线段的计算典型例题分析
初二数学尺规作图典型例题归纳

初二数学尺规作图典型例题归纳典型例题一例已知线段a、b,画一条线段,使其等于.分析所要画的线段等于,实质上就是.画法:1.画线段.2.在AB的延长线上截取.线段AC就是所画的线段.说明1.尺规作图要保留画图痕迹,画图时画出的所有点和线不可随意擦去.2.其它作图都可以通过画基本作图来完成,写画法时,只需用一句话来概括叙述基本作图.典型例题二例如下图,已知线段a和b,求作一条线段AD使它的长度等于2a-b.图(2)正解如图(2),(1)作射线AM;(2)在射线AM上,顺次截取AB=BC=a;(3)在线段CA上截取CD=b,则线段AD就是所求作的线段.典型例题三例求作一个角等于已知角∠MON(如图1).图(1)图(2)正解如图(2),(1)作射线;(2)在图(1)上,以O为圆心,任意长为半径作弧,交OM于点A,交ON于点B;(3)以为圆心,OA的长为半径作弧,交于点C;(4)以C为圆心,以AB的长为半径作弧,交前弧于点D;(5)过点D作射线.则∠就是所要求作的角.典型例题四例如下图,已知∠α及线段a,求作等腰三角形,使它的底角为α,底边为a.分析先假设等腰三角形已经作好,根据等腰三角形的性质,知两底角∠B=∠C=∠α,底边BC=a,故可以先作∠B=∠α,或先作底边BC=a.作法如下图(1)∠MBN=∠α;(2)在射线BM上截取BC=a;(3)以C为顶点作∠PCB=∠α,射线CP交BN于点A.△ABC就是所要求作的等腰三角形.说明画复杂的图形时,如一时找不到作法,一般是先画出一个符合条件的草图,再根据这个草图进行分析,逐步寻找画图步骤.典型例题五例如图(1),已知直线AB及直线AB外一点C,过点C作CD∥AB(写出作法,画出图形).分析根据两直线平行的性质,同位角相等或错角相等,故作一个角∠ECD=∠EFB即可.作法如图(2).图(1)图(2)(1)过点C作直线EF,交AB于点F;(2)以点F为圆心,以任意长为半径作弧,交FB于点P,交EF于点Q;(3)以点C为圆心,以FP为半径作弧,交CE于M点;(4)以点M为圆心,以PQ为半径作弧,交前弧于点D;(5)过点D作直线CD,CD就是所求的直线.说明作图题都应给出证明,但按照教科书的要求,一般不用写出,但要知道作图的原由.典型例题六例如下图,△ABC中,a=5cm,b=3cm,c=3.5cm,∠B=,∠C=,请你从中选择适当的数据,画出与△ABC全等的三角形(把你能画的三角形全部画出来,不写画法但要在所画的三角形中标出用到的数据).分析本题实质上是利用原题中的5个数据,列出所有与△AB C全等的各种情况,依据是SSS、SAS、AAS、ASA.解与△ABC全等的三角形如下图所示.典型例题七例正在修建的北路有一形状如下图所示的三角形空地需要绿化.拟从点A出发,将△ABC分成面积相等的三个三角形,以便种上三种不同的花草,请你帮助规划出图案(保留作图痕迹,不写作法).(2003年,)分析这是尺规作图在生活中的具体应用.要把△ABC分成面积相等的三个三角形,且都是从A点出发,说明这三个三角形的高是相等的,因而只需这三个三角形的底边也相等,所以只要作出BC边的三等分点即可.作法如下图,找三等分点的依据是平行线等分线段定理.典型例题八例已知∠AOB,求作∠AOB的平分线OC.错解如图(1)作法(1)以O为圆心,任意长为半径作弧,分别交OA、OB于D、E两点;(2)分别以D、E为圆心,以大于DE的长为半径作弧,两弧相交于C点;(3)连结OC,则OC就是∠AOB的平分线.错解分析对角平分线的概念理解不够准确而致误.作法(3)中连结OC,则OC是一条线段,而角平分线应是一条射线.图(1)图(2)正解如图(2)(1)以点O为圆心,任意长为半径作弧,分别交OA、OB于D、E两点;(2)分别以D、E为圆心,以大于DE的长为半径作弧,两弧交于C点;(3)作射线OC,则OC为∠AOB的平分线.典型例题九例如图(1)所示,已知线段a、b、h(h<b).求作△ABC,使BC=a,AB=b, BC边上的高AD=h.图(1)错解如图(2),(1)作线段BC=a;(2)作线段BA=b,使AD⊥BC且AD=h.则△ABC就是所求作的三角形.错解分析①不能先作BC;②第2步不能同时满足几个条件,完全凭感觉毫无根据;③未考虑到本题有两种情况.对于这种作图题往往都是按照由里到外的顺序依次作图,如本题先作高AD,再作AB,最后确定BC.图(2)图(3)正解如图(3).(1)作直线PQ,在直线PQ上任取一点D,作DM⊥PQ;(2)在DM上截取线段DA=h;(3)以A为圆心,以b为半径画弧交射线DP于B;(4)以B为圆心,以a为半径画弧,分别交射线BP和射线BQ于和;(5)连结、,则△(或△)都是所求作的三角形.典型例题十例如下图,已知线段a,b,求作Rt△ABC,使∠ACB=90°,BC=a,AC=b (用直尺和圆规作图,保留作图痕迹).分析本题解答的关键在于作出∠ACB=90°,然后确定A、B两点的位置,作出△ABC.作法如下图(1)作直线MN:(2)在MN上任取一点C,过点C作CE⊥MN;(3)在CE上截取CA=b,在CM上截取CB=a;(4)连结AB,△ABC就是所求作的直角三角形.说明利用基本作图画出所求作的几何图形的关键是要先分析清楚作图的顺序.若把握不好作图顺序,要先画出假设图形.典型例题十一例如下图,已知钝角△ABC,∠B是钝角.求作:(1)BC边上的高;(2)BC边上的中线(写出作法,画出图形).分析(1)作BC边上的高,就是过已知点A作BC边所在直线的垂线;(2)作BC边上的中线,要先确定出BC边的中点,即作出BC边的垂直平分线.作法如下图(1)①在直线CB外取一点P,使A、P在直线CB的两旁;②以点A为圆心,AP为半径画弧,交直线CB于G、H两点;③分别以G、H为圆心,以大于GH的长为半径画弧,两弧交于E点;④作射线AE,交直线CB于D点,则线段AD就是所要求作的△ABC中BC边上的高.(2)①分别以B、C为圆心,以大于BC的长为半径画弧,两弧分别交于M、N两点;②作直线MN,交BC于点F;③连结AF,则线段AF就是所要求作的△ABC中边BC上的中线.说明在已知三角形中求作一边上的高线、中线、角平分线时,首先要把握好高线、中线、角平分钱是三条线段;其次,高线、中线的一个端点必须是三角形中这边所对的顶点,而关键是找出另一个端点.典型例题十二例如图(1)所示,在图中作出点C,使得C是∠MON平分线上的点,且AC=OC.图(1)图(2)分析由题意知,点C不仅要在∠MON的平分线上,且点C到O、A两点的距离要相等,所以点C应是∠MON的平分线与线段OA的垂直平分线的交点.作法如图(2)所示(1)作∠MON的平分线OP;(2)作线段OA的垂直平分线EF,交OP于点C,则点C就是所要求作的点.说明(1)根据题意弄清要求作的点的特征是到各直线距离相等,还是到各端点距离相等.(2)两条直线交于一点.典型例题十三例如下图,已知线段a、b、∠α、∠β.求作梯形ABCD,使AD=a,BC=b,AD∥BC,∠B=∠α;∠C=∠β.分析假定梯形已经作出,作AE∥DC交BC于E,则AE将梯形分割为两部分,一部分是△ABE,另一部分是AECD.在△ABE中,已知∠B=∠α,∠AEB=∠β,BE=b-a,所以,可以首先把它作出来,而后作出AECD.作法如下图.(1)作线段BC=b;(2)在BC上截取BE=b-a ;(3)分别以B、E为顶点,在BE同侧作∠EBA=∠α,∠AEB=∠β,BA、EA 交于A;(4)以EA、EC为邻边作AECD.四边形ABCD就是所求作的梯形.说明基本作图是作出较简单图形的基础,三角形是最简单的多边形,它是许多复杂图形的基础.因此,要作一个复杂的图形,常常先作一个比较容易作出的三角形,然后以此为基础,再作出所求作的图形.典型例题十四例如下图,在一次军事演习中,红方侦察员发现蓝方指挥部在A区,到铁路与公路的距离相等,且离铁路与公路交叉处B点700米,如果你是红方的指挥员,请你在图示的作战图上标出蓝方指挥部的位置.(2002年,)分析依据角平分线的性质可以知道,蓝方指挥部必在A区两条路所夹角的平分线上,然后由蓝方指挥部距B点的距离,依据比例尺,计算出图上的距离为3.5cm,就可以确定出蓝方指挥部的位置.解如下图,图中C点就是蓝方指挥部的位置.典型例题十五例如图(1),已知有公共端点的线段AB、BC.求作⊙O,使它经过点A、B、C(要求:尺规作图,不写作法,保留作图痕迹).(2002年,)图(1)图(2)分析因为A、B、C三点在⊙O上,所以OA=OB=OC=R.根据到线段AB、BC 各端点距离相等的点在线段的垂直平分线上,故分别作线段AB、BC垂直平分线即可.解如图(2)说明角平分线的性质、线段垂直平分线的性质在作图题中的应用是近几年中考中的又一道风景,它往往与实际问题紧密联系在一起.典型例题十六例如图,是一块直角三角形余料,.工人师傅要把它加工成一个正方形零件,使C为正方形的一个顶点,其余三个顶点分别在AB、BC、AC边上.试协助工人师傅用尺规画出裁割线.分析要作出符合条件的正方形,可先作出有三个角为90°的四边形,并设法让相邻的一组边相等即可.作法如图.1 作的角平分线CD,交AB于点G;②过G点分别作AC、BC的垂线,垂足为E、F.则四边形ECFG就是所要求作的正方形.。
《线段、射线、直线》典型例题及答案

《线段、射线、直线》典型例题及答案例1 如图,图中有几条射线?能用字母表示出来的有几条?将它们分别表示出来.例2 如图所示,你知道图中共有几条直线、几条射线?(不添加字母,直接可以读出)几条线段?它们分别是什么?例3如图,以点A、B、C、D、E、F为端点的线段共有几条?分别把它们写出来.例4如图,比较线段AB与AC、AD与AE,AE与AC的大小.例5如图,已知点C、D在线段AB上,线段AC=10 cm,BC=4 cm,取线段AC、BC的中点D、E.(1)请你计算线段DE的长是多少?(2)观察DE的大小与线段AB的关系,你能用一句简洁的话将这种关系表述出来吗?(3)若点C为直线AB上的一点,其他条件不变,线段DE的长会改变吗?如果改变,请你求出新的结果.例6 已知AB=16cm,C是AB上一点,且AC=10cm,D为AC的中点,E是BC的中点,求线段DE的长.例7 (1)过一个已知点可以画多少条直线?(2)过两个已知点可以画多少条直线?(3)过平面上三点A、B、C中的任意两点可以画多少条直线?(4)试猜想过平面上四点A、B、C、D中的任意两点可以画多少条直线?例8 如图,A、B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A、B的离和最小,请在公路l上标出点P的位置,并说明理由.AlB参考答案例1 分析:直线上的一点将直线分成两条射线,因此以A为端点的射线有两条,同样道理以B、C为端点的射线也分别有两条.因此共有6条射线,能用图中字母表示出来的有4条.解:图中共有6条射线,能用图中字母表示出来的有4条,分别为:射线AB、射线BC、射线BA、射线、CA.说明:要抓住直线上一点将直线分成两条射线,数射线时不能重复或遗漏,抓住端点和方向,表示射线时,要将端点的字母写在前面.例2 解:图中有2条直线,分别是直线BC、直线DC.图中有6条可以直接读出的射线,分别是射线CD、DC、CB、BC、AB、DB.图中有6条线段,分别是线段AD、BD、AB、CA、CD、CB.说明:(1)直线是最基本、简单、抽象的几何图形.直线到底是什么形状呢?可以借助“孙悟空的金箍棒”想象一下,直线没有端点,可以向两方无限延伸;“手电筒发出的光”给我们以射线的形象,射线有一个端点,它可以向一方无限延伸;“一枝铅笔”可以抽象成一条线段,线段有两个端点,它不可延伸,直线和射线都没有长度,线段有长度;(2)直线有两种表示方法(如图1),可以先在直线上任取两个点A、B,这条直线可记作直线AB(或直线BA),也可以用一个小写字母表示,如直线l;射线的两种表示方法分别为射线AB、射线l(如图2),要注意射线AB与射线BA表示不同的射线;线段的两种表示方法分别为线段AB(或线段BA)、线段a(如图3);(3)数直线时应注意直线BC与直线CB是同一条直线;数射线时要注意射线的两个特征:端点与方向,所以射线AD与射线AB是相同的射线,射线AB与射线DB是不同的射线,因为它们的端点不同,射线DA与射线DB也是不同的射线,因为它们的方向不同;数线段时注意寻求规律,做到不重不漏.如线段CA、CD、CB属不同直线上的三条线段,而线段AD、BD、AB属同一条直线上的三条线段,同一条直线上的线段的数法有两种:①以始点计:AD、AB、DB;②以组成计:单个线段:AB、BC;两条线段组成的:AC.图1 图2 图3另外在同一条直线上的线段总条数s 与直线上点的个数n 之间有如下关系:2)1()1()2(321-=-+-++++=n n n n S . 例3 分析:在一个三角形中,由于交点众多,为做到不遗漏,不重复,可以按字母的先后顺序找出图中的线段.解:图中共有14条线段,分别为线段AB 、AC 、AD 、AE 、BC 、BD 、BE 、BF 、CD 、CE 、CF 、DE 、DF 、EF .说明:当点众多时,可以以字母的顺序寻找线段,可以避免出错.例4 分析:比较线段的长度可用度量法和重合法.解法1:用度量法,用直尺测量各线段的长度.比较得:AB >AC ,AD <AE ,AE =AC .解法2:用叠合法,可用圆规截取比较得:AB >AC 、AD <AE ,AE =AC .说明:比较线段的大小,就是用度量法和叠合法,但是可以根据题目的的特点选择合适的方法.例5 解:(1)∵AC =10,BC =4,∴AB =AC +BC =14又∵点D 是AC 中点,点E 是BC 中点, ∴BC EC AC DC 21,21==, ∴721)(212121==+=+=+=AB BC AC BC AC CE DC DE (cm ). (2)由(1)知AB DE 21=,即:线段上任一点把线段分成两部分,这两部分中点间的距离等于原线段长度的一半.(3)DE 的长会改变.可分两种情形考虑:当点C 在线段AB 上时721==AB DE (cm ). 当点C 在线段AB 外时(如图),3)410(21)(212121=-=-=-=-=BC AC BC AC CE DC DE (cm ). ∴DE 的长为7 cm 或3 cm .说明:(1)本题先通过特殊的数值求出线段DE 的长,在求解过程中通过观察、猜测,发现了一般性的结论,我们称之为规律.在学知识或是解题时,不要局限于问题表面,而是要多思考、多总结,从而在更深层次上认识所学内容.(2)此题通过C 点的位置由特殊到一般,由在线段上运动到在直线上运动的变化过程,只要抓住不变量,即CE DC DE ±=,就可以以不变应万变.另外随着条件的逐步开放,结论也发生了变化,有时由于C 点的位置考虑不全面,导致丢解.如果遇到没给出图形的问题,解答时一定要先画图,并全面考虑到所有可能情形.(3)利用中点的性质进行线段长度的计算是解题的关键,若C 是AB 的中点,则它的表达式为AC AB 2=或AB AC BC AB 21,2==或BC AC AB BC ==,21,不同情况下选择不同的表达式,可使书写简洁.例6 分析:根据线段中点的特点,BD CE AC DC 21,21==,而CE DC DE +=,故可根据题设解出DE 的长.解:因为D 是AC 的中点,而E 是BC 的中点,因此有:.21,21BC CE AC DC ==而AB BC AC CE DC DE =++=,. 即).cm (8162121)(212121=⨯==+=+=+=AB BC AC BC AC CE DC DE 说明:充分利用线段中点的特点,将所求线段转移到线段长度上去.例7 解:(1)过一点可以画无数条直线;(2)过两点可以画一条直线;(3)当 A 、B 、C 三点不共线时可以画三条直线,当 A 、B 、C 三点共线时只能画一条直线;(4)当 A 、B 、C 、D 四个点在同一条直线上时,只能画一条直线(如图1);当 A 、B 、C 、D 四个点中有三个点在同一条直线上时,可以画四条直线(如图2);当 A 、B 、C 、D 四个点中任意三点都不在同一条直线上时,可以画六条直线(如图3).图1 图2 图3 说明:题(1)(3)和(4)中没有明确平面上三点、四点是否在一条直线上,解答时要分各种情况,即分类讨论;(2)由此题可知,过平面上三个点中的任意两点最多可以画三条直线,过平面上四个点中的任意两点最多可以画六条直线,如果过平面上n 个点中的任意两点,最多可以画多少条直线呢?分析:根据连接两点的线中,线段最短,只需在A 、B 间作一条线段、与l 的交点,便是它到A 、B 两点距离和最小的点.例8 解:连接A 、B 作线段,与l 的交点P 为所求建加油站的点.因为两点之间,线段最短.说明:利用线段公理,两点之间,线段最短.AB lC。
七年级线段中点的典型题

题目:七年级线段中点的典型题一、题目描述在七年级的数学学习中,线段中点的概念是非常基础且重要的一部分内容。
我们常常会遇到各种各样的线段中点问题,这些问题不仅考察我们对线段中点的理解,还锻炼了我们的逻辑思维和解题能力。
现在,我们就来一起解决一些典型的线段中点问题。
二、解题思路1. 理解线段中点的概念:线段中点是指在线段上取一点,使得该点到线段两端的距离相等。
2. 识别题目中的关键信息:在题目中,我们需要注意到线段长度、端点位置、特殊标记等信息。
3. 画图辅助:在解题过程中,画图可以帮助我们更好地理解问题,找到解题思路。
4. 解题步骤:按照题目要求,逐步进行计算和推理,得出正确答案。
三、例题及解析题目:求线段AB的中点C的坐标。
解析:首先,我们需要明确线段AB的中点C的位置。
由于C是AB的中点,所以AC和BC 的长度相等。
设AB的长度为2,那么AC的长度就是1。
因此,C点的坐标就是(1,0)。
四、变式题目及解析题目:在四边形ABCD中,ABCD的对角线交于O点,AB平行于CD,求BD的中点E的坐标。
解析:首先,我们需要明确BD的中点E的位置。
由于E是BD的中点,所以EO等于EB和ED的和的一半。
由于AB平行于CD,我们可以假设AB和CD的长度相等,设为2。
那么EO 就等于1。
因此,E点的坐标就是(0,1)。
五、拓展题目及解答拓展题目:已知一条线段AB,在线段AB上取一点C,使得AB的中点离A点的距离等于BC 的一半。
求AC的长度。
解答:首先我们需要根据题目描述画出图形来,这样可以更直观的理解题意。
我们可以假设BC=x,那么AC的长度就是x/3。
因此AC的长度就等于(x/3)/√2。
我们也可以根据这个思路来证明一下这个结论。
具体来说,如果AC的长度为y,那么根据中点定义可知:AC的长度等于AC的一半再除以√2(勾股定理)。
因此有y=(x/3)/√2。
六、总结通过以上几个例题的解析和解答过程,我们可以看到解决线段中点问题需要我们准确理解线段中点的概念,识别题目中的关键信息,并通过画图辅助找到解题思路。
三角形有关的线段典型例题

三角形有关的线段典型例题1.如图,图中共有多少个三角形?解析:依照三角形的看法,不重复、无遗漏地找出所有的三角形,要点在于依照某种顺序去找。
解:能够边为序次找:BC 为边的共 4 个,分别是:△△BCF, △BCE; AC 为边的 2 个(其中重复一个)ABC,△BCD,,分别是:△ ACF,△ ACB (与前面重复);同理可得 AB 为边 1 个,是△ ABD;CD 为边 1 个,为:△ CDE; 以 BF 为边 1 个,为△BEF ;AD 、AF 为边已计。
共8 个。
2.如图,在△ABC 中, AB =AC,AC 边上的中线BD 把三角形的周长分为12cm 和15cm 的两部分,求三角形各边的长。
解析:因为中线BD 中的点 D 为 AC 边的中点,所以AD = DC,造成所分的两部分不等的原因就在于BC 边与 AB 、 AC 边的不等,故应分类谈论。
解:如图,设AB = x,则 AD = DC =x(1)若 AB +AD = 12,即x= 12,得 x= 8即 AB =AC =8则 DC =4,故 BC = 15- 4= 11此时 AB + AC > BC,可组成三角形;(2)若 AB +AD = 15,x= 15,∴ x= 10即 AB =AC = 10,则 DC = 5,故 BC = 12-5= 7显然此时可组成三角形综上,三角形的各边长为:8,8,11 或 10,10,73.(1)已知三角形的两边分别为 5cm 和 6cm,求第三边 c 的取值范围及三角形周长的取值范围;( 2)已知三角形的三边分别为14, 4 x 和 3 x,求 x 的取值范围;(3)已知三角形的三边分别为a, a-1 和 a+ 1,求 a 的取值范围。
解析:依照三角形的三边关系,可得第三边的取值范围是:两边之差<第三边<两边之和,所以较简单确定第三边的取值范围解:( 1)( 6- 5) cm<c<( 6+ 5) cm∴1cm< c<11cm设周长为pcm又因另两边分别为5cm 和 6cm∴[( 5+6)+ 1] cm < p<[11 +( 5+ 6) ] cm即 12cm< p< 22cm(2)依照三角形的三边关系:4x- 3x< 14<4x+3x ∴ 2<x< 14(3)∵ a- 1< a< a+ 1又∵三角形的三边长为正∴a- 1> 0即 a>1又∵ a+ 1< a+( a- 1)∴a> 2∴a> 24.如图,在小河的同侧有 A , B ,C 三条农村,图中的线段表示道路,某邮递员从 A 村送信到 B 村,总是走经过 C 村的道路,不走经过 D 村的道路,这是为什么呢?请你用所学的数学知识加以证明。
线段

线段【小故事】阿凡提巧取银环阿凡提是新疆维吾尔族民间的传奇人物,智慧的化身,有一个关于阿凡提巧取银环的故事,在新疆几乎家喻户晓。
一天,财主对雇工说:“我有一串银链,共有七个环,你给我做一周的工,我每天付给你一个银环,你愿意吗?雇工半信半疑,然后,财主接着又说:“不过,有一个条件,这串银链是一环扣着一环,你最多只能断开其中的一个环。
如果你无法做到每天取走一个环,那么你将得不到这一周的工钱!”雇工答应试试,但他立即发现事情有点为难,于是连忙去找阿凡提,请阿凡提替他出主意,果然阿凡提想出了一种巧妙的办法,让财主眼睁睁看着雇工把一只只银环取走。
你知道阿凡提的办法吗?答案:把这串银链的第三个环断开,使它分离为三部分,这一部分的环数分别是:1,2,4,如图所示。
这样,雇工第一天,可以取走单环,第二天退回单环而取走双环,第三天再取一个单环,第四天退回单环和双环,取走一串四环,第五天再取走一个单环,第六天退回单环而取走双环,第七天再取走那个单环,至此,银链上的所有七个环都已到了雇工手上。
【知识要点】1.比较线段的长短的方法有两种(1)一种方法是利用直尺和圆规把两条线段放在同一条直线上,使得两条线段的其中一个端点重合,另一个端点位于重合端点的同侧,根据另一个端点与重合端点之间的距离的大小确定两条线段的长短.(2)另一种方法用刻度尺度量进行,就是说,长度大的线段长,长度小的线段短.2.线段的画法有两种(1)线段用刻度尺度量后再画图. (2) 借助直尺和圆规作图.3.关于线段的中点线段的中点是指在线段上把线段分成两个相等线段的点,线段中点只有一个,而线段的三等分点有两个,可等分点有三个等.线段中点表示方法有三种:若点C是AB中点,则(1)AC=BC;(2)AB=2AC=2BC;(3)AC=BC=12AB4.线段的性质公理所有连结两点的线中,线段最短,即“两点之间,线段最短”.此处连结,是指以两点为端点的任意线(如折线,曲线等). 5.两点间的距离两点间的距离是指连结两点的线段的长度.(1) 距离是长度,为非负数,不是指线段,线段是一个几何图形.(2)连结两点的方式很多,有曲线、折线,长度大小不固定,故线段的长度定为两点间距离,实际上是最短的.【典型例题】例1 如图,能用字母表示的直线、射线、线段各有哪几条?例2 已知平面内的四个点A 、B 、C 、D ,过其中两个点可以画出几条直线?例3 用两条直线最多可以把一个平面分成几部分?3条直线呢?4条直线呢?平面上有(a )4条,(b )5条,(c )6条直线,其中任两条直线不平行,任意三条直线不交于同一点,它们把平面分成几部分?请你总结出它们的规律.例4 直线上任取3个点最多有几条线段,任取4个点最多有几条线段,任取n 个点呢?例5 如图,A 、B 、C 、D 是直线l 上顺次四点,M 、N 分别是AB 、CD 的中点,若MN=a ,BC=b ,求AD 的长.例6 已知:如图,AB=16cm ,C 是线段AB 上一点,且AC=10cm ,D 是AC 的中点,E 是BC 的中点,求:线段DE 的长.A C N lD线段练习1.根据题意,完成下列填空:如图,1l 与2l 是同一平面内的两条相交直线,它们有1个交点.如果在这个平面内,再画第3条直线3l ,那么这3条直线最多可有___________个交点;如果在这个平面内再画第4条直线4l ,那么这4条直线最多可有___________个交点.由此我们可以猜想:在同一平面内,6条直线最多可有____________个交点,n (n 为大于1的整数)条直线最多可有____________个交点(用含n 的代数式表示).2.如图所示,P 为直线AF 外的一点,点B 、C 、D 、E 都在线段AF 上,把P 和A 、B 、C 、D 、E 、F 分别连起来,一共可以得到多少个三角形?若在直线AF 上增加2个点呢?若直线AF 上共有n 个点可得到多少个三角形?与同伴一起探索以上题的答案并总结出它们的共同规律.3.平面内三点可确定的直线的条数是( )A .3 B.1或3 C.0或1 D.04.A 、B 、C 、D 五个点,在同一条直线上,由其中两点为端点构成一条线段,共有多少条线段?它们都是哪些线段?5.下列写法:① 直线a 、b 相交于点m ;② 直线L 、M 相交于点N ;③ 直线ab 、cd 相交于点M ;④ 直线a 、b 相交于M ;⑤ 直线AB 、CD 相交于点M.其中正确的是__________.6.在直线l 上有四个不同的点A 、B 、C 、D ,则以A 、B 、C 、D 为端点的射线共有________条,线段又有__________条.7.在线段AB 上再添上________个点,能使线段AB 上共有15条不同的线段. 8.如图,以A 、B 、C 、D 、O 作为线段的端点,共有线段( ) A .6条 B.8条 C.10条 D.12条 9.平面上有六条不同的直线,每两条直线相交,则交点个数的最小、1l2lPADO最大值分别是( )A .0和6 B.1和15 C.1和10 D.1和3010.如图是某风景区的旅游线示意图,其中B 、C 、D 为风景点,E 为两条路的交叉点,图中数据为相应两点间的路程(单位:千米),一学生从A 处出发,以2千米/时的速度步行浏览,每个景点逗留时间均为0.5小时.(1) 当他沿着路线A -D -C -E -A 游览回到A 处时,共用了3小时,求CE 的长.(2) 若此学生打算从A 点出发后,步行速度与在景点的逗留时间保持不变,且在最短时间内看完三个景点返回A 处,请你为他设计一条步行路线,并说明这样设计的理由(不考虑其他因素).11.如图,B 、C 、D 依次是线段AE 上三点,已知AE=8.9cm ,BD=3cm ,则图中以A 、B 、C 、D 、E 这五点为端点的所有线段长度之和等于___________cm.12.若A ,B 两点间的距离是20cm,现有一点C ,若AC ﹢BC=20cm ,则点C 与线段AB 的关系是______________;若AC ﹢BC=30cm ,则点C 与线段AB 的关系是______________;若AC ﹢BC=10cm ,则点C 与线段AB 的关系是________________.13.如图,CB=13AB ,AC=13AD ,AB=13AE ,若CB=2cm ,则CD=( )A .6cm B.8cm C.10cm D.12cm 14.已知线段AB=12cm ,延长AB 到C ,使AC:BC=5:2,则延长部分的线段的长度为( ) A .48cm B.80cm C.8cm D.60cm15.如图,AC=13AB ,BD=14AB ,且AE=CD ,则CE 为AB 长的( )A .16 B.18 C.112 D.11616.如图,已知M 是线段AB 的中点,N 在MB 上,MN=25AM,若MN=2cm.求AB 的长.17.如图,已知B 、C 两点把线段AD 分成2:4:3三部分,M 是AD 的中点,CD=6. 求:线段MC 的长.AB C DEA B C D EBN M A B C DM18.将线段AB 延长至C ,使BC=13AB ,延长BC 到D ,做CD=13BC ,延长CD 到E ,使DE=13CD ,若AE=80cm ,则AB=_____________.19.线段AB=9,点C 在AB 上,且有AC=13AB ,M 是AB 的中点,则MC 等于( )A .3 B.32 C.92 D.15220.如图,C 、D 是线段AB 上的两点,已知BC=14AB ,AD=13AB ,AB=12cm ,求CD 、BD 的长.21.在同一条直线上有A 、B 、C 、D 四点,已知AD=59DB ,AC=95CB ,且CD=4cm ,求AB 的长.22.在平面上有四个点,其中任何三个点不在一条直线上,过其中两点画直线,可以画几条直线?如果在平面上有三个点,且不在一条直线上,过其中两点画直线,可以画多少条呢?A B C D。
初二数学规作图典型例题归纳

初中尺规作图典型例题归纳典型例题一例 已知线段a 、b ,画一条线段,使其等于b a 2+.分析 所要画的线段等于b a 2+,实质上就是b b a ++.画法:1.画线段a AB =.2.在AB 的延长线上截取b BC 2=.线段AC 就是所画的线段.说明1.尺规作图要保留画图痕迹,画图时画出的所有点和线不可随意擦去.2.其它作图都可以通过画基本作图来完成,写画法时,只需用一句话来概括叙述基本作图. 典型例题二例 如下图,已知线段a 和b ,求作一条线段AD 使它的长度等于2a -b .图(2)正解 如图(2),(1)作射线AM ;(2)在射线AM 上,顺次截取AB =BC =a ;(3)在线段CA 上截取CD =b ,则线段AD 就是所求作的线段.典型例题三例 求作一个角等于已知角∠MON (如图1).图(1) 图(2)正解 如图(2),(1)作射线11M O ;(2)在图(1)上,以O 为圆心,任意长为半径作弧,交OM 于点A ,交ON 于点B ;(3)以1O 为圆心,OA 的长为半径作弧,交11M O 于点C ;(4)以C 为圆心,以AB 的长为半径作弧,交前弧于点D ;(5)过点D 作射线D O 1. 则∠D CO 1就是所要求作的角.典型例题四例 如下图,已知∠α及线段a ,求作等腰三角形,使它的底角为α,底边为a .分析 先假设等腰三角形已经作好,根据等腰三角形的性质,知两底角∠B =∠C =∠α,底边BC =a ,故可以先作∠B =∠α,或先作底边BC =a .作法 如下图(1)∠MBN =∠α;(2)在射线BM 上截取BC =a ;(3)以C 为顶点作∠PCB =∠α,射线CP 交BN 于点A .△ABC 就是所要求作的等腰三角形.说明 画复杂的图形时,如一时找不到作法,一般是先画出一个符合条件的草图,再根据这个草图进行分析,逐步寻找画图步骤.典型例题五例 如图(1),已知直线AB 及直线AB 外一点C ,过点C 作CD ∥AB (写出作法,画出图形).分析 根据两直线平行的性质,同位角相等或内错角相等,故作一个角∠ECD =∠EFB 即可.作法 如图(2).图(1) 图(2)(1)过点C 作直线EF ,交AB 于点F ;(2)以点F 为圆心,以任意长为半径作弧,交FB 于点P ,交EF 于点Q ;(3)以点C 为圆心,以FP 为半径作弧,交CE 于M 点;(4)以点M 为圆心,以PQ 为半径作弧,交前弧于点D ;(5)过点D 作直线CD ,CD 就是所求的直线.说明 作图题都应给出证明,但按照教科书的要求,一般不用写出,但要知道作图的原由.典型例题六例 如下图,△ABC 中,a =5cm ,b =3cm ,c =3.5cm ,∠B =︒36,∠C =︒44,请你从中选择适当的数据,画出与△ABC 全等的三角形(把你能画的三角形全部画出来,不写画法但要在所画的三角形中标出用到的数据).分析 本题实质上是利用原题中的5个数据,列出所有与△ABC 全等的各种情况,依据是SSS 、SAS 、AAS 、ASA .解 与△ABC 全等的三角形如下图所示.典型例题七例 正在修建的中山北路有一形状如下图所示的三角形空地需要绿化.拟从点A 出发,将△ABC 分成面积相等的三个三角形,以便种上三种不同的花草,请你帮助规划出图案(保留作图痕迹,不写作法).(2003年,桂林)分析 这是尺规作图在生活中的具体应用.要把△ABC 分成面积相等的三个三角形,且都是从A 点出发,说明这三个三角形的高是相等的,因而只需这三个三角形的底边也相等,所以只要作出BC 边的三等分点即可.作法 如下图,找三等分点的依据是平行线等分线段定理.典型例题八例 已知∠AOB ,求作∠AOB 的平分线OC .错解 如图(1)作法 (1)以O 为圆心,任意长为半径作弧,分别交OA 、OB 于D 、E 两点;(2)分别以D 、E 为圆心,以大于21DE 的长为半径作弧,两弧相交于C 点; (3)连结OC ,则OC 就是∠AOB 的平分线.错解分析 对角平分线的概念理解不够准确而致误.作法(3)中连结OC ,则OC 是一条线段,而角平分线应是一条射线.图(1) 图(2)正解 如图(2)(1)以点O 为圆心,任意长为半径作弧,分别交OA 、OB 于D 、E 两点;(2)分别以D 、E 为圆心,以大于21DE 的长为半径作弧,两弧交于C 点; (3)作射线OC ,则OC 为∠AOB 的平分线.典型例题九例 如图(1)所示,已知线段a 、b 、h (h <b ).求作△ABC ,使BC =a ,AB =b , BC 边上的高AD =h .图(1)错解 如图(2),(1)作线段BC =a ;(2)作线段BA =b ,使AD ⊥BC 且AD =h .则△ABC 就是所求作的三角形.错解分析 ①不能先作BC ;②第2步不能同时满足几个条件,完全凭感觉毫无根据;③未考虑到本题有两种情况.对于这种作图题往往都是按照由里到外的顺序依次作图,如本题先作高AD ,再作AB ,最后确定BC .图(2) 图(3)正解 如图(3).(1)作直线PQ ,在直线PQ 上任取一点D ,作DM ⊥PQ ;(2)在DM 上截取线段DA =h ;(3)以A 为圆心,以b 为半径画弧交射线DP 于B ;(4)以B 为圆心,以a 为半径画弧,分别交射线BP 和射线BQ 于1C 和2C ;(5)连结1AC 、2AC ,则△1ABC (或△2ABC )都是所求作的三角形.典型例题十例 如下图,已知线段a ,b ,求作Rt △ABC ,使∠ACB =90°,BC =a ,AC =b (用直尺和圆规作图,保留作图痕迹).分析 本题解答的关键在于作出∠ACB =90°,然后确定A 、B 两点的位置,作出△ABC .作法 如下图(1)作直线MN :(2)在MN 上任取一点C ,过点C 作CE ⊥MN ;(3)在CE 上截取CA =b ,在CM 上截取CB =a ;(4)连结AB ,△ABC 就是所求作的直角三角形.说明 利用基本作图画出所求作的几何图形的关键是要先分析清楚作图的顺序.若把握不好作图顺序,要先画出假设图形.典型例题十一例 如下图,已知钝角△ABC ,∠B 是钝角.求作:(1)BC 边上的高;(2)BC 边上的中线(写出作法,画出图形).分析 (1)作BC 边上的高,就是过已知点A 作BC 边所在直线的垂线;(2)作BC 边上的中线,要先确定出BC 边的中点,即作出BC 边的垂直平分线. 作法 如下图(1)①在直线CB 外取一点P ,使A 、P 在直线CB 的两旁;②以点A 为圆心,AP 为半径画弧,交直线CB 于G 、H 两点;③分别以G 、H 为圆心,以大于21GH 的长为半径画弧,两弧交于E 点; ④作射线AE ,交直线CB 于D 点,则线段AD 就是所要求作的△ABC 中BC 边上的高.(2)①分别以B 、C 为圆心,以大于21BC 的长为半径画弧,两弧分别交于M 、N 两点; ②作直线MN ,交BC 于点F ;③连结AF ,则线段AF 就是所要求作的△ABC 中边BC 上的中线.说明 在已知三角形中求作一边上的高线、中线、角平分线时,首先要把握好高线、中线、角平分钱是三条线段;其次,高线、中线的一个端点必须是三角形中这边所对的顶点,而关键是找出另一个端点.典型例题十二例 如图(1)所示,在图中作出点C ,使得C 是∠MON 平分线上的点,且AC =OC .图(1) 图(2)分析 由题意知,点C 不仅要在∠MON 的平分线上,且点C 到O 、A 两点的距离要相等,所以点C 应是∠MON 的平分线与线段OA 的垂直平分线的交点.作法 如图(2)所示(1)作∠MON 的平分线OP ;(2)作线段OA 的垂直平分线EF ,交OP 于点C ,则点C 就是所要求作的点.说明(1)根据题意弄清要求作的点的特征是到各直线距离相等,还是到各端点距离相等.(2)两条直线交于一点.典型例题十三例如下图,已知线段a、b、∠α、∠β.求作梯形ABCD,使AD=a,BC=b,AD∥BC,∠B=∠α;∠C=∠β.分析假定梯形已经作出,作AE∥DC交BC于E,则AE将梯形分割为两部分,一部分是△ABE,另一部分是AECD.在△ABE中,已知∠B=∠α,∠AEB=∠β,BE=b-a,所以,可以首先把它作出来,而后作出AECD.作法如下图.(1)作线段BC=b;(2)在BC上截取BE=b-a;(3)分别以B、E为顶点,在BE同侧作∠EBA=∠α,∠AEB=∠β,BA、EA交于A;(4)以EA、EC为邻边作AECD.四边形ABCD就是所求作的梯形.说明基本作图是作出较简单图形的基础,三角形是最简单的多边形,它是许多复杂图形的基础.因此,要作一个复杂的图形,常常先作一个比较容易作出的三角形,然后以此为基础,再作出所求作的图形.典型例题十四例如下图,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与公路的距离相等,且离铁路与公路交叉处B点700米,如果你是红方的指挥员,请你在图示的作战图上标出蓝方指挥部的位置.(2002年,青岛)分析依据角平分线的性质可以知道,蓝方指挥部必在A区内两条路所夹角的平分线上,然后由蓝方指挥部距B点的距离,依据比例尺,计算出图上的距离为3.5cm,就可以确定出蓝方指挥部的位置.解如下图,图中C点就是蓝方指挥部的位置.典型例题十五例如图(1),已知有公共端点的线段AB、BC.求作⊙O,使它经过点A、B、C(要求:尺规作图,不写作法,保留作图痕迹).(2002年,大连)图(1)图(2)分析因为A、B、C三点在⊙O上,所以OA=OB=OC=R.根据到线段AB、BC各端点距离相等的点在线段的垂直平分线上,故分别作线段AB、BC垂直平分线即可.解如图(2)说明角平分线的性质、线段垂直平分线的性质在作图题中的应用是近几年中考中的又一道风景,它往往与实际问题紧密联系在一起.典型例题十六例 如图,是一块直角三角形余料,︒=∠90C .工人师傅要把它加工成一个正方形零件,使C 为正方形的一个顶点,其余三个顶点分别在AB 、BC 、AC 边上.试协助工人师傅用尺规画出裁割线.分析 要作出符合条件的正方形,可先作出有三个角为90°的四边形,并设法让相邻的一组边相等即可.作法 如图.① 作ACB ∠的角平分线CD ,交AB 于点G ;②过G 点分别作AC 、BC 的垂线,垂足为E 、F .则四边形ECFG 就是所要求作的正方形.。
中考数学专题复习-例说线段的最值问题 (共62张)

MA MD 1 AD 1,FDM 60. 2
A
N
B
解答过程:
F M D 3 0 , F D = 1 M D = 1 .
2
2
FM =MD cos30= 3 . 2
MC = FM 2+CF 2 = 7.
A 'C = M C M A ' = 7 1.
FD
C
M
A‘'
A
N
B
小结:
“关联三角形”的另外两条边尽可能长度已知(或 可求),再利用三角形三边关系求解,线段取得最值时 ,“关联三角形”不存在(三顶点共线).
解答过程:
连接OC交e O于点P,此时PC最小. 在RtBCO中, Q BC=4,OB=3, OC=5,PC=OC OP=2. 即PC最小值为2.
小结:
此道作业题构造“辅助圆”的突破口在于发现动点与 两定点连线的夹角为确定值;若点P在△ABC外部,则CP 长存在最大值;若∠APB为非直角时,则作△ABP的外接 圆,此时AB为非直径的弦.
'
2
2
2
在 R t C D D '中 ,
C D '= C D 2 D D '2 3 2 4 2 5 , 即 PC PD的 最 小 值 为 5.
小结:
1. 本题从形的角度得到点P的位置,再从数的角度计算 出点P的坐标,进而得到最小值.这正是体现了数形结合 的重要性.
典型例题2:
D
C
M
A‘'
,52
),B(4,m)两点,点P是线段AB上异于A,B的动点
,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的表达式.
y
期末复习专题08 线段与角有关动点的计算问题(解析版)

期末复习专题08 线段与角有关动点的计算问题考点一 有关线段的中点计算问题考点二 有关角的平分线计算问题考点三 线段上动点计算问题 考点四 角上动点计算问题考点一 有关线段的中点计算问题故选:D .【点睛】此题主要考查线段之间的关系,解题的关键是熟知线段的和差关系.2.(2022·新疆·乌鲁木齐八一中学七年级期中)如图,数轴上M ,N ,P ,Q 四点对应的数都是整数,且M 为线段NQ 的中点,P 为线段NM 的中点.若点M 对应的整数是a ,点N 对应的整数是b ,且20b a -=,则数轴上的原点是( )A .点MB .点NC .点PD .点Q【答案】D 【分析】由已知条件可知2QN QM =,因为点M 对应的整数是a ,点N 对应的整数是b ,且20b a -=,依此可得到数轴上的原点.【详解】解:∵点M 为线段NQ 的中点,∴2QN QM =,∵点M 对应的整数是a ,点N 对应的整数是b ,且20b a -=,∴数轴上的原点是Q .故选:D .【点睛】利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.3.(2022·云南·楚雄市中山镇初级中学七年级期末)C 为直线AB 上一点,且线段3cm AB =,5cm =BC ,则AC 的长度是 ________.【答案】8cm 或2cm【分析】分A 、C 在点B 异侧和A 、C 在点B 同侧两种情况,分别作出图形,根据线段的和差计算即可.【详解】解:如图1,当A 、C 在点B 异侧时,358cm AC AB BC =+=+=,如图2,当点A 、C 在点B 同侧时,532cm AC BC AB =-=-=,即AC 的长度是8cm 或2cm ,故答案为:8cm 或2cm .【点睛】本题考查了线段的和差计算,注意分类讨论思想的应用.4.(2022·全国·七年级专题练习)如图,M 是AB 的中点,N 是BC 的中点,7cm AB =,2cm BN =,则BC =________cm ,MC =______cm .AB=,点C线段(1)如图,已知线段8cmQ 点M 是AC 中点,12MC AC \=,M Q 为AC 的中点,N 为BC 的中点,1CM AC \=,1CN BC =,(1)若点C 为图1中线段AB 的“优点”6()AC AC BC =<(2)若点D 也是图1中线段AB 的“优点”(不同于点C )(填“=”或“¹”)[解决问题]∵点D是线段AB的“优点”,考点二有关角的平分线计算问题【点睛】本题主要考查了角平分线有关的计算以及几何图形中角的计算,解题关键是根据题意作出图形,运用分类讨论的思想分析问题.2.(2022·浙江台州·七年级期末)直线AB ,CD 相交于点O ,OE 是BOD Ð的角平分线,若3AOE BOC Ð=Ð,则EOC Ð的度数为( )A .36°B .72°C .108°D .144°【答案】C 【分析】根据OE 是BOD Ð的角平分线,得出DOE BOE Ð=Ð,根据3AOE AOD DOE BOC Ð=Ð+Ð=Ð,得出2DOE BOC Ð=Ð,求出36BOC Ð=°,即可得出272BOE BOC Ð=Ð=°,即可得出答案.【详解】解:∵OE 是BOD Ð的角平分线,∴DOE BOE Ð=Ð,∵3AOE AOD DOE BOC Ð=Ð+Ð=Ð,又∵AOD BOC Ð=Ð,∴3BOC DOE BOC Ð+Ð=Ð,∴2DOE BOC Ð=Ð,∴2BOE DOE BOC Ð=Ð=Ð,∵180DOE BOE BOC Ð+Ð+Ð=°,∴22180BOC BOC BOC Ð+Ð+Ð=°,解得:36BOC Ð=°,272BOE BOC \Ð=Ð=°,∴108EOC BOE BOC Ð=Ð+Ð=°,故C 正确.故选:C .【点睛】本题主要考查了角平分线的定义,根据已知条件得出2DOE BOC Ð=Ð,是解题的关键.3.(2022·全国·七年级课时练习)如图,AB 、CD 交于点O ,若170=°∠,射线OE 平分∠AOC ,那么∠EOD =__________度.【答案】42°##42度【分析】先由对顶角相等求出【详解】解:∵∠AOC =∠∴∠BOD =70°,∵:2:3BOE EOD ÐÐ=,Ð,OD(1)如图1,OE平分AOB(2)如图2,OE、OD分别平分ÐÐ(3)若OE、OD分别平分AOC 接填空).则EOD EOC Ð=Ð1122AOC =Ð-Ð1(2AOB BOC =Ð+Ð45=°;则1(2EOD AOC Ð=Ð1(360)2AOB °=-Ð1(36090)2°°=-(1)如图1,过点O 作射线OE ,使OE 为AOD Ð的角平分线,当Ð=COE (2)如图2,过点O 作射线OE ,当OE 恰好为AOC Ð的角平分线时,另作射线求EOF Ð的度数;(3)过点O 作射线OE ,当OC 恰好为AOE Ð的角平分线时,另作射线OF ,时,求BOD Ð的度数.考点三线段上动点计算问题考点四 角上动点计算问题1.(2022·河北·石家庄外国语学校七年级期中)如图,将直角三角板ABC 绕顶点A 顺时针旋转到AB C ¢V ,点B ¢恰好落在CA 的延长线上,60BAC Ð=°,90C Ð=°,则旋转角BAB Т为( )A .60°B .100°C .120°D .150°【答案】C 【分析】直接根据180BAB BAC ¢Ð=°-Ð即可得出答案.【详解】解:∵将直角三角板ABC 绕顶点A 顺时针旋转到AB C ¢V ,点B ¢恰好落在CA 的延长线上,60BAC Ð=°,∴180********BAB BAC ¢Ð=°-Ð=°-°=°,故选:C .【点睛】本题考查了旋转角,题目比较简单,属于基础题.2.(2022·陕西·西安辅轮中学七年级期末)已知:O 是直线AB 上的一点,∠COD 是直角,OE 平分∠BOC .Ð=°Q,POB68\Ð=°-°,68POM nÐ=°Q,MON90\Ð=°-°-°=°-°,1809090AON n n\Ð-Ð=°-°-°-°=°;AON POM n n(90)(68)22当6890<<时,如图2,理由如下:nQ,Ð=°68POB\Ð=°-°,POM n68Q,Ð=°90MON\Ð=°-°-°=°-°,AON n n1809090\Ð+Ð=°-°+°-°=°;(90)(68)22AON POM n n故答案为:068n<<,6890<<.n【点睛】本题主要考查角的加减运算,能够熟练根据要求列角的等量关系是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【典型例题】
[例1] 填空
如图,把线段AB 延长到点C ,使BC=2AB ,再延长BA 到点D ,使AD=3AB ,则
① DC=_____AB=_____BC ② DB=_____CD=_____BC
分析:可以设线段AB 的长为1份,则BC 的长就为2份,AD 的长为3份。
答案:① DC= 6 AB= 3 BC ,② DB= 2/3 CD= 2 BC
[例2] 填空
如图,点M 为线段AC 的中点,点N 为线段BC 的中点 ① 若AC=2cm ,BC=3cm ,则MN=_____cm ② 若AB=6cm ,则MN=_____cm
③ 若AM=1cm ,BC=3cm ,则AB=_____cm ④ 若AB=5cm ,MC=1cm ,则NB=_____cm
A B
C
M N
答案:① MN=2.5cm ② MN=3cm ③ MN=5cm ④ MN=1.5cm 。
[例3] 根据下列语句画图并计算
(1)作线段AB ,在线段AB 的延长线上取点C ,使BC=2AB ,M 是线段BC 的中点,若AB=30cm ,求线段BM 的长
(2)作线段AB ,在线段AB 的延长线上取点C ,使BC=2AB ,M 是线段AC 的中点,若AB=30cm ,求线段BM 的长
答案:分别画出(1)(2)的图形,如图
(1)
∵ BC=2AB ,且AB=30 ∴ BC=60
∵ 点M 是BC 的中点 ∴ BM=2
1
BC=30cm (2)
∵ BC=2AB ,且AB=30 ∴ BC=60
∴ AC=AB+BC=90 ∵ 点M 是AC 的中点 ∴ AM=
2
1
AC= 45 ∴ BM=AM -AB= 45-30=15cm.
[例4] 如图,已知AB= 40,点C 是线段AB 的中点,点D 为线段CB 上的一点,点E 为线段DB 的中点,EB=6,求线段CD 的长。
A
B
C
D E
∵ 点C 是AB 的中点 ∵ CB=
2
1AB ∵ AB= 40 ∴ CB=20
∵ 点E 是DB 的中点 ∵ DB=2EB ∵ EB= 6 ∴ DB=12
∴ CD=CB-DB=20-12=8
[例5] 如图,AE=
2
1EB ,点F 是线段BC 的中点,BF=51
AC=1.5,求线段EF 的长。
A
B
C E
F
答案: ∵ BF=
5
1
AC=1.5 ∴ AC= 7.5
∵ 点F 是BC 的中点 ∴ BC=2BF= 3
∴ AB=AC -BC=7.5-3=4.5
∵ AE=
21BE ∴ AE=3
1
AB=1.5
∴ BE=2AE=3
∴ EF=BE+BF=3+1.5=4.5
[例6] 点O 是线段AB=28cm 的中点,而点P 将线段AB 分为两部分AP:PB=
32:15
4,求线段OP 的长。
分析:点P 到底是在点O 的左边还是右边不好确定,还是先利用见比设k 法算出AP 的长度,再画出图形来。
对照图形计算线段OP 的长度。
答案:
设AP=
k 32,PB=k 15
4 依题意有:k 32+k 15
4
=28
解得:30 k
∴ AP=k 3
2
=20
∵ 点O 是AB 的中点 ∵ AO=
2
1AB ∵ AB= 28
∴ OP=AP -AO=20-14=6
[例7] (1)如图,分别在线段AB 和BA 的延长线上取BD=AE=1.5cm ,又EF=5cm ,DG=4cm ,GF=1cm ,若GF 的中点为点M ,求线段AM 和BM 的长度。
(2)若线段a 、b 、c ,满足:a:b:c=3:4:5,且a+b+c=60,求线段2c -3a -
5
1
b 的长。
A
B
F
D
M
G
分析:
(1)由图可得:AM=AF -MF ,而AF=EF-AE ,MF=2
1
GF ,同理可得BM (2)要求2c -3a -
5
1
b 的长,只需求出a 、b 、
c 的长,使用见比设k 法即可 答案:
(1)∵ AM=AF -MF 而 AF=EF-AE=5-1.5=3.5 ∵ 点M 是GF 的中点 ∴ MF=
2
1
GF=0.5 ∴ AM=EF -AE -MF=5-1.5-0.5=3
同理可得 BM=DG -BD -GM=4-1.5-0.5=2 (2)设a =k 3,b =k 4,c =k 5, 依题意有:k 3+k 4+k 5=60 解得:k =5
∴ a =15,b =20,c =25 ∴ 2c -3a -
5
1
b=50-45-4 = 1
[例8] 如图,在四边形ABCD 中作出一点O ,使点O 到A 、B 、C 、D 四点的连线之和最小。
A
B
C
D
答案:根据“两点之间,线段最短”,连结AC 、BD 交于一点O ,点O 即为所求。
【模拟试题】
一. 选择题:
1. 已知点C 是线段AB 的中点,现有三个表达式:
① AC=BC ② AB=2AC=2BC ③ AC=CB=2
1
AB 其中正确的个数是( ) A. 0 B. 1 C.2 D. 3
2. 如图,C、B在线段AD上,且AB=CD,则AC与BD的大小关系是()
A C
B D
A. AC>BD
B. AC=BD
C. AC<BD
D. 不能确定
3. 点A、B是平面上两点,AB=10cm,点P为平面上一点,若PA+PB=20cm,则P点()
A. 只能在直线AB外
B. 只能在直线AB 上
C. 不能在直线AB上
D. 不能在线段AB上
4. 已知线段AB=
5.4,AB的中点C,AB的三等分点为D,则C、D两点间距离为()
A. 1.2
B. 0.9
C.1.4
D. 0.7
二. 填空题:
1. 如图,AB+AC______BC(选填“>”或“<”),理由是______________________。
A
B
C
2. 已知线段AB,延长AB到C,使BC=AB,在线段AB的反向延长线上截取AD=AC,则有DB:AB=_________,CD:BD=___________。
3. 如图,已知AB:AC=1:3,AC:AD=1:4,且AB+AC+AD=40,则AB=_____,BC=______,CD=_______。
A B D
C
4. 两条相等的线段AB、CD有三分之一部分重合,M、N分别为AB、CD的中点,若MN=12cm,则AB的长为_________。
三. 解答题:
1. 知B、C是线段AD上的两点,若AD=18cm,BC=5cm,且M、N分别为AB、CD的中点,(1)求AB+CD 的长度;(2)求M、N的距离。
2. 如图,在已知直线MN的两侧各有一点A和B,在MN上找出一点C,使C点到A、B的距离之和最短,画出图形,并说明为什么最短?
A
M N
B
试题答案
一. 1. D 2. B 3. D 4. B 二. 1. >,两点之间线段最短; 2. 3:1,4:3;
3. AB=2.5,BC=5,CD=22.5;
4. 18cm (设AB=x ,则AM=DN=2
1x ,AD=35x ,
∴ MN=AD -AM -DN=3
5
x -x ,解得x=18) 三. 1. 解:
情况一:如图
(1)∵ AB+CD=AD -BC=18-5=13cm (2)∵ 点M 、N 分别是AB 、CD 的中点 ∴ MB+CN=
2
1
(AB+CD )=6.5 ∴ MN=MB+BC+CN=6.5+5=11.5cm 情况二:如图
(1)∵ AB+CD=AD+BC=18+5=23cm (2)∵ 点M 、N 分别是AB 、CD 的中点 ∴ MA+DN=
2
1
(AB+CD )=11.5 ∴ MN=AD -(MA+DN )=18-11.5=6.5cm
2. 解:如图,连结AB ,交MN 于一点C ,则点C 即为所求。
两点之间线段最短。