纯电容电路测相位差
RC移相电路(课堂PPT)

【实验内容】 1.用电阻、电容组成移相电路,要求输出电压U0的相位较输入电 压U1的相位落后π/4。试用三种方法测量相位差。 2.组成一个移相电路,要求输入、输出电压间的相位差Δ
在0~180°间可调。用示波器观察相位的变化。
【仪器用具】 正弦波信号源、双踪示波器、电容箱一个、电阻箱三个
c2a2b22abcos
相位差:
arc cao2sb2c2
2a b
.
6
【参考数据】
1. Δ =-π/4移相电路.一组可能的数据为f=300Hz,
R=100Ω,C=5.3μF. 2.相位差在0~180°间可调的电路,一组可供选取的 数据为R1=R2=200Ω,f=700Hz,C=0.2μHz,以0作示波 器输入的地端,用CH1,CH2分别观察ui及u0波形。用李
.
4
arcsxin/x(0)
2)双踪显示法,把u1,u2分别送入示皮器的两上通道, 采用双踪显示功能,荧光屏上会出现两个正弦波,见图
4.由相位差定义,有 ll2
.
5
3)电压合成法,双踪示波器一般都有相加和相减的功能, 在荧光屏上可以显示(u1+u2)波形或(u1-u2)波形。将 u1,u2分别送入示波器的两个通道,先用双踪器显示功能测 量它们的峰—峰值a和b;再改用相减功能显示波形(u1-u2) ,测量此时的 峰—峰值c。依电压的矢量合成法则,
图1
.
2
2)Δ 在0至180°之间可调的移相电路,电路如图2(a), 图中R1=R2,R可调节。在AB间输入电压ui,在OD间输 出电压u0。图2(b)给出各电压之间的矢量关系。以 O为圆心,以U1=U2(因为R1=R2)为半径画一半圆。在 EF支路上,相位关系为电容上电压Uc的相位落后于电 阻R上电压UR的相位π/2,所以D点必定在圆周上。当
浅谈示波器观察RLC电路的相位关系的方法

浅谈双踪示波器测量RLC交流电路相位关系的方法在交流电路中,我们知道,RLC电路[5]中的相位关系很重要,只有理清其中的相位关系,才能正确分析RLC电路。
那么,能不能用示波器来展示RLC电路中各物理量的相位关系呢?如何才能正确显示?对此,笔者进行了相关的研究和探索,阐明自己的观点,以此作为抛石引玉,望同行进行指点。
一、示波器的特点示波器除了能显示波的波形外,在测量物理量时还有其特定的特点:1、双踪示波器能测量波的周期、波的幅度示波器的工作原理告诉我们,通过内部的特制的矩齿波加在X方向的偏转板上,同时,把信号加在Y方向的偏转板上,这样,一列波的形状就可完全被展示开来。
利用这一特征,我们就可以借助辅助的工具就能测量波的周期、幅度。
2、双踪示波器能测量二列波的相位差[3]双踪示波器测量二列波相位差的方法如下:当示波器显示二列波时,先测出这二列波的周期T,再测出这二列波同在波峰或波谷时的时间差t,再应用下式关系式求出相位差:Δφ=t/T×2π。
3、示波器只能显示电压波形而不能显示电流波形示波器的特性能显示波的幅度大小,而幅度的大小通常通过电压的形式来反映。
一般情况下,示波器只能反映电压波形而不能显示电流的波形。
4、双踪示波器的接地端在其内部是共地在测量过程中应避免传输线的接地端被分开,否则,在接地端之间的电路将被短接而造成电路性质被改变,或短接间的电路波形将无法显示,屏幕显示的是一条直线。
二、用双踪示波器测量纯电感电路、纯电容电路中电流与电压的相位差下面仅以纯电感电路测电流与电压的相位关系为例。
前面已经提到,示波器只能显示电压波形而不能显示电流波形,那么,要测量纯电感电路、纯电容电路中电流与电压的相位差,必须要解决电流波形的显示。
如何把电流的波形原本的显示出来是解决这一问题的关键。
在此,只能对电路作一下技术处理来弥补这一限制:在电感L中串入一个阻值为1Ω的小电阻。
我们知道:I=U/R,且通过电阻的电流与加在电阻二端的电压其相位是同相,这样,我们可以把取自小电阻二端的电压UR波形可以看成是流过小电阻的电流波形,而小电阻与电感是串联,流过电感的电流与流过小电阻的电流是同一电流。
相位差

相位差两个频率相同的交流电相位的差叫做相位差,或者叫做相差。
这两个频率相同的交流电,可以是两个交流电流,可以是两个交流电压,可以是两个交流电动势,也可以是这三种量中的任何两个。
两个同频率正弦量的相位差就等于初相之差.是一个不随时间变化的常数.任意一个正弦量y = A sin(wt+ j0)的相位为(wt+ j0),本章只涉及两个同频率正弦量的相位差(与时间t无关)。
设第一个正弦量的初相为j01,第二个正弦量的初相为j02,则这两个正弦量的相位差为j12 = j01 - j02并规定在讨论两个正弦量的相位关系时:(1) 当j12> 0时,称第一个正弦量比第二个正弦量的相位越前(或超前) j12;(2) 当j12< 0时,称第一个正弦量比第二个正弦量的相位滞后(或落后)| j12|;(3) 当j12 = 0时,称第一个正弦量与第二个正弦量同相,如图7-1(a)所示;(4) 当j12 = ±p 或±180°时,称第一个正弦量与第二个正弦量反相,如图7-1(b)所示;(5) 当或±90°时,称第一个正弦量与第二个正弦量正交。
例如已知u= 311sin(314t- 30°) V,I= 5sin(314t+ 60°) A,则u与i的相位差为jui= (-30°) - (+ 60°) = - 90°,即u比i滞后90°,或i比u超前90°。
相位差的取值范围和初相一样,小于等于π(180°).对于超出范围的,同样可以用加减2Nπ来解决.例如,研究交流电路的相位差.如果电路含有电感和电容,对于纯电容电路电压相位滞后于电流(电压滞后电流多少度也可以表述成电流超前电压多少度),纯电感电路电流相位滞后于电压,滞后的相位值都为圆周率的一半,或者说90°.在计算电路电流有效值时,电容电流超前90 ,电感落后90,可用矢量正交分解加合.加在晶体管放大器基极上的交流电压和从集电极输出的交流电压,这两者的相位差正好等于180°.这种情况叫做反相位,或者叫做反相.正弦量正交(90°)和反相(180°)都是特殊的相位差.若发电机组在小负荷下运行,随着运行时间的延续,会出现以下故障:1、活塞汽缸套密封不好,机油上窜,进入燃烧室燃烧,排气冒蓝烟。
§2-4 纯电容电路

解: (1)容抗
X C
1
C
1 314 30 106
106.16
(2)电流的有效值
I U 220 A 2.07 A X C 106 .16
(3)电流的瞬时值 电流超前电压90°,即ψ i = ψ u+ π /2=60°,故
i 2.07 2 sin 314t 60 A
(4)电路的有功功率
PC=0
无功功率
QC UC IC 220 来自 2.07 var 455 .4 var
(5)相量图如右所示
例2 已知电容两端的电压 U C 220V 通过的电流 I C 5A
电源的频率f=50Hz,求电容C。
解:
XC
UC IC
220 44 5
则 C 1 1 F 72.4F
电容器在工程技术中的应用很广。在电子线路中,可以用来隔直、滤波、移相、选 频和旁路;在电力系统中,可以用来改善系统的功率因数;在机械加工工艺中,可用于 电火花加工。在不同的应用电路中,应选用不同类型的电容器。
任何一种类型的电容器,都规定了额定容量和额定电压。电容器的额定容量也称为 标称容量,即设计容量。额定电压是指电容器在电路中长期工作而不被击穿所能承受的 最大直流电压,也称耐压。
2.相位关系
通过以上分析知,在电容元件的交流电路中: 1) 电压与电流是两个同频率的正弦量。 2) 电压与电流的有效值关系为UC=XCIC。 3) 电流的相位超前电压相位90°。
通过以上分析知,在电容元件的交流电路中: 1) 电压与电流是两个同频率的正弦量。 2) 电压与电流的有效值关系为UC=XCIC。 3) 电流的相位超前电压相位90°。
纯电容电路PPT课件

S P2 Q2
这一关系称为功率三角形, 如图 8-7 所示。
图 8-7 功率三角形
《电工技术基础与技能》演示文稿 二、电阻、电感、电容电路的功 率1.纯电阻电路的功率
在纯电阻电路中,由于电压与电流同相,即相位差 = 0,
95.5 mH,外加频率 f = 50 Hz、U = 200 V 的交流电压源,试求:
(1) 电路中的电流 I ; (2) 各元件电压UR、UL;(3) 总电压与电
流的相位差 。
解:(1) XL= 2fL 30 , Z
R2
X
2 L
50 Ω ,则I
U Z
4A
(2)UR = RI = 160 V,UL = X LI = 120 V,显然 U
S P2 Q2 QL
即纯电感电路不消耗功率(能量),电感与电源之间进行着可逆 的能量转换。
《电工技术基础与技能》演示文稿
3.纯电容电路的功率
在纯电容电路中,由于电压比电流滞后 90,即电压与电流
的相位差 = 90,则瞬时功率
pC = UIcos[1 cos(2 t)] UI sin sin(2 t)= UI sin(2 t)
瞬时功率在一个周期内的平均值(即有功功率)
P = UI cos = UI 其中 = cos 称为正弦交流电路的功率因数。
《电工技术基础与技能》演示文稿
3.视在功率 S
定义:在交流电路中,电源电压有效值与总电流有效值 的乘积(UI)称为视在功率,用 S 表示,即 S =UI ,单位是 VA (伏安)。
2.纯电感电路的功率
在纯电感电路中,由于电压比电流超前 90 ,即电压与电
电工电子技术智慧树知到答案章节测试2023年陕西工业职业技术学院

第二章测试1.将2 欧与3欧的两个电阻串联后,接在电压为10伏的电源上,2欧电阻上消耗的功率为()。
A:10瓦B:6瓦C:4瓦D:8瓦答案:D2.三个阻值相同的电阻R,两个并联后与另一个串联,其总电阻等于()。
A:1.5RB:(1/2)RC:RD:(1/3)R答案:A3.并联电阻的等效电阻,它的倒数等于各支路电阻倒数()。
A:之差B:之和C:之积D:之商答案:B4.在同一电路中,若两个电阻的端电压相等,这两个电阻一定是并联。
()A:对B:错答案:B5.几个不等值的电阻串联,每个电阻通过的电流也不相等。
()A:错B:对答案:A第三章测试1.已知正弦交流电压,其频率为为()。
A:50HzB:100HzC:2πHzD:1Hz答案:C2.人们常说的交流电压220V是指交流电压的()。
A:最大值B:瞬时值C:平均值D:有效值答案:D3.对两个同频率正弦量而言,其相位差就是初相位之差。
()A:错B:对答案:B4.用电流表测得一正弦交流电路中的电流为 A,则其最大值为20。
()A:对B:错答案:A5.在正弦交流电路中,纯电容元件上的电压相位超前其电流相位90度。
()A:错B:对答案:A第四章测试1.变压器是按电磁感应原理工作的。
()A:错B:对答案:B2.单相变压器和三相变压器的工作原理相同。
()A:对B:错答案:A3.叠加原理可以直接用于求解功率。
()A:对B:错答案:B4.叠加定理中,当一个电源单独工作时,其余电源应该置零。
()A:对B:错答案:A5.叠加定理中,电压源置零时,做{短路}处理,电流源置零时,做开路处理。
()A:错B:对答案:B第五章测试1.用字母QS可以表示刀开关。
()A:对B:错答案:A2.低压断路当电路发生过载时,能自动切断电路。
()A:对B:错答案:A3.接触器是一种手动电器,可用来频繁地接通和断开主电路,能远距离控制。
()A:对B:错答案:B4.用字母KM可以表示交流接触器。
()A:错B:对答案:B5.交流接触器有2对主触头。
pn结伏安特性实验报告

pn结伏安特性实验报告五、实验内容与步骤1( 测量PN 结正向伏安特性曲线。
由式(4)可以看出,在温度不变的条件下,PN 结的正向电流 IF与电压 VF呈指数曲线关系,本实验要求绘出室温和 t=40两条 PN 结伏安曲线。
用坐标纸绘出相应曲线。
2( 测量恒流条件下PN 结正向电压随温度变化的关系曲线。
本实验要求测出 IF=50μA 条件下 PN 结正向电压随温度变化曲线。
实验中每隔 5测一个数据,直至加热到 85。
要先记下室温时 PN 结的电压VF值。
用坐标纸绘出相应曲线。
3( 确定 PN 结的测温灵敏度和被测 PN 结材料的禁带宽度。
(1)以 t 作横出坐标,VF作纵坐标,作 t-VF曲线。
正确地采用两点式求斜律的方法,计算 PN结温度传感器的灵敏度 S六、实验数据与处理1、PN 结正向伏安特性曲线表一: 注I=50μA时,U=483mV 绘制成曲线如下系列2为40度时的伏安特性曲线,系列一为室温(25.1度)时的伏安特性曲线由计算机进行拟合可知,I-U满足指数关系的可信度很高。
2、恒流条件下PN结正向电压随温度变化的关系曲线。
表二注:I=50μA 室温25.1时U=483mV计算机绘图如下:曲线拟合得U=-2.9t+551.1(mV) ,相关系数R2=0.9902,可信度很高即灵敏度S=2.9mV/ 计算得VF(t0)=478.3mV 由可以算出禁带宽度Eg(t0)=1.34eV与理论值1.21eV的相对误差为(1.34-1.21)/1.21*100%=11%七、误差分析1、测量U-T曲线时,升温过快导致调节电流不及时;2、温度计示数有一定延迟。
篇二:PN结浓度实验报告PN结杂质浓度分布测量与等效模型姓名:XXX班级:XXX指导老师:侯清润,实验日期:2015.11.26【摘要】根据p-n结反向势垒电容与杂质浓度的关系,采用电容-电压法对p-n 结杂质浓度分布进行测量。
并使用锁相放大器实现电容-电压法中微小电信号的测量,得到了势垒电容与外加电压的曲线关系并测出p-n结的杂质浓度分布与内建电压。
用示波器测量相位差实验报告

竭诚为您提供优质文档/双击可除用示波器测量相位差实验报告篇一:示波器的使用及测量相位差示波器的使用及测量相位差摘要:示波器一般由示波管、扫描信号发生器、信号输入和放大系统、同步系统以及电源五部分组成。
用示波器可以观察电信号波形以及测量电压、频率和相位差等。
本文就是主要介绍如何利用示波器测量两个正弦电压的相位差,主要采用李萨如图形法和双踪法。
关键词:示波器测量相位差李萨如图法双踪法实验目的:1.了解示波器的结构和原理。
2.掌握示波器各旋钮、按钮、按键的作用和使用方法。
3.学会用示波器采用李萨如图法和示踪法测量相位差。
4.能对实验结果进行分析,比较各种测量方法的优缺点,对实验数据进行不确定度处理,写出合格的实验报告。
实验原理:示波器的工作原理:示波器一般由示波管、扫描信号发生器、信号输入和放大系统、同步系统以及电源五部分组成。
示波器内有电子枪,电子枪发射电子束经Y轴偏转板或x轴偏转板会发生偏转,从而打在荧屏上。
人们可以根据显示在荧屏上波的形状、幅度来判断信号源的电压、频率等的大小。
用示波器测量相位差的原理:(1)用李萨如图法测量。
使示波器工作在x-Y方式,分别把两个信号输入到x偏转板和Y偏转板,然后移相,则得到如图所示的李萨如图(1).从示波器屏幕上读出A和b的值(格数),则信号的相位差为(2)双踪法。
使示波器工作在扫描工作方式,选择交替显示,调节两条扫描线重合。
把两待测信号通过示波器的两个输入通道输入,得到如上图(2)图所示,读出一个信号周期T所占的格数n(T)及?t的对应格数n(?t),则相位差??2?n(?t)n(T)实验内容与步骤:(一)测量正弦电压的电压和频率、周期(1)首先将示波器的各个旋钮的功能和用法弄清楚。
(2)第二,将示波器的各个旋钮调到实验所需的正常状态,然后使之处于工作状态。
(3)第三,用信号发生器作为信号源,调节输出电压峰峰值为2V,频率为10khZ,其输出信号接在ch1信号输入端上。