匀变速直线运动 知识点整理

合集下载

匀变速直线运动知识点

匀变速直线运动知识点

匀变速直线运动知识点匀变速直线运动是物理学中的一个重要概念,在力学中经常涉及到。

本文将从定义、运动方程、速度和加速度等方面详细探讨匀变速直线运动的知识点。

一、定义匀变速直线运动指的是物体在直线上以一定的加速度进行运动,且加速度保持不变。

这种运动的特点是速度的变化是匀速的,即速度随时间线性变化。

二、运动方程匀变速直线运动的运动方程可以用以下公式表示:s = ut + 1/2at^2其中,s表示物体的位移,u表示物体的初速度,a表示物体的加速度,t表示时间。

三、速度在匀变速直线运动中,速度是随时间变化的。

根据运动方程可以得到速度的表达式:v = u + at其中,v表示物体的速度。

四、加速度加速度是匀变速直线运动的一个重要参数,表示速度的变化率。

根据运动方程可以得到加速度的表达式:a = (v - u) / t其中,a表示物体的加速度。

五、位移与时间、初速度、加速度的关系根据运动方程可以看出,位移与时间、初速度和加速度之间存在一定的关系。

位移随时间的平方成正比,与初速度成正比,与加速度的平方成正比。

六、加速度与运动方向的关系在匀变速直线运动中,加速度的正负与运动方向有关。

当加速度与速度方向一致时,加速度为正值;当加速度与速度方向相反时,加速度为负值。

七、匀变速直线运动的示例一个常见的示例是自由落体运动。

当物体自由下落时,加速度为重力加速度,速度随时间线性增加。

总结:匀变速直线运动是物理学中的一个重要概念,它可以用运动方程来描述物体的位移、速度和加速度。

在匀变速直线运动中,速度的变化是匀速的,加速度保持不变。

加速度与运动方向有关,当加速度与速度方向一致时,加速度为正值,反之为负值。

匀变速直线运动的一个示例是自由落体运动,物体自由下落时加速度为重力加速度。

通过研究匀变速直线运动,可以更好地理解物体在运动中的行为和规律。

匀变速直线运动知识点

匀变速直线运动知识点

匀变速直线运动知识点匀变速直线运动是物理学中最基本的运动形式之一。

在这种运动中,物体在直线方向上运动,其速度随时间的推移而变化,可以是匀速变化或者不匀速变化。

下面将介绍匀变速直线运动的一些基本概念和相关知识点。

一、位移和位移公式在匀变速直线运动中,物体从初始位置移动到某个位置的距离称为位移。

位移是一个矢量量,具有方向和大小。

位移的大小等于物体最终位置与初始位置之间的直线距离。

位移公式用于计算匀变速直线运动的位移。

根据物体速度和时间的关系,位移公式可以表示为:Δx = (v0 + v)t / 2其中,Δx表示位移,v0表示初始速度,v表示末速度,t表示时间。

二、速度和速度公式速度是描述物体运动的物理量,是位移随时间的导数。

速度的方向与位移的方向一致。

在匀变速直线运动中,物体的速度随时间的变化而改变。

速度的大小可以使用速度公式计算:v = v0 + at其中,v0表示初始速度,a表示加速度,t表示时间。

三、加速度和加速度公式加速度是描述物体速度变化率的物理量,是速度随时间的导数。

在匀变速直线运动中,加速度是常数。

根据速度和时间的关系,可以使用加速度公式计算加速度:a = (v - v0) / t其中,a表示加速度,v表示末速度,v0表示初始速度,t表示时间。

四、时间和时间公式在匀变速直线运动中,时间是描述物体运动的一个基本概念,表示运动发生的时长。

根据位移和速度的关系,可以使用时间公式计算时间:t = 2Δx / (v0 + v)其中,t表示时间,Δx表示位移,v0表示初始速度,v表示末速度。

五、运动图像匀变速直线运动可以通过运动图像来描述。

运动图像是在坐标轴上绘制物体的位移随时间变化的曲线。

在匀变速直线运动中,当物体匀速运动时,运动图像是一条直线;当物体加速运动或减速运动时,运动图像是一条斜线。

六、运动的实例匀变速直线运动在生活中有很多实例。

例如,一个汽车从静止状态开始加速行驶,这是一个匀变速直线运动;一个自由落体运动的物体在重力作用下速度不断增加,这也是一个匀变速直线运动。

高中物理匀变速直线运动知识点

高中物理匀变速直线运动知识点

高中物理匀变速直线运动知识点以下是高中物理中关于匀变速直线运动的一些重要知识点:1. 位移和位移公式:位移是物体从初始位置到最终位置的直线距离,用Δx表示。

当物体做匀变速直线运动时,位移与物体的初速度v0、末速度v、加速度a以及时间间隔t 之间满足位移公式:Δx = v0t + 1/2at²。

2. 速度和速度公式:速度是物体在单位时间内移动的距离,用v表示。

当物体做匀变速直线运动时,速度与物体的初速度v0、加速度a和时间间隔t之间满足速度公式:v = v0 + at。

3. 加速度和加速度公式:加速度是速度的改变率,用a表示。

当物体做匀变速直线运动时,加速度与位移Δx、初速度v0和时间间隔t之间满足加速度公式:a = 2(Δx -v0t) / t²。

4. 时间和时间公式:时间是运动持续的时间,用t表示。

当物体做匀变速直线运动时,时间与位移Δx、初速度v0和加速度a之间满足时间公式:t = (v - v0) / a。

5. 加速度与运动方程:当物体做匀变速直线运动时,速度与时间t的关系可由运动方程表示:v = v0 + at。

位移与时间t的关系可由运动方程表示:Δx = v0t + 1/2at²。

另外还有另一种形式的运动方程:v² = v0² + 2aΔx。

6. 匀变速直线运动的图像表示:匀变速直线运动可以用速度-时间图、位移-时间图和加速度-时间图来表示。

在速度-时间图中,匀速直线表示匀速运动,斜线表示匀变速运动;在位移-时间图中,直线表示匀速运动,抛物线表示匀变速运动;在加速度-时间图中,横线表示匀速运动,直线表示匀变速运动。

7. 自由落体运动:自由落体运动是一种特殊的匀变速直线运动,加速度恒定为重力加速度g。

自由落体运动的速度可用v = v0 + gt表示,位移可用Δx = v0t + 1/2gt²表示。

8. 瞬时速度和瞬时加速度:瞬时速度是物体在某一时刻的速度,用v表示;瞬时加速度是物体在某一时刻的加速度,用a表示。

匀变速直线运动的规律知识点总结

匀变速直线运动的规律知识点总结

匀变速直线运动的规律知识点总结匀变速直线运动的规律知识点总结匀变速直线运动,速度均匀变化的直线运动,即加速度不变的直线运动。

以下是匀变速直线运动的规律,请考生认真学习。

一、匀变速直线运动规律1、匀变速直线运动、加速度本节开始学习匀变速直线运动及其规律,能够正确理解加速度是学好匀变速直线运动的基础和关键,因此学习中要特别注意对加速度概念的深入理解。

(1)沿直线运动的物体,如果在任何相等的时间内物体运动速度的变化都相等,物质的运动叫匀变速直线运动。

匀变速直线运动是变速运动中最基本、最简单的一种,应该指示:常见的.许多变速运动实际上并不是匀变速运动,可是不少变速运动很接近于匀变速运动,可以当作匀速运动处理,所以匀变速直线运动也是一种理想化模型。

(2)加速度是指描述物质速度变化快慢而引入的一个重要物理量,对于作匀变速直线运动的物体,速度的变化量△v与所用时间的比值,叫做匀变速直线运动的加速度,即:。

加速度是矢量,加速度的方向与速度变化的方向是相同的,对于作直线运动的物体,在确定运动正方向的条件下,可以用正负号表示加速度的方向,如vt v0,a为正,如vt v0,a为负。

前者为加速,后者为减速。

依据匀变速直线运动的定义可知,作匀变速直线运动物体的加速度是恒定不变的。

即a = 恒量。

(3)在学习加速度的概念时,要正确区分速度、速度变化量及速度变化率。

其中速度v是反映物体运动快慢的物理量。

而速度变化量△v = v2-v1,是反映物体速度变化大小和方向的物理量。

速度变化量△v也是矢量,在加速直线运动中,速度变化量的方向与物体速度方向相同,在减速直线运动中,速度变化量的方向与物体速度方向相反。

加速度就是速度变化率,它反映了物体运动速度随时间变化的快慢。

匀变速直线运动中,物体的加速度在数值上等于单位时间内物体运动速度的变化量。

所以物体运动的速度、速度变化量及加速度都是矢量,但它们确实从不同方面反映了物体运动情况。

例如:关于速度和加速度的关系,以下说法正确的是:A.物体的速度为零时,其加速度必为零B.物体的加速度为零时,其运动速度不一定为零C.运动中物体速度变化越大,则其加速度也越大D.物体的加速度越小,则物体速度变化也越慢要知道物体运动的加速度与速度之间并没有直接的关系。

匀变速直线运动

匀变速直线运动

匀变速直线运动【知识点归纳】1、匀变速直线运动位移与时间的关系的公式表达:2021at t v s += s 为t 时间内的位移。

当a=0时,t v s 0=当v 0=0时,221at s =当a<0时,2021at t v s -= 可见2021at t v s +=是匀变速直线运动位移公式的一般表示形式,只要知道运动物体的初速度v 0和加速度a ,就可以计算出任意一段时间内的位移,从而确定任意时刻物体所在的位置。

位移公式也可以用速度——时间图像求出面积得位移而推出。

2、匀变速直线运动的位移和速度的关系as v v t 2202=-这个关系式是匀变速直线运动规律的一个重要的推论。

关系式中不含时间t ,在一些不涉及到时间的问题中,应用这个关系是较方便的。

3、匀变速直线运动的两个推论1.匀变速直线运动的物体在连续相等的时间(T)内的位移之差为一恒量。

①公式:S 2-S 1=S 3-S 2=S 4-S 3=…=S n -S n-1=△S=aT2 ②推广:S m -S n =(m-n )aT 22.某段时间中间时刻的瞬时速度等于这段时间的平均速度,即: v v t =2【案例分析】例1.某物体作变速直线运动,关于此运动下列论述正确的是( )A .速度较小,其加速度一定较小B .运动的加速度减小,其速度变化一定减慢C .运动的加速度较小,其速度变化一定较小D .运动的速度减小,其位移一定减小例2.火车从车站由静止开出做匀加速直线运动,最初一分钟行驶540米,则它在最初l0秒行驶的距离是( )A .90米B .45米C .30米D .15米例3一物体由静止沿光滑斜面匀加速下滑距离为L 时,速度为V ,当它的速度是v /2时,它沿全面下滑的距离是A .L /2B . 2L/2C .L /4D .3L /4例4:一物体以初速度v 1做匀变速直线运动,经时间t 速度变为v 2求:(1)物体在时间t 内的位移. (2)(3)比较vt/2和v s/2例5:一辆沿平直路面行驶的汽车,速度为36km/h.刹车后获得加速度的大小是4m/s2,求:(1)刹车后3s末的速度;(2)从开始刹车至停止,滑行一半距离时的速度.例6、一个质点作初速为零的匀加速运动,试求它在1s,2s,3s,…内的位移s1,s2,s3,…之比和在第1s,第2s,第3s,…内的位移SⅠ,SⅡ,SⅢ,…之比各为多少?【一试身手】1、甲、乙两辆汽车速度相等,在同时制动后,均做匀减速运动,甲经3s停止,共前进了36m,乙经1.5s停止,乙车前进的距离为:()(A)9m (B)18m (C)36m (D)27m2、质量都是m的物体在水平面上运动,则在下图所示的运动图像中表明物体做匀速直线运动的图像的是()3、物体运动时,若其加速度恒定,则物体:(A)一定作匀速直线运动; (B)一定做直线运动;(C)可能做曲线运动; (D)可能做圆周运动。

匀变速直线运动知识点总结

匀变速直线运动知识点总结
匀变速直线运动知识点总结
1.质点是一个理想化的物理模型,实际并不存在,一个物体能否看 成质点,看在所研究的问题中物体的形状、大小对研究的问题有 没有影响。 2.时间:前5秒 ,第5秒内 时刻:第5秒初,第5秒末 3.位移(矢量):从起点到终点的有向线段△x = x2 – x1 路程(标量):物体运动轨迹的长度 4.速度:描述物体运动的快慢v = △X / △t,速率是指瞬时速度的 大小 速度变化量:描述速度变化大小 加速度:描述速度变化的快慢,是速度的变化率a = △v / △t, 加速度不变的为匀变速运动, 若a、v 同向,则为加速运动; 若a、v 反向,则为减速运动
解:(1)由h=1/2gt² ,t=10s (2)H1=1/2gt‘²,取t=9s, 从开始运动起前9s内的 h1=405 ∴最后1s内的位移为:h10=h-h9=500m-405m=95m 下落最后一秒的位移为h- h1=95m (3)落下一半时间即t'=5s,其位移为h2=1/2gt'² =125m
S S S S S S 6 5 4 3 2 1 a 2 9 T
7.初速度为0的匀变速直线运动的几个比例关系 (子弹问题看成反向的匀加速直线运动) T相同: ①.v=at :第1秒末、第2秒末、第3秒末、……第n秒末速度之比 为: 1:2:3:……:n 1 s a t 2 :1秒内、2秒内、3秒内、……n秒内位移之比: ② 2 1:4:9: ……:n ² ③第1秒内、第2秒内、第3秒内、……第n秒内位移之比为: SⅠ:SⅡ:SⅢ: ……SN=_1:3:5: ……:2n-1 S相同: ①前1m、前2m、前3m、……前nm的末速度之比: 1: √ 2: √ 3: ……: √ n _②前1m、前2m、前3m、……前nm所用的时间之比: tⅠ:tⅡ:tⅢ:……tN=1 : √ 2: √ 3: ……: √ n ③第1m、第2m、第3m、……第nm所用的时间之比: 1 : √ 2-1: √ 3 -√ 2 : ……: √ n -√ n-1

专题一 1 匀变速直线运动(知识点完整归纳)

专题一 1 匀变速直线运动(知识点完整归纳)

1 匀变速直线运动1.匀变速直线运动:沿着一条直线,且加速度不变的运动. 2.基本规律 (1)两个基本公式 速度公式:v =v 0+at . 位移公式:x =v 0t +12at 2.(2)常用的导出公式①速度和位移公式:v 2-v 02=2ax . ②平均速度公式:v =v t 2=v 0+v2.③位移差公式:Δx =x n +1-x n =aT 2.即任意两个连续相等时间内的位移差是一个恒量.1.匀变速直线运动公式的选用一般情况下用两个基本公式可以解决,当遇到以下特殊情况时,用导出公式会提高解题的速度和准确率:(1)不涉及时间,比如从v 0匀加速到v 后求位移x ,可用v 2-v 02=2ax .(2)平均速度公式的应用:纸带运用v t 2=xt =v 求瞬时速度;传送带问题、板块问题、追及问题运用x =v 0+v2t 求位移或相对位移;带电粒子在匀强电场中的运动运用类平抛运动两个方向的速度、位移联系,如x =v 0t ,y =v y2t ,根据x 、y 的大小关系,确定v y 和v 0的关系.(3)位移差公式的应用:纸带运用Δx =x 2-x 1=aT 2,x m -x n =(m -n )aT 2求加速度,已知4段、5段、6段位移用逐差法求加速度.研究平抛运动实验,利用平抛运动轨迹,根据y 2-y 1=gT 2求时间间隔或求重力加速度. (4)初速度为零的比例式:特别应记住运动开始连续相等时间内的位移之比为1∶3∶5∶7∶…. 2.三种常见的方法:(1)全过程法:全过程中若加速度不变,虽然有往返运动,但可以全程列式,此时要注意各矢量的方向(即正负号).如竖直上抛运动、沿光滑斜面上滑等.(2)逆向思维法:对于末速度为零的匀减速直线运动,可以采用逆向思维法,倒过来看成是初速度为零的匀加速直线运动.如一个人投篮球垂直砸到篮球板上,这是一个斜抛运动,也可以运用逆向思维当作反向的平抛运动.(3)图象法:比如带电粒子在交变电场中的运动,可借助v -t 图象分析运动过程. 3.分析匀变速直线运动的技巧:“一画、二选、三注意” 一画:根据题意画出物体运动示意图,使运动过程直观清晰; 二选:选用合适的方法和公式;三注意:列方程前首先选取正方向,且所列的方程式中每一个物理量均需对应同一个物理过程.4.一个二级结论如图1,两段匀变速直线运动,先从静止匀加速再匀减速,若经相同时间,又回到原位置. 根据x 2=-x 1,可得到a 2=-3a 1.图1示例1 (平均速度法)(2016·上海卷·14)物体做匀加速直线运动,相继经过两段距离为16 m 的路程,第一段用时4 s ,第二段用时2 s ,则物体的加速度是( ) A.23 m/s 2 B.43 m/s 2 C.89 m/s 2 D.169m/s 2 答案 B解析 物体做匀加速直线运动,t 时间内的平均速度等于中间时刻的瞬时速度,在第一段内中间时刻的瞬时速度为:v 1=x t 1=164 m /s =4 m/s ;在第二段内中间时刻的瞬时速度为:v 2=xt 2=162 m /s =8 m/s ;则物体加速度为:a =v 2-v 1Δt =8-43 m/s 2=43 m/s 2,故选项B 正确. 示例2 (逆向思维法)(2019·全国卷Ⅰ·18)如图2,篮球架下的运动员原地垂直起跳扣篮,离地后重心上升的最大高度为H .上升第一个H 4所用的时间为t 1,第四个H4所用的时间为t 2.不计空气阻力,则t 2t 1满足( )图2A .1<t 2t 1<2B .2<t 2t 1<3C .3<t 2t 1<4D .4<t 2t 1<5答案 C解析 本题应用逆向思维法求解,即运动员的竖直上抛运动可等同于从一定高度处开始的自由落体运动的逆运动,所以第四个H4所用的时间为t 2=2×H 4g ,第一个H4所用的时间为t 1=2H g-2×34H g ,因此有t 2t 1=12-3=2+3,即3<t 2t 1<4,选项C 正确. 示例3 (全过程法)如图3所示,一个可视为质点的滑块从倾角为30°的光滑固定斜面底端A 以10 m /s 的初速度上滑,斜面足够长,求:(g =10 m/s 2)图3(1)滑块从A 点开始又回到A 点所用的时间; (2)滑块到达距A 点7.5 m 处的B 点时所用的时间. 答案 (1)4 s (2)1 s 或3 s解析 (1)设滑块在斜面上的加速度为a . 由牛顿第二定律:mg sin θ=ma得a =g sin 30°滑块上滑、下滑过程中加速度不变 由全过程法分析,位移x 1=0由x 1=v 0t 1-12at 12,得t 1=4 s(另一解不符合题意,舍去)(2)滑块由A 至B ,位移x 2=7.5 m , 由x 2=v 0t -12at 2得t =1 s 或t =3 s.示例4 (初速度为零的比例式)两块足够大的平行金属极板水平放置,如图4甲所示,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图乙、丙所示(规定垂直纸面向里为磁感应强度的正方向).在t =0时刻,由负极板释放一个初速度为零的带负电的粒子(不计重力).若电场强度E 0、磁感应强度B 0、粒子的比荷q m 均已知,且t 0=2πm qB 0.粒子在0~t 0时间内运动的位移为L ,且在5t 0时刻打在正极板上(在此之前未与极板相碰).求:图4(1)两极板之间的距离;(2)粒子在两极板之间做圆周运动的最大半径. 答案 (1)9L (2)4πmE 0qB 02解析 在0~t 0时间内粒子只受电场力作用,做初速度为零的匀加速直线运动.在t 0~2t 0时间内粒子只受洛伦兹力作用做匀速圆周运动,因为t 0=2πmqB 0,所以t 0~2t 0时间内粒子完成完整的圆周运动,在0~5t 0时间内粒子的运动轨迹如图所示.(1)粒子在电场中做直线运动的三段位移之比为x1∶x2∶x3=1∶3∶5,又x1=L所以两板距离d=x1+x2+x3=9L(2)t0末粒子的速度v1=at0=qE0m t0,3t0末粒子的速度v2=a·2t0=qE0m·2t0由q v B0=m v2r ,得r=m vqB0,则r1=E0t0B0,r2=2E0t0B0,r2>r1,所以粒子最大半径为r2,由于t0=2πmqB0则粒子最大半径r2=4πmE0qB20.。

匀变速直线运动知识点

匀变速直线运动知识点

匀变速直线运动知识点匀变速直线运动是物理学中的重要内容之一,是运动学的一部分。

在匀变速直线运动中,物体以直线路径运动,速度随时间变化。

普通物理课程中主要介绍匀变速直线运动的相关知识点有:运动的描述、速度与位移、加速度和时间的关系、速度和时间的关系以及运动图象与运动规律等。

一、运动的描述运动的描述主要包括起点、终点、位移、时刻、时间间隔等。

起点是运动物体运动的初始点,终点是运动物体运动的最后点。

位移是描述物体位置变化的大小和方向,可以用矢量表示。

时刻是运动物体的其中一瞬间,是描述运动的时间点。

时间间隔是描述运动物体在其中一段时间内运动的变化情况。

二、速度与位移速度是描述运动物体运动快慢和运动方向的物理量。

匀变速直线运动中,速度随时间变化,根据速度的定义可知速度等于位移与时间的比值。

速度可以用矢量表示,包括大小和方向。

在匀变速直线运动中,速度的大小为常数,方向可以为正、负或零,分别表示正向、负向和静止。

三、加速度和时间的关系加速度是描述物体速度变化快慢和变化方向的物理量。

匀变速直线运动中,加速度为常数。

根据加速度的定义可知,加速度等于速度的变化率。

在匀变速直线运动中,速度的变化量等于加速度乘以时间,即△v=a△t。

加速度可以为正、负或零,分别表示加速、减速和匀速。

四、速度和时间的关系速度与时间的关系是匀变速直线运动中重要的运动规律之一、在匀变速直线运动中,速度随时间线性变化。

根据速度的定义可知,速度等于位移与时间的比值,即v=△x/△t。

由此可知,位移等于速度乘以时间,即△x=v△t。

五、运动图象与运动规律运动图象是描述运动物体运动情况的图形,常用的运动图象有位移-时间图象、速度-时间图象和加速度-时间图象。

针对不同的运动情况,可以得到相应的运动规律。

1.位移-时间图象:位移-时间图象是通过运动物体的位移与时间的关系绘制的图象。

在匀变速直线运动中,位移-时间图象为一条直线,直线的斜率代表速度。

2.速度-时间图象:速度-时间图象是通过运动物体的速度与时间的关系绘制的图象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 匀变速直线运动
第一节 匀变速直线运动的速度与时间的关系
一.匀变速直线运动的速度与时间的关系式
由 00
0t t v v v v v a t t t
--∆=
==∆- 得 = ― 解得0t v v at =+,
两种特殊情况:
(1) 当a =0时,v =v 0,做匀速直线运动.
(2) 当v 0=0时,v =at ,做初速为零的匀加速直线运动.
二.中间时刻的速度 : =
推导: 0~
= +

~t, = +

②—①得
— = — 2 = +
所以 =
第二节 匀变速直线运动的位移与时间的关系
一.匀速直线运动位移与时间的关系
由x
v t
∆=
∆得△x=v △t, 即x=vt x 为v-t 图像围成矩形的面积
二.匀变速直线运动的位移与时间的关系:△x=( )
t= t+
①把△t 等分成n 份,每一份时间为△t/n,当n 很大时,每一份△t/n 时间内v 与△t/n 所围成的小梯形面积就近似等于小矩形面积,小矩形面积就是△t/n 内的位移,所以△t 时间内所有小梯形面积加起来就近似等于所有小矩形面积,所有小矩形面积加起来就是△t 时间内总位移,所以△t 时间内所有小梯形面积加起来就近似等于总位移
②当n 趋向无穷大时,△t/n 趋向无穷小,在无穷小时间内,小梯形面积严格等于小矩形面积,所以△t 时间内所有小梯形面积加起来就等于总位移,所以匀变速直线运动v-t 图像围成的梯形面积就是位移 ③位移公式推导 △x= =( )

△x =212011
22
S S S OA OQ AR RP v t at =+=⨯+⨯=+ ② (1)当a =0时,△x= v 0 (2)当v 0=0时,△x=
三.匀变速直线运动平均速度:=

x
v
t

=

得△x=t又因为△x=
()
t
所以t=()
t
消掉t得=
四.纸带问题
⑴判断物体是否做匀变速直线运动时:利用公式
如图是相邻两计数点间的距离,△x是两个连续相等的时间内的位移之差,即,…
T是相邻两计数点间的时间间隔,对两段距离进行分析
则任意相邻两计数点间的位移差为:
拓展公式:-= (m-n)²
(2)用逐差法求加速度
由-=(4-1)²
可得:
同理可得:
加速度的平均值为:
第三节 匀变速直线运动的位移与速度的关系
一.匀变速直线运动的位移与速度的关系:△x==
由 =
得 =
把 △x=( )
t 中t 替换得
△x=( ) ( ) =
公式习惯写成: △x=
二.中间位移的速度:
因为 =
=
所以
=
所以 = 所以2 =
所以

第四节自由落体运动
一.自由落体运动
1定义:物体只在重力作用下,从静止开始下落的运动叫做自由落体运动。

2基本特征:①初速度为零;②只受重力。

3加速度:重力加速度g (G=mg)
4本质:初速度为零,加速度为g的匀加速直线运动。

二.自由落体运动的规律
△h=g。

相关文档
最新文档