\frac{2}{x-1}=\frac{5}{x(x-1)}$二、提高练习题1. 小明在旅行中用一辆摩托车以每小时40千米的速度行驶,计划经过$\frac{2}{5}$小时后休息10分钟,然后以每小时50千米的速度行驶到终点。
求小明旅行一段的总时间。
2. 甲,乙两个工程队共同进行一项工程,甲队完成全工程的$\frac{2}{5}$,乙队完成剩下的部分。
如果两队同时施工,还需6天可以完成全工程;如果只由甲队自行施工,需要10天完成全工程。
请问乙队自行施工需要多少天才能完成全工程?3. 甲、乙两人一起做一件工作,甲独立完成全工作需要8小时,乙独立完成全工作需要12小时。
他们两人合作完成全工作,需要多少小时?三、答案基础练习题答案:1.(1) $\frac{2}{3}+\frac{1}{6}=\frac{4}{6}+\frac{1}{6}=\frac{5}{6}$(2) $\frac{5}{7}-\frac{2}{7}=\frac{3}{7}$(3)$\frac{3}{4}\times\frac{2}{5}=\frac{3\times2}{4\times5}=\frac{3}{10}$(4)$\frac{6}{13}\div\frac{2}{3}=\frac{6}{13}\times\frac{3}{2}=\frac{6}{13 }\times\frac{3}{2}=\frac{9}{13}$2.(1) 化简:$\frac{4x^2-2x}{2x} = \frac{2x(2x-1)}{2x}=2x-1$(2) 分解:$\frac{5}{xy}-\frac{7}{yx}=\frac{5}{xy}-\frac{7}{xy}=\frac{5-7}{xy}=-\frac{2}{xy}$(3) 合并:$\frac{a}{b}\times\frac{b}{c}=\frac{a\times b}{b\timesc}=\frac{a}{c}$(4) 变形:$\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}$ 通过分数的通分,两边同乘以$xy$得到等式$\frac{xy}{x}+\frac{xy}{y}=x+y$,化简得到$x+y=x+y$3.(1) $\frac{7}{10}x=\frac{35}{4}$,两边同乘以$\frac{10}{7}$得到等式$x=\frac{35}{4}\times\frac{10}{7}=\frac{25}{2}$(2) $\frac{5}{6}+\frac{x}{4}=\frac{7}{8}$,先通分得到等式$\frac{10}{12}+\frac{3x}{12}=\frac{7}{8}$,化简得到$\frac{10+3x}{12}=\frac{7}{8}$,两边同乘以12得到$10+3x=12\times\frac{7}{8}$,解方程得到$x=\frac{63}{8}$(3) $\frac{3}{x}-\frac{2}{x-1}=\frac{5}{x(x-1)}$,先通分得到等式$\frac{3(x-1)-2x}{x(x-1)}=\frac{5}{x(x-1)}$,化简得到$\frac{3x-3-2x}{x(x-1)}=\frac{5}{x(x-1)}$,整理得到$\frac{x-3}{x(x-1)}=\frac{5}{x(x-1)}$,可以得到方程$x-3=5$,解方程得到$x=8$。
深圳市南山区桃源中学数学分式解答题章末练习卷(Word版 含解析)

一、八年级数学分式解答题压轴题(难)1.已知:12x M +=,21x N x =+. (1)当x >0时,判断M N -与0的关系,并说明理由;(2)设2y N M=+. ①当3y =时,求x 的值; ②若x 是整数,求y 的正整数值.【答案】(1)见解析;(2)①1;②4或3或1【解析】【分析】(1)作差后,根据分式方程的加减法法则计算即可;(2)①把M 、N 代入整理得到y ,解分式方程即可;②把y 变形为:221y x =++,由于x 为整数,y 为整数,则1x +可以取±1,±2,然后一一检验即可.【详解】(1)当0x >时,M -N ≥0.理由如下: M -N =()()21122121x x x x x -+-=++ . ∵x >0,∴(x -1)2≥0,2(x +1)>0,∴()()21021x x -≥+,∴M -N ≥0. (2)依题意,得:4224111x x y x x x +=+=+++. ①当3y =,即2431x x +=+时,解得:1x =.经检验,1x =是原分式方程的解,∴当y =3时,x 的值是1. ②2422222111x x y x x x +++===++++ . ∵x y ,是整数,∴21x +是整数,∴1x +可以取±1,±2. 当x +1=1,即0x =时,22401y =+=> ; 当x +1=﹣1时,即2x =-时,2201y =-=(舍去); 当x +1=2时,即1x =时,22302y =+=> ;当x +1=-2时,即3x =-时,22102y =+=>-() ; 综上所述:当x 为整数时,y 的正整数值是4或3或1.【点睛】 本题考查了分式的加减法及解方式方程.确定x +1的取值是解答(2)②的关键.2.如图,小刚家、王老师家、学校在同一条路上,小刚家到王老师家的路程为3千米,王老师家到学校的路程为0.5千米.由于小刚的父母战斗在抗震救灾第一线,为了使他能按时到校,王老师每天骑自行车送小刚上学.已知王老师骑自行车的速度是步行的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少?【答案】王老师的步行速度是5km /h ,则王老师骑自行车的速度是15km /h .【解析】【分析】王老师接小刚上学走的路程÷骑车的速度-平时上班走的路程÷步行的速度=2060小时. 【详解】设王老师的步行速度是km /h x ,则王老师骑自行车是3km /h x ,由题意可得:330.50.520360x x ++-=,解得:5x =, 经检验,5x =是原方程的根,∴315x =答:王老师的步行速度是5km /h ,则王老师骑自行车的速度是15km /h .【点睛】本题考查列分式方程解应用题.重点在于准确地找出相等关系,需注意①王老师骑自行车接小刚所走路程是(3+3+0.5)千米;②注意单位要统一.3.已知下面一列等式:111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;… (1)请你按这些等式左边的结构特征写出它的一般性等式:(2)验证一下你写出的等式是否成立;(3)利用等式计算:11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++. 【答案】(1)一般性等式为111=(+11n n n n -+);(2)原式成立;详见解析;(3)244x x+. 【解析】【分析】(1)先要根据已知条件找出规律;(2)根据规律进行逆向运算;(3)根据前两部结论进行计算.【详解】解:(1)由111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;…, 知它的一般性等式为111=(+11n n n n -+); (2)1111(1)(1)n n n n n n n n +-=-+++111(1)1n n n n ==⋅++, ∴原式成立;(3)11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++ 1111112x x x x =-+-+++11112334x x x x +-+-++++ 114x x =-+ 244x x=+. 【点睛】解答此题关键是找出规律,再根据规律进行逆向运算.4.为响应“绿色出行”的号召,小王上班由自驾车改为乘坐公交车.已知小王家距离上班地点27km ,他乘坐公交车平均每小时行驶的路程比他自驾车平均每小时行驶的路程的2倍还多9km .他从家出发到上班地点,乘公交车所用的时间是自驾车所用时间的37. (1)小王用自驾车上班平均每小时行驶多少千米?(2)上周五,小王上班时先步行了6km ,然后乘公交车前往,共用43小时到达.求他步行的速度.【答案】(1)小王用自驾车上班平均每小时行驶27km ;(2)小王步行的速度为每小时6km .【解析】【分析】(1))设小王用自驾车上班平均每小时行驶xkm ,则他乘坐公交车上班平均每小时行驶()29x km +.再利用乘公交车的方式平均每小时行驶的路程比他自用驾SS 式平均每小时行驶的路程的2倍还多9千米和乘公交车所用时间是自驾车方式所用时间的37,列方程求解即可;(2)设小王步行的速度为每小时ykm ,然后根据“步行时间+乘公交时间=小时”列方程解答即可.【详解】解(1)设小王用自驾车上班平均每小时行驶xkm ,则他乘坐公交车上班平均每小时行驶()29x km +.根据题意得:27327297x x=⋅+ 解得:27x =经检验,27x =是原方程的解且符合题意.所以小王用自驾车上班平均每小时行驶27km ;(2)由(1)知:小王乘坐公交车上班平均每小时行驶29227963x +=⨯+=(km ); 设小王步行的速度为每小时ykm ,根据题意得:62764633y -+= 解得:6y =.经检验:6y =是原方程的解且符合题意所以小王步行的速度为每小时6km .【点睛】本题考查了分式方程的应用,解答的关键在于弄清题意、找到等量关系、列出分式方程并解答.5.已知11x a b c ⎛⎫=+ ⎪⎝⎭,11y b a c ⎛⎫=+ ⎪⎝⎭,11z c a b ⎛⎫=+ ⎪⎝⎭. (1)当1a =,1b =,2c =时,求1111x y +--的值; (2)当0ab bc ac ++≠时,求111111x y z +++++的值. 【答案】(1)4;(2)1【解析】【分析】(1)分别对x 、y 进行化简,然后求值即可;(2)分别求出1x +、1y +、和z 1+值,然后代入化简即可.【详解】(1),,ac ab bc ab bc ac x y z bc ac ab+++===, 当1,1,2a b c ===时, 1211111=;122x ⨯+⨯∴-=-⨯ 1211111=122y ⨯+⨯∴-=-⨯ 1111=4111122x y ∴+=+-- (2)11ac ab ac ab bc x bc bc ++++=+=, 11bc ab bc ab ac y ac ac ++++=+=, 11bc ac bc ac ab z ab ab++++=+=, ∵+0ab bc ac +≠,∴111111;+++x y z bc ac ab ab bc ac ab bc ac ab bc ac+++++=+++++ ++ab bc ac ab bc ac+=+ =1.【点睛】 本题考查了整式的化简求值问题,解题的关键是仔细认真的进行整式的化简.6.为了迎接运动会,某校八年级学生开展了“短跑比赛”。
深圳市南山二外八年级数学上册第十五章《分式》经典练习卷(课后培优)

一、选择题1.若整数a 使得关于x 的方程3222ax x-=--的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解,则所有符合条件的整数a 的和为( )A .23B .25C .27D .282.分式293x x --等于0的条件是( )A .3x =B .3x =-C .3x =±D .以上均不对3.如果分式2121x x -+的值为0,则x 的值是( )A .1B .0C .1-D .±14.如图,在数轴上表示2224411424x x x x x x-++÷-+的值的点是( )A .点PB .点QC .点MD .点N5.关于代数式221a a +的值,以下结论不正确的是( ) A .当a 取互为相反数的值时,221a a+的值相等 B .当a 取互为倒数的值时,221a a+的值相等 C .当1a >时,a 越大,221a a +的值就越大 D .当01a <<时,a 越大,221a a +的值就越大 6.下列各分式中,最简分式是( )A .6()8()x y x y -+B .22y x x y --C .2222x y x y xy ++ D .222()x y x y -+ 7.已知分式34x x -+的值为0,则x 的值是( ) A .3B .0C .-3D .-48.要使分式()()221x x x ++-有意义,x 的取值应满足( )A .1x ≠B .2x ≠-C .1x ≠或2x ≠-D .1x ≠且2x ≠-9.若方程21224k x x -=--有增根,则k =( ) A .4-B .14-C .4D .1410.若整数a 使得关于x 的不等式组3(1)32(1)x ax x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .211.在同一平面内,我们把两条直线相交将平面分得的区域数记为1a ,三条直线两两相交最多将平面分得的区域数记为2a ,四条直线两两相交最多将平面分得的区域数记为()3,,1a n ⋅⋅⋅+条直线两两相交最多将平面分得的区域数记为n a ,若121111011111n a a a ++⋅⋅⋅+=---,则n =( ) A .10B .11C .20D .2112.下列计算正确的个数为( )①555•2a a a =;②5510b b b +=;③1644n n ÷=;④247••y y y y =;⑤()()23•x x x --=-;⑥()7214a a --=;⑦()()234214•a a a -=;⑧()242a a a ÷-=-;⑨()03.141π-=. A .2B .3C .4D .513.11121n n n x x x x+-+-+等于( ) A .11n x+ B .11n x- C .21xD .114.已知227x ,y ==-,则221639yx y x y ---的值为( ) A .-1 B .1C .-3D .315.若分式2-3xx 在实数范围内有意义,则实数x 的取值范围是( ) A .x >32 B .x <32 C .x =32D .x ≠32二、填空题16.某班在“世界读书日”当天开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍,则第一组的人数为_________人.17.计算22a b a b a b-=-- _________.18.计算:111x x---的结果是________. 19.已知实数a 、b 满足32a b =,则a ba b +-_________. 20.当x _______时,分式22x x-的值为负.21.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg ,甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等.问乙型机器人每小时搬运多少kg 产品? 根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运xkg 产品,可列方程为______小惠同学设甲型机器人搬运800kg 所用时间为y 小时,可列方程为____________. (2)乙型机器人每小时搬运产品_______________kg . 22.关于x 的方程53244x mxx x++=--无解,则m =________. 23.若关于x 的方程2144416m x x x +=-+-无解,则m 的值为__________. 24.如果分式126x x --的值为零,那么x =________ . 25.约分:22618m nmn=-________________ 26.“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5400元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数多100盒,且每盒花的进价比第一批的进价少3元.设第一批盒装花的进价是x 元,则根据题意可列方程为________.三、解答题27.列分式方程解应用题:刘峰和李明相约周末去野生动物园游玩,根据他们的谈话内容,求李明乘公交车、刘峰骑自行车每小时各行多少千米? 刘峰:我查好地图,你看看李明:好的,我家门口的公交车站,正好又一趟到野生动物园那站的车,我坐明天8:30的车刘峰:从地图上看,我家到野生动物园的距离比你家近10千米,我就骑自行车去了 李明:行,根据我的经验,公交车的速度一般是你骑自行车速度的3倍,那你明天早上8:00从家出发,如果顺利,咱俩同时到达28.在某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要时间比规定时间早25天,乙单独完成这项工程需要时间比规定时间多20天.若由甲乙两队先合作10天,剩下的工程由乙队单独做,正好在规定时间内完成(既没提前,也没延后).(1)求规定时间是多少天?(2)乙队单独施工2天后,甲队开始加入合作,合作时,甲队的人数增加了10%,每个人的效率提高了3a %,同时乙队的人数增加了a %,每个人的效率提高了40%,结果合作20天完成了任务,求a 的值(假设每队每人的效率相等).29.为了安全与方便,某自助加油站只提供两种自助加油方式:“每次定额只加200元”与“每次定量只加40升”.自助加油站规定每辆车只能选择其中一种自助加油方式,那么哪种加油方式更合算呢?请以两种加油方式各加油两次予以说明. (分析问题)“更合算”指的是两次加油后平均油价更低由于汽油单价会变,不妨设第一次加油时油价为x 元/升,第二次加油时油价为y 元/升.①两次加油,每次只加200元的平均油价为:_______________元/升. ②两次加油,每次只加40升的平均油价为:_______________元/升. (解决问题)请比较两种平均油价,并用数学语言说明哪种加油方式更合算. 30.先化简,再求值:213(1)211x x x x x +--÷-+-,其中x =12.。
深圳南山区前海中学八年级数学上册第十五章《分式》经典练习卷(培优练)

一、选择题1.关于分式2634m n m n--,下列说法正确的是( ) A .分子、分母中的m 、n 均扩大2倍,分式的值也扩大2倍B .分子、分母的中m 扩大2倍,n 不变,分式的值扩大2倍C .分子、分母的中n 扩大2倍,m 不变,分式的值不变D .分子、分母中的m 、n 均扩大2倍,分式的值不变 2.世界上数小的开花结果植物是激大利亚的出水浮萍,这种植物的果实像一个微小的无花架,质做只有0.000000076克,0.000000076用科学记数法表示正确的是( ) A .-60.7610⨯B .-77.610⨯C .-87.610⨯D .-97.610⨯ 3.下列运算正确的是( )A .236a a a ⋅=B .22a a -=-C .572a a a ÷=D .0(2)1(0)a a =≠ 4.如图,若x 为正整数,则表示3211327121(1)(1)543x x x x x x x x x--++--÷++++的值的点落在( ).A .段①B .段②C .段③D .段④ 5.大爱无疆,在爆发新冠病毒疫情后,甲,乙两家单位分别组织了员工捐款.已知甲单位捐款7500元,乙单位捐款9800元,甲单位捐款人数比乙单位少10人,且甲单位人均捐款额比乙单位多20元,若设甲单位的捐款人数为x ,则可列方程为( )A .7500980020x x 10-=- B .9800750020x 10x -=-C .7500980020x x 10-=+D .9800750020x 10x-=+ 6.若2x 11x x 1+--的值小于3-,则x 的取值范围为( ) A .x 4>- B .x 4<- C .x 2> D .x 2< 7.下列变形不正确...的是( ) A .1a b a b a b -=-- B .1a b a b a b+=++C .221a b a b a b +=++D .221-=-+a b a b a b8.若数a 关于x 的不等式组()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥-+⎩恰有三个整数解,且使关于y 的分式方程13y 2a 2y 11y--=---的解为正数,则所有满足条件的整数a 的值之和是( ) A .2 B .3C .4D .5 9.下列计算正确的是( ) A .22a a a ⋅= B .623a a a ÷=C .2222a b ba a b -=-D .3339()28a a -=- 10.将0.50.0110.20.03x x +-=的分母化为整数,得( ) A .0.50.01123x x +-= B .5051003x x +-= C .0.50.01100203x x +-= D .50513x x +-= 11.计算221(1)(1)x x x +++的结果是( ) A .1 B .1+1x C .x +1 D .21(+1)x 12.若实数a 使关于x 的不等式组313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩有解且最多有4个整数解,且使关于y 的方程3233y a y y --++ 1=的解是整数,则符合条件的所有整数a 的个数是( ) A .4 B .3 C .2 D .113.已知a 、b 为实数且满足a ≠﹣1,b ≠﹣1,设M =11a b a b +++,N =1111a b +++,则下列两个结论( ) ①ab =1时,M =N ;ab >1时,M <N .②若a +b =0,则M •N ≤0.A .①②都对B .①对②错C .①错②对D .①②都错 14.若分式2-3x x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >32 B .x <32C .x =32D .x ≠3215.如果111a b a b +=+,则b a a b +的值为( ) A .2 B .1 C .1- D .2-二、填空题16.计算:(﹣2a ﹣2b )2÷2a ﹣8b ﹣3=_____.17.计算22a b a b a b-=-- _________. 18.计算:()0322--⋅=________.19.A B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米时,则可列方程为__________. 20.计算:1 2+123⨯+134⨯+145⨯+…+()1n 1n -+()1n n 1+=______. 21.观察给定的分式,探索规律:(1)1x ,22x ,33x ,44x ,…其中第6个分式是__________; (2)2x y ,43x y -,65x y ,87x y-,…其中第6个分式是__________; (3)2b a -,52b a ,83b a -,114b a,…其中第n 个分式是__________(n 为正整数). 22.2112111a a a a +-+--=___________. 23.已知114y x-=,则分式2322x xy y x xy y +---的值为______. 24.“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5400元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数多100盒,且每盒花的进价比第一批的进价少3元.设第一批盒装花的进价是x 元,则根据题意可列方程为________.25.方程22020(1)1x x x ++-=的整数解的个数是_____.26.计算:()30120202-⎛⎫---= ⎪⎝⎭______. 三、解答题27.先化简,再求值:2213242x x x x x x -+÷--+,其中x 与2,4构成等腰三角形的三边.28.先化简,再求值:21122mmm m⎭-+÷-⎛⎫⎪-⎝,其中12m=-.29.今年双11期间开州区紫水豆干凭借过硬的质量、优质的口碑大火,豆干店的王老板用2500元购进一批紫水豆干,很快售完;王老板又用4400元购进第二批紫水豆干,所购数量是第一批的2倍,由于进货量增加,进价比第一批每千克少了3元.(1)第一批紫水豆干每千克进价多少元?(2)该老板在销售第二批紫水豆干时,售价在第二批进价的基础上增加了%a,售出80%后,为了尽快售完,决定将剩余紫水豆干在第二批进价的基础上每千克降价325a元进行促销,结果第二批紫水豆干的销售利润为1520元,求a的值.(利润=售价-进价)30.新冠肺炎疫情暴发后,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有7人不能到厂工作,为了应对疫情,在每个工人每小时完成的工作量不变的前提下,已复工的工人加班生产,每天的工作时间由原来8个小时增加到10个小时.该公司原来每天能生产防护服800套,现在每天能生产防护服650套.(1)求该公司原来生产防护服的工人有多少人?(2)复工10天后,未到的7名工人到岗且同时加入了生产,每天生产时间仍然为10小时.为了支援灾区,公司复工后决定生产15500套防护服,问至少还需要多少天才能完成任务?。
初二分式练习题及答案

初二分式练习题及答案初二分式练习题及答案初二是学生们学习生涯中的一个重要阶段,也是他们逐渐进入高中阶段的过渡期。
为了帮助初二学生提高数学能力,下面将提供一些分式练习题及答案。
练习题一:1. 计算:$\frac{2}{3} + \frac{3}{4}$。
2. 计算:$\frac{5}{6} - \frac{1}{3}$。
3. 计算:$\frac{2}{5} \times \frac{3}{4}$。
4. 计算:$\frac{7}{8} \div \frac{2}{3}$。
5. 计算:$\frac{2}{3} + \frac{4}{5} - \frac{1}{2}$。
答案一:1. $\frac{17}{12}$2. $\frac{1}{2}$3. $\frac{3}{10}$4. $\frac{21}{16}$5. $\frac{11}{30}$练习题二:1. 计算:$\frac{3}{5} + \frac{2}{7}$。
2. 计算:$\frac{1}{2} - \frac{1}{4}$。
3. 计算:$\frac{2}{3} \times \frac{3}{4}$。
4. 计算:$\frac{5}{6} \div \frac{2}{3}$。
5. 计算:$\frac{1}{2} + \frac{3}{4} - \frac{1}{3}$。
答案二:1. $\frac{29}{35}$2. $\frac{1}{4}$3. $\frac{1}{2}$4. $\frac{5}{4}$5. $\frac{7}{12}$练习题三:1. 计算:$\frac{4}{5} + \frac{3}{8}$。
2. 计算:$\frac{2}{3} - \frac{1}{6}$。
3. 计算:$\frac{1}{4} \times \frac{3}{5}$。
4. 计算:$\frac{5}{6} \div \frac{1}{2}$。
5. 计算:$\frac{2}{3} + \frac{1}{4} - \frac{1}{6}$。
深圳中学八年级数学上册第五单元《分式》检测卷(包含答案解析)

一、选择题1.分式293x x --等于0的条件是( ) A .3x =B .3x =-C .3x =±D .以上均不对 2.关于分式2634m n m n--,下列说法正确的是( ) A .分子、分母中的m 、n 均扩大2倍,分式的值也扩大2倍B .分子、分母的中m 扩大2倍,n 不变,分式的值扩大2倍C .分子、分母的中n 扩大2倍,m 不变,分式的值不变D .分子、分母中的m 、n 均扩大2倍,分式的值不变3.如果a ,b ,c ,d 是正数,且满足a +b +c +d =2,11a b c b c d ++++++11a c d a b d+++++=4,那么d a a b c b c d ++++++b c a c d a b d+++++的值为( ) A .1 B .12 C .0 D .44.下列运算正确的是( )A .236a a a ⋅=B .22a a -=-C .572a a a ÷=D .0(2)1(0)a a =≠ 5.下列各式中,正确的是( )A .22a a b b = B .11a a b b +=+ C .2233a b a ab b = D .232131a a b b ++=-- 6.在同一平面内,我们把两条直线相交将平面分得的区域数记为1a ,三条直线两两相交最多将平面分得的区域数记为2a ,四条直线两两相交最多将平面分得的区域数记为()3,,1a n ⋅⋅⋅+条直线两两相交最多将平面分得的区域数记为n a ,若121111011111n a a a ++⋅⋅⋅+=---,则n =( ) A .10B .11C .20D .21 7.化简2111313x x x x +⎫⎛-÷⎪---⎝⎭的结果是( ) A .2 B .23x - C .41x x -- D .21x - 8.若数a 使关于x 的分式方程2311a x x+=--的解为非负数,且使关于y 的不等式组213202y y y a +⎧->⎪⎪⎨-⎪≤⎪⎩的解集为2y <-,则符合条件的所有整数a 的个数为( ) A .5 B .6 C .7 D .89.下列式子的变形正确的是( )A .22b b a a= B .22+++a b a b a b = C .2422x y x y x x --= D .22m n n m-=- 10.下列各式计算正确的是( )A .33x x y y= B .632m m m = C .22a b a b a b +=++ D .32()()a b a b b a -=-- 11.如果111a b a b +=+,则b a a b +的值为( ) A .2 B .1 C .1- D .2-12.已知有理数a ,b 满足:1ab =,1111M a b =+++,11a b N a b=+++,则M ,N 的关系为( ) A .M N >B .M N <C .M N =D .M ,N 的大小不能确定二、填空题13.方程31x x x x -=+的解是______. 14.席卷全世界的新型冠状病毒是个肉眼看不见的小个子,它的身高(直径)约为0.0000012米,将数0.0000012用科学记数法表示为_________.15.计算:20120192-⎛⎫-= ⎪⎝⎭______. 16.计算:22311x x x -=+-____________. 17.计算:()1211x x x x x ⎡⎤-⋅=⎢⎥+-⎣⎦______. 18.已知(3)1a a -=,则整数a 的值为______.19.方程111x x x x -+=-的解是______. 20.九年级()1班学生周末从学校出发到某实践基地研学旅行,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地,已知快车的速度是慢车速度的1.2倍,如果设慢车的速度为x 千米/时,根据题意列方程为________.三、解答题21.小强家距学校3000米,某天他步行去上学,走到路程的一半时发现忘记带课本,此时离上课时间还有23分钟,于是他立刻步行回家取课本,随后小强爸骑电瓶车送他去学校.已知小强爸骑电瓶车送小强到学校比小强步行到学校少用24分钟,且小强爸骑电瓶车的平均速度是小强步行的平均速度的5倍,小强到家取课本与小强爸启动电瓶车等共用4分钟.(1)求小强步行的平均速度与小强爸骑电瓶车的平均速度;(2)请你判断小强上学是否迟到,并说明理由.22.某快餐店欲购进A ,B 两种型号的餐盘,每个A 种型号的餐盘比每个B 种型号的餐盘费用多5元,且用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同.(1)问A ,B 两种型号的餐盘单价为多少元?(2)若该快餐店决定在成本不超过1900元的前提下购进A ,B 两种型号的餐盘100个,则最多购进A 种型号餐盘多少个?23.先化简,再求值.(1)22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x 是9的平方根; (2)2222221211⎛⎫-+-÷ ⎪-+-⎝⎭a a a a a a a ,然后从-1,0,1,2中选一个合适的数作为a 的值代入求值.24.分式计算与解方程:(1)21211a a a a----; (2)121221x x x +=-+. 25.观察下列等式: 111122=-⨯,1112323=-⨯,1113434=-⨯. 将以上三个等式左、右两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯ (1)若n 为正整数,猜想并填空:1(1)n n =+______. (2)计算111111223344520202021+++++⨯⨯⨯⨯⨯的结果为______. (3)解分式方程:11122(2)(3)(3)(4)1x x x x x x ++=------.26.(提示:我们知道,如果0a b ->,那么a b >.)已知0m n >>.如果将分式n m 的分子、分母都加上同一个不为0的数后,所得分式的值比n m是增大了还是减小了?请按照以下要求尝试做探究. (1)当所加的这个数为1时,请通过计算说明;(2)当所加的这个数为2时,直接说出结果;(3)当所加的这个数为0a >时,直接说出结果.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据分式等于0的条件:分子为0,分母不为0解答.【详解】由题意得:290,30x x -=-≠,解得x=-3,故选:B .【点睛】此题考查分式的值等于0的条件,熟记计算方法是解题的关键. 2.D解析:D【分析】根据分式的基本性质即可求出答案.【详解】解:A 、22262(26)26=23242(34)34m n m n m n m n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,故该说法不符合题意;B 、22623=23432m n m n m n m n⨯--⨯--,故分子、分母的中m 扩大2倍,n 不变,分式的值没有扩大2倍,故该说法不符合题意; C 、226212=32438m n m n m n m n-⨯--⨯-,故分子、分母的中n 扩大2倍,m 不变,分式的值发生变化,故该说法不符合题意;D 、22262(26)26=23242(34)34m n m n m n m n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,此说法正确,符合题意;故选:D .【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 3.D解析:D【分析】根据a +b +c +d =2,11114a b c b c d b c d b c d +++=++++++++,将所求式子变形便可求出.【详解】∵a +b +c +d =2,11114a b c b c d b c d b c d +++=++++++++, ∴d a b c a b c b c d a c d a b d+++++++++++ =2()2()2()2()a b c b c d a c d a b d a b c b c d a c d a b d-++-++-++-+++++++++++++ =2a b c ++﹣1+2b c d ++﹣1+2a c d ++﹣1+2a b d ++﹣1 =2×(1111a b c b c d a c d a b d+++++++++++)﹣4 =2×4﹣4=8﹣4=4,故选:D .【点睛】 本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.4.D解析:D【分析】运用同底数幂乘法、负整数次幂、同底数幂除法以及零次幂的知识逐项排查即可.【详解】解:A. 235a a a ⋅=,故A 选项不符合题意; B. 221a a-=,故B 选项不符合题意; C. 572a a a -÷=,故C 选项不符合题意;D. 0(2)1(0)a a =≠,故D 选项符合题意.故填:D .【点睛】本题主要考查了同底数幂乘法、负整数次幂、同底数幂除法、零次幂等的知识点,灵活运用相关运算法则是解答本题的关键.5.C解析:C【分析】利用分式的基本性质变形化简得出答案.【详解】A .22a a b b=,从左边到右边是分子和分母同时平方,不一定相等,故错误; B .11a a b b+=+,从左边到右边分子和分母同时减1,不一定相等,故错误; C .2233a b a ab b=,从左边到右边分子和分母同时除以ab ,分式的值不变,故正确; D .232131a ab b ++=--,从左边到右边分子和分母的部分同时乘以3,不一定相等,故错误. 故选:C .【点睛】 本题考查分式的性质.熟记分式的性质是解题关键,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.6.C解析:C【分析】根据直线相交得到交点个数的规律,再利用裂项法进行有理数的运算即可解题.【详解】根据题意得,2条直线最多将平面分成4个区域1=4a ,3条直线最多将平面分成7个区域2=7a ,4条直线最多将平面分成11个区域3=11a ,5条直线最多将平面分成16个区域4=16a则11=3=1+2a -, 21=6=1+2+3a -,31=10=1+2+3+4a -,41=15=1+2+3+4+5a - 1=1+2+3+4+51n a n ∴-++12111111n a a a ∴++⋅⋅⋅+--- 111=1+21+2+31+2+3++(n+1)++⋅⋅⋅+ 111=(1+2)2(1+3)3(1+n+1)(n+1)222++⋅⋅⋅+⨯⨯11122334(1)(2)n n ⎡⎤=+++⎢⎥⨯⨯++⎣⎦ 1111112233412n n ⎡⎤=-+-++-⎢⎥++⎣⎦ 11222n ⎡⎤=-⎢⎥+⎣⎦ 2n n =+ 121111011111n a a a ++⋅⋅⋅+=--- 10211n n ∴=+ 2101211n ∴-=+ 21211n ∴=+ 222n ∴+=20n ∴= 经检验n=20是原方程的根故选:C .【点睛】本题考查相交线,是重要考点,难度一般,掌握相关知识是解题关键.7.D解析:D【分析】利用乘法分配律计算即可【详解】解:原式=11(3)(3)3(1)(1)x x x x x x +⋅--⋅--+-=1-31x x --=21x -, 故选D .【点睛】本题主要考查了分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.8.C解析:C【分析】 根据分式方程2311a x x+=--的解为非负数求得a>5,根据不等式组的解集为2y <-,求得2a ≥-,利用分式的分母不等于0得到x ≠1,即可得到a 的取值范围25a -≤≤,且x ≠1,根据整数的意义得到a 的整数值.【详解】 解分式方程2311a x x +=--,得53a x -=, ∵分式方程2311a x x +=--的解为非负数, ∴503a -≥, 解得a ≤5,∵关于y 的不等式组213202y y y a +⎧->⎪⎪⎨-⎪≤⎪⎩,得2y y a <-⎧⎨≤⎩, ∵不等式组的解集为2y <-,∴2a ≥-,∵x-1≠0,∴x ≠1,∴25a -≤≤,且x ≠1,∴整数a 为:-2、-1、0、1、3、4、5,共有7个,故选:C .【点睛】此题考查根据分式方程的解的情况求未知数的取值范围,根据不等式组的解集情况求未知数的取值范围,确定不等式的整数解,正确理解题意并计算是解题的关键.9.C解析:C【分析】根据分式的性质逐一判断即可.【详解】解:A. 22b b a a=不一定正确;B.22+++a ba ba b=不正确;C. 2422x y x yx x--=分子分母同时除以2,变形正确;D.22m nnm-=-不正确;故选:C.【点睛】本题考查分式的基本性质,掌握分式的基本性质是解题的关键.10.D解析:D【分析】根据分式的基本性质进行判断即可得到结论.【详解】解:A、33xy是最简分式,所以33x xy y≠,故选项A不符合题意;B、624mmm=,故选项B不符合题意;C、22a ba b++是最简分式,所以22a ba ba b+≠++,故选项C不符合题意;D、3322()()()()a b a ba bb a a b--==---,正确,故选:D.【点睛】此题考查了分式的约分,以及最简分式的判断,分式的约分关键是找公因式,约分时,分式分子分母出现多项式,应先将多项式分解因式后再约分,最简分式即为分式的分子分母没有公因式.11.C解析:C【分析】先对111a b a b+=+变形得到()2a b ab+=,然后将b aa b+化成22a bab+,再结合完全平方公式得到()22a b abab+-,最后将()2a b ab+=代入即可解答.【详解】解:∵111b a a ba b ab ab ab a b++=+==+,即()2a b ab+=∴()22222221a b ab b a b a a b ab ab ab a b ab ab ab ab ab ab+-+--+=+=====-. 故选C .【点睛】 本题主要考查了分式的减法、完全平方公式的应用以及代数式求值,灵活运用完全平方公式是解答本题的关键.12.C解析:C【分析】先通分,再利用作差法可比较出M 、N 的大小即可.【详解】解:∵1111M a b=+++ ()()1111b a a b +++=++()()211b aa b ++=++,()()()()()()1121111a b b a a ab b N a b a b +++++==++++, ∴()()()()221111b a a ab b M N a b a b ++++-=-++++()()2211a b a ab b a b ++---=++ ()()2211aba b -=++,∵1ab =,∴220ab -=,∴0M N -=,即M N .故选:C.【点睛】本题考查的是分式的加减法及分式比较大小的法则,分式比较大小可以利用作差法、作商法等. 二、填空题13.【分析】两边同时乘以x(x+1)化分式方程为整式方程求解即可【详解】∵∴(x+1)(x-3)=∴-2x-3=∴2x+3=0∴x=经检验x=是原方程的解故填【点睛】本题考查了分式方程的解法熟练把分式方解析:32-. 【分析】 两边同时乘以x(x+1),化分式方程为整式方程求解即可.【详解】 ∵31x x x x -=+, ∴(x+1)(x-3)= 2x ,∴2x -2x-3= 2x ,∴2x+3=0,∴x=32-, 经检验,x=32-是原方程的解, 故填32-. 【点睛】 本题考查了分式方程的解法,熟练把分式方程转化为整式方程是解题的关键,验根是解题的一个重要环节,不能忽视.14.【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指整数数幂指数n 由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:000解析:61.210-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指整数数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000012=1.2×10-6.故答案为:1.2×10-6.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.15.-3【分析】根据零指数幂和负指数幂法则计算即可【详解】解:原式=1-4=-3故答案为:-3【点睛】本题考查了零指数幂和负指数幂法则熟练掌握运算法则是解决本题的关键解析:-3【分析】根据零指数幂和负指数幂法则计算即可.【详解】解:原式=1-4=-3,故答案为:-3.【点睛】本题考查了零指数幂和负指数幂法则,熟练掌握运算法则是解决本题的关键.16.【分析】根据通分可化成同分母分式根据同分母分式的加减可得答案【详解】故答案为:【点睛】本题考查了分式加减运算的法则熟记法则是解题的关键 解析:323x x x-- 【分析】根据通分,可化成同分母分式,根据同分母分式的加减,可得答案.【详解】()()()()()()()3313323111111x x x x x x x x x x x x x x x x-----==+-+-+--. 故答案为:323x x x--. 【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键. 17.【分析】先把括号里的分式通分再相减然后运用分式乘法进行计算即可【详解】解:===故答案为:【点睛】本题考查了分式的混合运算掌握正确的运算顺序和运算法则是解题关键 解析:11x + 【分析】先把括号里的分式通分,再相减,然后运用分式乘法进行计算即可.【详解】 解:()1211x x x x x ⎡⎤-⋅⎢⎥+-⎣⎦, =()12(1)11x x x x x x x ⎡⎤+-⋅⎢⎥++-⎣⎦, =1(1)1x x x x x -⋅+-, =11x +,1x +【点睛】 本题考查了分式的混合运算,掌握正确的运算顺序和运算法则是解题关键.18.24【分析】由于底数和指数都不确定所以本题分三种情况进行讨论即可求解【详解】①若时∴;②若时1的任何次幂都等于1∴;③若时-1的偶次幂等于1∴而∴符合题意;故答案为:024【点睛】本题主要考查了零指 解析:2、4【分析】由于(3)1a a -=,底数和指数都不确定,所以本题分三种情况进行讨论即可求解.【详解】①若30a -≠时,(3)1a a -=,∴0a =;②若31a -=时,1的任何次幂都等于1,∴4a =;③若31a -=-时,-1的偶次幂等于1,∴2a =,而2(23)1-=,∴2a =符合题意;故答案为:0、2、4.【点睛】本题主要考查了零指数幂的性质以及有理数的乘方,正确把握定义是解题关键. 19.【分析】先通过去分母将分式方程化为整式方程求出的值然后再检验即可即可【详解】解:方程两边都乘以得:解得:检验:时所以分式方程的解为故答案为【点睛】本题主要考查解分式方程解分式方程的步骤如下:①去分母 解析:13x = 【分析】先通过去分母将分式方程化为整式方程求出x 的值,然后再检验即可即可.【详解】解:方程两边都乘以(1)x x -,得:2(1)(1)x x x -=+, 解得:13x =, 检验:13x =时,2(1)09x x -=-≠, 所以分式方程的解为13x =.3【点睛】本题主要考查解分式方程,解分式方程的步骤如下:①去分母;②求出整式方程的解;③检验;④得出结论.20.【分析】设慢车的速度为x千米/小时则快车的速度为12x千米/小时根据题意可得走过150千米快车比慢车少用小时列方程即可【详解】解:设慢车的速度为则快车的速度为根据题意得:故答案为:【点睛】本题考查了解析:15011502 1.2 x x-=【分析】设慢车的速度为x千米/小时,则快车的速度为1.2x千米/小时,根据题意可得走过150千米,快车比慢车少用12小时,列方程即可.【详解】解:设慢车的速度为xkm/h,则快车的速度为1.2xkm/h,根据题意得:1501150x2 1.2x-=.故答案为:1501150x2 1.2x-=.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,找出合适的等量关系,列方程.三、解答题21.(1)小强步行的平均速度为100米/分钟,小强爸骑电瓶车的平均速度为500米/分钟;(2)小强不能按时到校,将会迟到,理由见解析【分析】(1)设小强步行的平均速度为xm/分钟,骑电瓶车的平均速度为5xm/分钟,根据题意可得,小强爸骑电瓶车送小强到学校比小强步行到学校少用24分钟,据此列方程求解;(2)计算出小强从步行回家到骑车回到学校所用的总时间,然后和23进行比较即可.【详解】解:(1)设小强步行的平均速度为x米/分钟,则小强爸骑电瓶车的平均速度为5x米/分钟,根据题意得:30003000245x x-=,解得100x=,经检验,100x =是分式方程的解,且符合题意,∴5500x =,即小强步行的平均速度为100米/分钟,小强爸骑电瓶车的平均速度为500米/分钟; (2)由(1)得,小强半途步行返家所需时间为3000210015÷÷=分钟,小强爸骑电瓶车送小强到学校所需时间为30005006÷=分钟,所以,从小强半途步行返家到小强爸骑电瓶车送他到学校共用时间为154625++=分钟23>分钟,故小强不能按时到校,将会迟到.【点睛】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.22.(1)A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元;(2)最多购进A 种型号餐盘80个【分析】(1)设A 型号的餐盘单价为x 元,则B 型号的餐盘单价为(x ﹣5)元,根据用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同这个等量关系列出方程即可;(2)设购进A 种型号餐盘m 个,结合“该快餐店决定在成本不超过1900元的前提购进A 、B 两种型号的餐盘100个”列出不等式并解答.【详解】解:(1)设A 种型号的餐盘单价为x 元,则B 种型号的餐盘单价为(5x -)元, 由题意可列方程120905x x =-, 解得20x .经检验,20x 是原分式方程的解,则520515x -=-=.答:A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元.(2)设购进A 种型号餐盘m 个,则购进B 种型号餐盘()100m -个.依题意可得()20151001900m m +-≤,解得80m ≤.答:最多购进A 种型号餐盘80个.【点睛】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.准确的解分式方程或不等式是需要掌握的基本计算能力. 23.(1)3x ;±1;(2)1a a +,2a =,值为32【分析】(1)先化简,后把x=3或x=-3分别代入求值;(2)先化简,根据分母不能为零的原则,选择数值代入计算即可.【详解】(1)原式=212(2)2(2)x x x x x x +-+-⎛⎫⨯ ⎪--⎝⎭=23(2)2(2)x x x x -⨯-- =3x, ∵x 是9的平方根, ∴3x =±,∴原式=±1.(2)原式=2(1)(1)(1)(1)(1)(1)a a a a a a a ⎛⎫-++-⨯ ⎪-+⎝⎭ 1a a+=, 由题意当1,1,0a =-时,原分式没有意义,∴2a =,此时原分式32=. 【点睛】本题考查了分式的化简求值,选值时,确保每一个分式有意义是解题的关键.24.(1)1a -;(2)13x =【分析】(1)先对分式变形化成同分母的分式,然后利用同分母分式的运算法则运算即可; (2)利用分式的性质,将分式方程化成整式方程,然后再求解,最后验根得出结果.【详解】 解:(1)21211a a a a ----21211a a a a -=+--2211a a a -+=-()211a a -=-1a =-; (2)121221x x x +=-+ 方程两边同乘()()221x x -+,得:()()()()2122122x x x x x ++-+=- 解得:13x =, 检验:当13x =时,()()2210x x -+≠,所以,原方程的解为13x =. 【点睛】 本题考查分式的加减运算及解分式方程,熟练掌握分式运算的法则及解分式方程的方法是解题的关键.25.(1)111n n -+;(2)20202021;(3)7x =. 【分析】(1)观察已知等式可得:连续整数乘积的倒数等于较小数的倒数与较大数的倒数的差,据此可得111(1)1n n n n =-++; (2)利用所得规律列出算式1111111223320202021-+-+++-,再两两相消即可得112021-,计算后可得结果; (3)由所得规律对分式方程进行整理,可变形为111112232431x x x x x x +-+-=------,最终化简为1241x x =--,求解此方程即可. 【详解】 解:(1)∵111122=-⨯,1112323=-⨯,1113434=-⨯, ∴当n 为正整数时,111(1)1n n n n =-++. 故答案为:111n n -+. (2)111111223344520202021+++++⨯⨯⨯⨯⨯ 111111112233420202021=-+-+-+- 112021=- 20202021=. 故答案为:20202021. (3)原方程变形为:111112232431x x x x x x +-+-=------, ∴1241x x =--,去分母,得:12(4)x x -=-,解得7x =,经检验,7x =是原方程的解.【点睛】本题考查了数字的变化规律及解分式方程,解题的关键是理解题意,找出数字的变化规律,并准确运用所得规律求解分式方程.26.(1)所得分式的值比原来增大了,计算说明见解析;(2)增大;(3)增大.【分析】(1)先求出11n n m m +-+,通分化简,然后根据0m n ->,0m >判断即可; (2)先求出22n n m m +-+,通分化简,然后根据0m n ->,0m >判断即可; (3)先求出n a n m a m+-+,通分化简,然后根据0m n ->,0m >,0a >判断即可. 【详解】解:(1)由题意得: 11n n m m+-+, (1)(1)(1)(1)m n n m m m m m ++=-++, (1)mn m mn n m m +--=+, (1)m n m m -=+, ∵0m n >>,∴0m n ->,0m >,10m +>, ∴0(1)m n m m ->+, ∴101n n m m+->+, 11n n m m+∴>+,即所得分式的值比原来增大了; (2)22n n m m+-+ (2)(2)(2)(2)m n n m m m m m ++=-++ 22(2)mn m mn n m m +--=+()2(2)m n m m -=+同理可得()20(2)m n m m ->+, ∴22n n m m+>+,即所得分式的值比原来增大了; (3)n a n m a m +-+ ()()()()m n a n m a m m a m m a ++=-++ ()mn ma mn na m m a +--=+ ()(2)a m n m m -=+∵0m n ->,0m >,0a >, ∴()0(2)a m n m m ->+ ∴n a n m a m+>+,即所得分式的值比原来增大了. 【点睛】本题考查分式的运算,解题的关键是掌握分式运算的法则.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当你作出决定后,便要一心一意地朝着目标走,经常记着名誉是你的最大资产,今天便要建立起来.
深圳市南山区初二数学-《分式》练习
冯老师
一、填空题:(每小题2分
共20分)
1、分式当x __________时分式的值为零
2、当x __________时分式有意义
3、①②
4、约分:①__________
②__________
5、若分式的值为负数
则x的取值范围是__________
6、计算:__________
7、分式方程+1=有增根
则m=
8、要使的值相等
则x=__________
9、若关于x的分式方程无解
则m的值为__________
10、若__________
二、选择题:(每小题3分
共30分)
题号
1
2
3
4
5
6
7
8
9
10
答案
1、下列各式:其中分式共有()个
A、2
B、3
C、4
D、5
2、下列判断中
正确的是()
A、分式的分子中一定含有字母
B、当B=0时
分式无意义
C、当A=0时
分式的值为0(A、B为整式) D、分数一定是分式
3、下列各式正确的是()
A、 B、 C、 D、
4、下列各分式中
最简分式是()
A、 B、 C、 D、
5、下列约分正确的是()
A、 B、 C、 D、
6、在一段坡路
小明骑自行车上坡的速度为每小时V1千米
下坡时的速度为每小时V2千米
则他在这段路上、下坡的平均速度是每小时()
A、千米
B、千米
C、千米 D无法确定
7、若把分式中的x和y都扩大3倍
那么分式的值()
A、扩大3倍
B、不变
C、缩小3倍
D、缩小6倍
8、若
则分式()
A、 B、 C、1 D、-1
9、A、B两地相距48千米
一艘轮船从A地顺流航行至B地
又立即从B地逆流返回A地
共用去9小时
已知水流速度为4千米/时
若设该轮船在静水中的速度为x千米/时
则可列方程()
A、 B、 C D
10、已知的值为()
A、 B、 C、2 D、
二、化简题:(每小题5分
共20分)
1、 2、
3、 4、
三、解下列分式方程:(每小题6分
共12分)
1、 2、
四、先化简
后求值:(每小题6分
共12分)
1、
其中x=5.
2、
五、(6分)列分式方程解应用题:甲、乙两组学生去距学校4.5千米的敬老院打扫卫生甲组学生步行出发半小时后
乙组学生骑自行车开始出发
结果两组学生同时到达敬老院
如果步行的速度是骑自行车的速度的求步行和骑自行车的速度各是多少?
五、若
且3 x+2y-z=14
求x
y
z
六、附加题:(每小题10分
共20分)
1、若。