第五单元简易方程知识点归纳

合集下载

人教版五年级上册数学第五单元 简易方程整理与复习

人教版五年级上册数学第五单元 简易方程整理与复习

第五单元简易方程一、知识梳理1.用字母表示数。

(1)用字母表示数。

①字母与数字相乘,可以省略乘号,数字要写在字母的前面。

如x×6=6x;如果1与字母相乘,可以省略1与乘号,如m×1=m。

②字母与字母相乘,字母中间的乘号可以记作“•”,也可以省略不写。

③含有加减关系的代数式,后面有单位时,代数式必须用括号括起来。

如(3a-2b)米,而5n米就不用加括号了。

④a2与2a的区别:a2表示2个a相乘,是a×a;2a表示2个a相加,是a+a。

(2)用字母表示运算定律。

加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c);乘法交换律:ab=ba;乘法结合律:(ab)c=a(bc);乘法分配律:(a+b)c=ac+bc。

(3)用字母表示计算公式。

长方形的面积公式:s=ab;长方形的周长公式:c=2(a+b);正方形的面积公式:s=a2;正方形的周长公式:c=4a。

(4)用字母表示常见的数量关系。

如路程、速度和时间之间的关系可以表示为s=vt。

(5)求含有字母的式子的值。

用含有字母的式子表示指定的数量,再把字母的取值代入式子中求值。

(6)字母的取值范围。

在含有字母的式子里,字母的取值范围是由实际情况决定的。

2.方程的意义。

(1)方程的意义。

含有未知数..就是方程。

...的等式(2)等式的性质。

等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。

等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。

3.解方程。

(1)方程的解与解方程。

使方程左右两边相等的未知数的值,叫做方程的解;求方程的解的过程叫做解方程。

(2)解形如x±a=b、ax=b、ax±b=c和a(x±b)=c的方程。

依据等式的性质来解此类方程。

(3)检验。

把求得的未知数的值代入原方程,看方程左边的值是否等于右边的值。

如果相等,所求的未知数的值就是原方程的解,否则就不是。

简易方程公式知识点总结

简易方程公式知识点总结

简易方程公式知识点总结一、一元一次方程1. 一元一次方程的定义:一元一次方程是指只含有一个未知数的一次方程。

一般地,一元一次方程可以用ax+b=0(a≠0)来表示,其中a和b是已知数,x是未知数。

2. 方程的解:方程ax+b=0的解即为x=-b/a。

其中,如果a=0且b≠0,那么方程无解;如果a=0且b=0,那么方程有无数解。

3. 解方程的方法:解一元一次方程可以通过如下几种方法:a. 移项法:将未知数的项移到等式的一边,其他项移到另一边。

b. 相消法:通过相等的两边增加或减少同一个量,使得方程两边的某个项相消掉。

c. 等价变形法:通过等式的加减乘除变形,使得方程的解变得更明显。

4. 例题:解方程3x+5=2x-7解:将未知数项移到左边去,得到3x-2x=-7-5,即x=-12。

二、一元二次方程1. 一元二次方程的定义:一元二次方程是指含有一个未知数的二次方程。

一般地,一元二次方程可以用ax^2+bx+c=0(a≠0)来表示,其中a、b和c是已知数,x是未知数。

2. 方程的解:一元二次方程的解可以用求根公式来表示,即x=[-b±√(b^2-4ac)]/(2a)。

其中,当Δ=b^2-4ac>0时,方程有两个不相等的实根;当Δ=0时,方程有两个相等的实根;当Δ<0时,方程没有实根。

3. 方程的图像:一元二次方程的图像是一个开口朝上或开口朝下的抛物线,其顶点坐标为(-b/2a,-Δ/4a)。

4. 例题:解方程x^2-5x+6=0解:根据求根公式,Δ=5^2-4*1*6=1,因此方程有两个不相等的实根,即x=[5±√1]/2=3或2。

三、一元三次方程1. 一元三次方程的定义:一元三次方程是指含有一个未知数的三次方程。

一般地,一元三次方程可以用ax^3+bx^2+cx+d=0(a≠0)来表示,其中a、b、c和d是已知数,x是未知数。

2. 方程的解:一般地,一元三次方程没有通用的求解公式,而是需要通过因式分解、配方法、换元等多种方法来求解。

人教版 五年级上册 章节复习 第五单元《简易方程》(含答案)

人教版 五年级上册 章节复习 第五单元《简易方程》(含答案)

章节复习讲义(人教版)人教版数学五年级上册章节复习第五单元《简易方程》知识互联知识导航知识点一:用字母表示数1. 用字母表示数量关系(1)可以用字母或含有字母的式子来表示一个数或表示数量关系;(2)字母与数字相乘时,把乘号省略。

省略乘号时,一般把数字写在字母前面。

含有字母的式子中的加、减、除号不能省略。

2. 用字母表示运算定律和计算公式(1)在含有字母的式子里,只有字母与字母、数字与字母之间的“×”才能简写成“.”或者省略不写。

注意:省略乘号后,数字必须写在字母的前边。

(2)应用公式求值解决问题的步骤:第一步:写出字母公式第二步:把字母表示的数值代入公式第三步:计算出结果,记住写单位3. 用字母表示复杂的数量关系(1)不同的式子可以表示相同的数量关系。

(2)将字母的具体数值代入含有字母的式子中,即可求得相应式子的值。

4. 化简含有字母的式子并代入数据求值计算含有字母的式子的时候,可以先运用运算定律将含有字母的式子进行化简,再求值。

知识点二:解简易方程1.方程的意义(1)方程的意义:含有未知数的等式是方程。

(2)方程必须具备的两个条件:一是等式;二含有未知数。

2.方程一定是等式;但等式不一定是方程。

3. 所有的方程都是等式,但等式不一定都是方程。

4.等式的性质等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。

等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。

5.方程的解使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

一、精挑细选(共5题;每题2分,共10分)1.(本题2分)(2021·山东曲阜·五年级期末)下列式子中,( )是方程。

A .a×3<24B .3-1.6=1.4C .6a -9=15D .3÷x2.(本题2分)(2021·江西德兴·五年级期末)下面的式子中( )是方程。

《简易方程》单元小结

《简易方程》单元小结

《简易方程》单元知识梳理一、简易方程(一)简单方程(4个):x+a=b; x-a=b; ax=b; x÷a=b.解:x+a-a=b-a 解:x-a+a=b+a 解:ax÷a=b÷a 解:x÷a×a=b×a x=b-a x=b+a x=b÷a x=ba (二)稍复杂方程(5个):1、a-x=b 如:20-x=92、a÷x=b 如:2.1÷x=3 解:a-x+x=b+x 解:a÷x×x=b×xa=b+x a=b×xx+b=a bx=a3、ax+b=c 如:6x+3=9 4x- 2.8=10 3x+12×6=6 解:ax+b-b=c-bax=c-b4、a(x+b)=c 如:7(x+2.8)=35 (x-3)÷2=7.5 解:a(x+b)÷a=c÷a 或解:ax+ab=cx+b=c÷a ax+ab-ab=c-abax=c-ab5、ax±bx=c 如:2x+1.5x=17.5 8x-3x=105 3x+x-6=26解:(a±b)x=c(三)其他方程如: 1.2x÷3= 4.8 (5x-12)×8=24 (100-3x)÷2=8二、列方程解决实际问题-----典型例题解析列方程解决实际问题的步骤:1、找出未知数,用字母x表示;2、找出等量关系,列方程;3、解方程并检验作答。

(一)方程模型---x+a=b; x-a=b; ax=b ; x÷a=b甲数是b,甲数比乙数多(少)a,求乙数?或甲数是b,甲数是乙数的a倍,求乙数?等量关系式:乙数+a=甲数(乙数-a=甲数)或乙数×a=甲数典型例题:1、一件衣服现价178元钱,比原来降低了121元,这件衣服原价多少钱?2、黄豆长成豆芽后的质量是原来质量的8.5倍,现需要豆芽493千克,需要黄豆多少千克?(二)方程模型----ax+b=c或ax-b=c甲数是c,甲数比乙数的a倍多(少)b,乙数是多少?(设乙数为x.)等量关系式:乙数×a+b=甲数或乙数×a-b=甲数典型例题:1、一张桌子售价97元,比一把椅子售价的3倍多4元,一把椅子多少元?2、一只大象的体重是5吨,大象的体重比奶牛的8倍少200千克,奶牛的体重是多少千克?(三)方程模型-----ax+b×c=d已知甲乙两种商品的总价d与甲商品的单价b和数量c,求乙商品的单价或数量。

小学数学人教新版五年级上册第5单元 简易方程第5单元 归纳总结 (2)

小学数学人教新版五年级上册第5单元 简易方程第5单元  归纳总结 (2)

小学数学人教新版五年级上册实用资料
第五单元简易方程
1、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。

注:加号、减号除号以及数与数之间的乘号不能省略。

2、a×a可以写作a·a或a2读作a的平方。

注: 2a表示a+a ; a2表示a×a
3、方程:含有未知数的等式称为方程。

4、使方程左右两边相等的未知数的值,叫做方程的解。

5、求方程的解的过程叫做解方程。

6、解方程原理:天平平衡。

等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

7、10个数量关系式:
@ 加法;
和=加数+加数;一个加数=和-两一个加数@ 减法:
差=被减数-减数;被减数=差+减数;
减数=被减数-差
@乘法:
积=因数×因数;
一个因数=积÷另一个因数@ 除法:
商=被除数÷除数;被除数=商×除数;
除数=被除数÷商。

人教版数学五年级上册 第五单元 简易方程 思维导图知识梳理例题精讲易错专练(含答案)

人教版数学五年级上册 第五单元 简易方程 思维导图知识梳理例题精讲易错专练(含答案)

第五单元简易方程(思维导图知识梳理例题精讲易错专练)人教版数学五年级上册一、思维导图二、知识点梳理知识点一:用字母表示数1.用字母表示数:在含有字母的式子里,字母之间的乘号可以记作“·”,也可以省略不写;2.用字母表示运算定律加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:(a+b)c=ac+bc注意:数和字母相乘,省略乘号时,一般把数写在字母前面,数和数相等不能省略乘号。

3.用字母表示复杂的数量关系(1)用字母可以表示数量关系。

(2)将字母的具体数值代入含有字母的式子中,即可求得相应式子的值。

4.化简含有字母的式子并代入数据求值计算含有字母的式子的时候,可以先运用运算定律将含有字母的式子进行化简,再求值。

知识点二:方程的意义及等式的性质1.意义:含有未知数的等式叫做方程。

2.等式的性质性质1:等式两边加上或者减去同一个数,左右两边仍然相等;性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。

注意:方程一定是等式,但等式不一定是方程。

知识点三:解方程及实际问题1.使方程左右相等的未知数的值,叫做方程的解,求方程的解的过程叫做解方程;2.根据等式的性质解不同形式的方程;3.把求得的未知数的值代入原方程,看方程左边的值是否等于右边的值,如果相等,所求的未知数的值就是原方程的解,否则就不是。

注意:解方程的依据是等式的性质;解方程时等号要上下对齐。

4.稍微复杂的方程(1)列方程解决实际问题的步骤:首先,找出未知数,用字母X表示;其次,分析实际问题中的数量关系,找出等量关系,列方程;最后,解方程并检验作答。

(2)方程解法与算式解法的区别列方程解决问题时,未知数用字母表示,参与列式,算式解法中未知数不参与列式;列方程解决问题时根据题中的数量关系,列出含有未知数的等式,求未知数由解方程来完成,算术解法是根据题中已知数和未知数之间的关系确定解答步骤,再进行计算。

第五单元简易方程知识点.doc

第五单元简易方程知识点.doc

第五单元“简易方程”知识点※用字母表示数1.(图形)和(字母),如口、△、。

或a、x、m、n等都可以用来表示数。

2.用字母表示运算定律简明易记,便于应用。

要注意运算定律中相同的量用相同的字母表示。

在含有字母的式子里,字母中间的乘号可以记作“ • ”,也可以省略不写.(一般要求写最简省略乘号的形式)乘法交换律:a • b = b • a或ab=ba乘法结合律:(a • b) • c = a • (b • c)或(ab) c = a (be)乘法分配律:(a + b) • c =a • c + b• c 或(a+b) c =ac+bc3.人们常用字母表示计量单位。

长度单位面积单位质量单位千米km平方千米km2吨t米m平方米m?千克kg克g 分米dm平方分米d静厘米cm平方厘米CITL毫米mm平方毫米mm24.用字母可以表示正方形和长方形的面积和周长用S表示面积,用C表示周长。

(1)如果用a表示正方形的边长,那么正方形的周长计算公式:C=4a (省略乘号时,把数写在字母前面)正方形的面积计算公式:S=a2(读作:a的平方,表示2个a相乘)(2)如果用a表示长方形的长,b表示宽,那么长方形的周长计算公式:C=2 (a+b)长方形的面积计算公式:S =ab5.区分丁与2aa2(读作:a的平方,表示2个a相乘)a2=a - a2a表示2个a相加2a=a X 2=a+a6.将数据代入含字母的式子(如:a+3此类)求值的方法:第1步:写当..…时,第2步:写(计算公式)第3步:(代入数据)计算,代入数据时,将(乘号)还原,计算。

第4步:写答。

6.将数据代入计算公式(如: C=2 (a+b) 等此类)求值的方法:第1步:写当..…时,第2步:写(计算公式)第3步:(代入数据)计算, 代入数据时, 将(乘号)还原,计算。

注意:结果必须写(单位名称)第4步:写答。

注意区分上面两题型格式上的细微差别。

有无单位名称。

※解简易方程方程的意义:含有未知数的等式,叫做方程。

人教版小学五年级数学上册第五单元《简易方程》知识点梳理

人教版小学五年级数学上册第五单元《简易方程》知识点梳理

人教版小学五年级数学上册 第五单元《简易方程》知识点梳理一、用字母表示数 1、乘法的简写字母和字母、数字和字母相乘时,“⨯”可以写成“•”或者直接忽略不写。

数字和字母相乘忽略乘号不写时,一般把数字写在字母前面。

【例1】用字母表示出边长为a 的正方形的面积和周长。

解:2a a a =⨯=面积,a a 44=⨯=周长2、含字母的式子的运算(1)当两个式子带的字母不完全相同时,不能直接相加减。

(2)当两个式子含有相同的字母时,可以用乘法分配律进行合并。

【例2】计算b a a 554++解:b a b a b a a 595)54(554+=+⨯+=++二、简易方程 1、判断方程含有未知数的等式叫做方程。

【例3】下面属于方程的是( ) A.12+x B.1064=+ C.013>-x D.84=a 解析: A 选项没有等号,不是等式,所以不属于方程;B 选项不含未知数,所以不属于方程;C 选项是大于号,不是等号,所以不属于方程;D 选项有等号,也含有未知数a ,所以属于方程。

所以这题的答案是D 。

2、等式的性质(1)等式两边加上或者减去同一个数,左右两边仍然相等。

(2)等式两边乘以同一个数,或者除以同一个不为0的数,左右两边仍然相等。

【例4】如果b a =,根据等式的性质填空。

)(2+=+b a8)(-=-b ab a ⨯=)(35)(÷=÷b a解:22+=+b a ; 88-=-b a ; b a ⨯=33; 55÷=÷b a 。

3、解方程的书写规范 先写“解”,“=”号要对齐,解出来的未知数写在“=”号左边。

4、解方程的方法逆运算:加法用减法抵消、减法用加法抵消、乘法用除法抵消、除法用乘法抵消。

(1)一步方程用逆运算去掉未知数以外的部分。

【当未知数前面是减号或除以号时,两边先要同时加上或者乘以未知数,计算结果左右两边互换后再继续计算】(2)两步以上的方程①方程中没有括号时,先把能计算的先计算出来后,先逆运算加减法,再逆运算乘除法,最后按一步方程的方法解方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五单元简易方程知识点归纳
18、(P45)在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。

加号、减号除号以及数与数之间的乘号不能省略。

9、a×a可以写作a·a或a
,a读作a的平方2a表示a+a
特别地1a=a这里的:“1“我们不写
20、方程:含有未知数的等式称为方程(★方程必须满足的条件:必须是等式必须有未知数两者缺一不可)。

使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

21、解方程原理:天平平衡。

等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

22、10个数量关系式:加法:和=加数+加数一个加数=和-另一个加数
减法:差=被减数-减数
被减数=差+减数减数=被减数-差
乘法:积=因数×因数一个因数=积÷另一个因数
除法:商=被除数÷除数
被除数=商×除数除数=被除数÷商
23、所有的方程都是等式,但等式不一定都是等式。

24、方程的检验过程:方程左边=……
25、方程的解是一个数;解方程式一个计算过程。

=方程右边
所以,X=…是方程的解。

相关文档
最新文档