多元相平衡条件
热统-多元系 复相平衡和化学反应

ψ
欧勒(Euler)定理
(1)齐次函数定义:若函数f (x1, x2, …, xk )满足
f (x1, x2 ,, xk ) m f ( x1, x2 ,, xk )
(2) Euler定理:多元函数f (x1, x2, …, xk)是x1, x2, …, xk的m
次齐次函数的充要条件为下述恒等式成立
Ch4.4单相化学平衡的条件与性质
四、化学反应平衡条件
吉布斯判据 G = -A n 0, A = - i i 分析 演化方向: A > 0 n >0, 正向反应 平衡条件:A = - i i = 0
Ch4.4单相化学平衡的条件与性质
五、自发化学反应的结果
p = p(T,x)
T = T(x,p)
p = p(x,T)
P
T
p
0
T
0
1
x
0
1 x
Ch4.3理想溶液
一、道尔顿分压
1、分压律:p = pi 2、分压:pi = ni RT/V = xi p 3、摩尔分数:xi = ni /n
二、膜平衡
1、膜平衡的特点 2、膜平衡条件
膜平衡: i(T,p,xj)=gi(T,p’) 力学平衡: pi = xip = p’
如果假设
S有界, T 0
G H
H G lim (S ) T 0 T 0 T 0
T 0
利用洛必达法则
lim S T 0
T 0
T 0
H和G相等且 具有相同的偏导数
G 由于 S T
G lim (S )T 0 T 0 T 0
多元体系的相平衡研究

多元体系的相平衡研究随着科技和经济的发展,人们在生产和生活中使用的物质越来越多元化和复杂化。
多元体系是指由两种或更多种物质组成的体系,其相互作用及物理化学特性十分复杂。
多元体系的相平衡研究是研究多元体系在不同温度、压力、物质浓度等条件下,不同相之间的平衡关系和相变规律,以期为化工、材料等领域的实际应用提供科学依据。
一、多元体系的相图多元体系的相图是反映不同组成及温度、压力等条件下各相稳定范围和相变规律的图表。
相图可被用于预测和控制化学反应的结果、物质的分离和提纯等。
例如,汽油中含有多种油类组分,每种组分的挥发性和沸点不同,因此可以通过相图研究不同条件下各种油类组分的出现和失去,以实现汽油的合成和分离。
二、多元体系的相平衡实验多元体系的相平衡实验是为了确定物质之间的相互作用和获取相平衡数据。
在实验中,通常使用多样品试剂盘、旋转桶、分配器等器材,测定不同条件下的体系压力、温度、浓度等物理化学指标,以获得相平衡数据。
通过获取相平衡数据,可以对相图进行修正和更新,以便更好地预测和控制体系的相变行为。
三、多元体系的相平衡计算多元体系的相平衡计算是指用数学计算方法对多元体系的相平衡问题进行模拟和计算。
相平衡计算在现代化工、材料科学等领域中得到了广泛的应用。
例如,在合成陶瓷时,通过相平衡计算可以优化各材料比例,并通过变化温度和压力等条件使陶瓷材料的结构和性能达到最优,从而提高陶瓷材料的使用寿命和应用价值。
四、多元体系的应用多元体系的研究成果在工业生产和实际应用中起着重要作用。
如在生命科学和医药领域中,对多种化合物体系的相平衡研究可以为生物化学反应和医药制剂提供科学依据。
在航空航天领域,多元体系的相变特性被用于控制航空燃料的喷射和燃烧过程,以提高航行效率和安全性。
在环境保护和能源利用中,多元体系的相平衡研究可以为多种污染物的治理和资源的循环利用提供技术支持。
综上所述,多元体系的相平衡研究是一项重要的科学工作,其研究成果已经渗透到工业生产、生命科学、环境保护等多个领域。
热力学与统计物理_试题

热⼒学与统计物理_试题热⼒学部分第⼀章热⼒学的基本规律1、热⼒学与统计物理学所研究的对象:由⼤量微观粒⼦组成的宏观物质系统其中所要研究的系统可分为三类孤⽴系:与其他物体既没有物质交换也没有能量交换的系统;闭系:与外界有能量交换但没有物质交换的系统;开系:与外界既有能量交换⼜有物质交换的系统。
2、热⼒学系统平衡状态的四种参量:⼏何参量、⼒学参量、化学参量和电磁参量。
3、⼀个物理性质均匀的热⼒学系统称为⼀个相;根据相的数量,可以分为单相系和复相系。
4、热平衡定律(热⼒学第零定律):如果两个物体各⾃与第三个物体达到热平衡,它们彼此也处在热平衡.5、符合玻意⽿定律、阿⽒定律和理想⽓体温标的⽓体称为理想⽓体。
6、范德⽡尔斯⽅程是考虑了⽓体分⼦之间的相互作⽤⼒(排斥⼒和吸引⼒),对理想⽓体状态⽅程作了修正之后的实际⽓体的物态⽅程。
7、准静态过程:过程由⽆限靠近的平衡态组成,过程进⾏的每⼀步,系统都处于平衡态。
8、准静态过程外界对⽓体所作的功:,外界对⽓体所作的功是个过程量。
9、绝热过程:系统状态的变化完全是机械作⽤或电磁作⽤的结果⽽没有受到其他影响。
绝热过程中内能U 是⼀个态函数:A B U U W -= 10、热⼒学第⼀定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造,只能从⼀种形式转换成另⼀种形式,在转换过程中能量的总量保持恒定;热⼒学表达式:Q W U U A B +=-;微分形式:W Q U d d d +=11、态函数焓H :pV U H +=,等压过程:V p U H ?+?=?,与热⼒学第⼀定律的公式⼀⽐较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。
12、焦⽿定律:⽓体的内能只是温度的函数,与体积⽆关,即)(T U U =。
13.定压热容⽐:p p T H C=;定容热容⽐:V V T U C= 迈耶公式:nR C C V p =- 14、绝热过程的状态⽅程:const =γpV ;const =γTV ;const 1=-γγTp 。
第四章多元系的复相平衡和化学平衡

Pi
=
ni
RT V
Pi P
=
ni
n1 + n2 + Λ
+ nk
= xi
xi是组元的摩尔分数。
μi = RT (ϕi + ln Pi ) = RT (ϕi + ln xi P)
∫ ∫ 其中ϕi
=
hi RT
−
dT RT 2
cPi dT
−
Si0 R
∑ Θ G = μi ni i
∴G = ∑ ni RT[ϕi + ln(xi P)] i
i
ni
⎛⎜⎜⎝
∂S ∂ni
⎟⎞⎟⎠T,P,n j
=
i
ni si
这里n j的表示除i组元以外的其它全部组元。
定义:
vi
=
⎜⎜⎛⎝
∂V ∂ni
⎟⎟⎞⎠T,P,n j
,
ui
=
⎜⎜⎛⎝
∂U ∂ni
⎟⎟⎞⎠T,P,n j
si
=
⎜⎛⎜⎝
∂S ∂ni
⎟⎞⎟⎠T,P,n j
vi,u i,si 分别称为i组元的偏摩尔体积,偏摩尔内能与偏摩尔熵。
i
i
∑ 又Θ dG = −SdT + VdP + μi dni i
∑ ∴可得: SdT − VdP + ni dμi = 0 i
(4). 对于多元复相系,例如α相.
(吉普斯关系)
∑ dU α = T α dS α − Pα dV α +
μ
α i
dniα
i
整个复相系的V,U,S,和ni可写为:
V = ∑V α , U = ∑U α , S = ∑ Sα ,
热统各章重点

各章重点符号:T:热力学温度t:摄氏温度S:熵α:体胀系数β:压强系数W:功U:内能H:焓F:自由能G:吉布斯函数第一章1、与其他物体既没有物质交换也没有能量交换的系统称为孤立系;2、与外界没有物质交换,但有能量交换的系统称为闭系;3、与外界既有物质交换,又有能量交换的系统称为开系;4、平衡态的特点:1.系统的各种宏观性质都不随时间变化;2.热力学的平衡状态是一种动的平衡,常称为热动平衡;3.在平衡状态下,系统宏观物理量的数值仍会发生或大或小的涨落;4.对于非孤立系,可以把系统与外界合起来看做一个复合的孤立系统,根据孤立系统平衡状态的概念推断系统是否处在平衡状态。
5、参量分类:几何参量、力学参量、化学参量、电磁参量6、温度:宏观上表征物体的冷热程度;微观上表示分子热运动的剧烈程度7、第零定律:如果物体A和物体B各自与处在同一状态的物体C达到热平衡,若令A与B进行热接触,它们也将处在热平衡,这个经验事实称为热平衡定律8、t=T-273.59、体胀系数、压强系数、等温压缩系数、三者关系10、理想气体满足:玻意耳定律、焦耳定律、阿氏定律、道尔顿分压11、准静态过程:进行得非常缓慢的过程,系统在过程汇总经历的每一个状态都可以看做平衡态。
12、广义功13、热力学第一定律:系统在终态B和初态A的内能之差UB-UA等于在过程中外界对系统所做的功与系统从外界吸收的热量之和,热力学第一定律就是能量守恒定律.UB-UA=W+Q.能量守恒定律的表述:自然界一切物质都具有能量,能量有各种不同的形式,可以从一种形式转化为另一种形式,从一个物体传递到另一个物体,在传递与转化中能量的数量保持不变。
14、等容过程的热容量;等压过程的热容量;状态函数H;P2115、焦耳定律:气体的内能只是温度的函数,与体积无关。
P2316、理想气体准静态绝热过程的微分方程P2417、卡诺循环过程由两个等温过程和两个绝热过程:等温膨胀过程、绝热膨胀过程、等温压缩过程、绝热压缩过程18、热功转化效率19、热力学第二定律:1、克氏表述-不可能把热量从低温物体传到高温物体而不引起其他变化;2、开氏表述-不可能从单一热源吸热使之完全变成有用的功而不引起其它变化,第二类永动机不可能造成20、如果一个过程发生后,不论用任何曲折复杂的方法都不可能把它留下的后果完全消除而使一切恢复原状,这过程称为不可逆过程21、如果一个过程发生后,它所产生的影响可以完全消除而令一切恢复原状,则为可逆过程22、卡诺定理:所有工作于两个一定温度之间的热机,以可逆机的效率为最高23、卡诺定理推论:所有工作于两个一定温度之间的可逆热机,其效率相等24、克劳修斯等式和不等式25、热力学基本微分方程:26、理想气体的熵P4027、自由能:F=U-FS28、吉布斯函数:G=F+pV=U-TS+pV29、熵增加原理:经绝热过程后,系统的熵永不减少;孤立系的熵永不减少30、等温等容条件下系统的自由能永不增加;等温等压条件下,系统的吉布斯函数永不增加。
热统知识梳理

知 识 梳 理1.基本概念和基本知识(识记和领会) (1) 热力学系统,热力学平衡态和状态参量 热力学系统必须由是大量微观粒子组成的。
热力学平衡态;孤立系的宏观性质不随时间变化的状态。
四类状态参量:力学参量,几何参量,电磁参量和化学参量。
广延量:与物质的量有关的物理量称为广延量,如质量、体积、内能、熵 等。
强度量:与物质的量无关的物理量称为强度量,如温度,压强,密度,电 阻率等。
(2) 热力学第零定律与温度热力学第零定律:相互绝热的两物体A 和B 同时与第三个物体C 达成热平衡,则A 、B 、C 三物体彼此达成热平衡。
热力学第零定律的意义:① 定义了温度。
温度是达成热平衡的诸热力学系统的共同宏观性质。
② 为制造温度计提供了依据。
(3) 准静态过程准静态过程:过程进行得非常缓慢,使得过程进行的每一步都可以视为平衡态。
(4) 循环过程的定义及分类;循环效率循环过程:系统从任意状态出发,经过任意一系列的过程又返回原状态, 称完成了一个循环过程。
正循环与逆循环:正循环沿顺时针方向,与热机对应;逆循环沿反时针方向,与制冷机对应; 热机效率公式: 211Q Q η=-。
(5) 卡诺循环及其效率;卡诺定理 卡诺效率公式: 211T T η=-卡诺定理对提高实际热机效率的指导意义:提高高温热源温度,降低低温热源温度;尽量减少摩擦,减少漏热。
卡诺定理:定理1、在相同的高温热源和相同的低温热源之间工作的一切可逆机其工作效率都相等,与工作物质无关。
定理2、在相同的高温热源和相同的低温热源之间工作的一切不可逆机其工作效率都小于可逆机的效率。
(6)热力学第二定律的两种表述,第二定律的实质热力学第二定律的两种表述:①开尔文表述:不可能从单一热源吸取热量使之完全转变为功而不产生任何其他影响。
或,第二类永动机不可能造成。
②克劳修斯表述:不可能把热量从低温物体传给高温物体而不产生任何其他影响。
或,热量不能自发的从低温物体传给高温物体。
金属学与热处理教案 第七章

2、等温截面 用温度为T的等温面 在三元匀晶相图中截得 平面,为一与浓度三角 形等大小的三角形。一 般等温截面上存在两条 截线l1l2、s1s2,将
截面分成三个区,分别为单相液相区、单相 固相区和液相和固相双相区。根据相律,在 液相和固相双相区内,只有一个独立变量, 液相成分确定后,固相成分也随之确定。
二、克劳修斯莱普隆方程
设某物质在温度为T、压力为p,体积为V时处于 两相平衡状态,若改变温度dT和压力dp后体系仍 处于平衡状态,则有:
讨论
1、固(液)态,→气态体积 变化ΔV≈RT/P,一般ΔH>0 ,所以 dP/dT = PΔH/RT2 >0。
2、固态→固态或固态→液态
转变时,其体积变化远小于固 (液)→气时状况,dP/dT亦
1、三元相图中浓度平面的常用表示方法
③ 直角三角形表示法: 当三元系中组元B、C 的含量较少时,常用直角 三角形的一部表示三元系 的成分。以直角顶点A表 示100%的A,而以AB和AC 表示三元系中两个组元B 和C的含量。
二、用等温截面法建立三元相图
三元系相图的建立与二元系相同,有多种 方法。其中等温截面法如下: 1、配置足够多的三元系合金; 2、自高温到室温选取一系列温度T1、 T2、……、Tn。 3、在每一选取温度的等温面上确定三 元合金的状态区域。 4、将结构顺序叠加综合到三维图形上。
1、相图分析
② 相图中典型的线
ee’线: 共晶线、液相线,也是 L与三相区的交线。 a’b’线: α相与三相区的交线。 dc’线: β相与三相区的交线。
1、相图分析
③ 相图中的相区
单相区: 液相区、α相区和β 相区三个单相区。 双相区: (L+α)和(L+β) 和(α+β)三个双
热力学基本方程和平衡条件

p , ni
T
G As
As
G T
S As
T , p,ni
2.界面相的热力学基本方程(fundamental equations for interfacial phases)
1. 界面层不能独立存在,界面性质由平衡的两个 主体相性质决定,界面层难以严格界定。
2. 界面层非均匀,存在压力、浓度梯度。
Gibbs模型小结
界面层的位置和厚度很难严格界定,而界面层 的广延性质又依赖界面的位置和厚度,界面层非均 匀,存在压力梯度和浓度梯度,难以描述。
1. Gibbs模型取界面厚度为零,可以将界面广延 性质转而用界面过剩量表示;
2. Gibbs模型取溶剂界面过剩量为零,其实质等 价于确定了界面位置,这与1一起将界面层完 全确立,也使界面过剩性质的定义完备;
与平坦界面的
Gibbs认为多数情
张力近似相等
况下此项可忽略
每个主体相的热力学能变化:
dU (a ) TdS(a ) p(a )dV (a )
dn K
(a )
i1 i i
dU (b ) TdS(b ) p(b )dV (b )
dn K
(b )
i1 i i
得弯曲界面的热力学能微分式,与平坦界面相同:
T (a ) T (b ) T ( ) T
p(a ) p(b ) (dAs / dV (a ) )
平面dAs / dV (a ) 0 p(a ) p(b ) p
(a ) i
(b ) i
( ) i
i
B
B
B
0
了解一下:有界面相时的平衡条件的推导
出发点:平衡判据中的熵判据
δSU,V ,W0 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多元相平衡条件
多元相平衡条件是指当存在多个功能元件时,使多个元件彼此维持
相对较高的平衡性和稳定性的条件。
满足多元相平衡的条件可以使多
个功能组件协调运行,从而改善系统整体性能和稳定性。
一般来说,
满足多元相平衡的条件包括:
1.结构平衡:反映元件的结构特征和相互作用,以及此类元件之间的
结构对其能力和潜力的影响。
2.功能平衡:评估元件功能的有效性,以最大限度地满足系统性能和
要求,从而获得大型设备的最佳持续性能。
3.兼容性平衡:确保多个元件的兼容性,使它们可以顺利协作,有效发挥系统的性能和完整性。
4.质量平衡:评估和比较元件的质量,使整个系统具有良好的复杂性和可控性。
5.安全平衡:确定元件安全要求,包括确保在故障情况下也能顺利运行,保护元件和系统针对危险情况的健康和安全性。