《勾股定理》“微课”教学设计(1)
勾股定理教案范本 勾股定理教案教学方法优秀7篇

勾股定理教案范本勾股定理教案教学方法优秀7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理教案范本勾股定理教案教学方法优秀7篇作为一位优秀的人·民教师,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。
勾股定理第一课时教案

勾股定理第一课时教案教案标题:勾股定理第一课时教案教案目标:1. 理解勾股定理的概念和原理。
2. 能够应用勾股定理解决直角三角形的问题。
3. 培养学生的逻辑思维和问题解决能力。
教学重点:1. 勾股定理的概念和原理。
2. 勾股定理的应用。
教学准备:1. 教学课件和投影仪。
2. 直角三角形模型或图片。
3. 学生练习册和作业本。
教学过程:一、导入(5分钟)1. 利用一幅直角三角形的图片或模型引起学生的兴趣。
2. 提问:你们知道什么是直角三角形吗?直角三角形有什么特点?二、概念讲解(15分钟)1. 通过课件或黑板,简洁明了地讲解勾股定理的概念和原理。
2. 引导学生观察直角三角形的三条边,并解释勾股定理的表达式。
三、例题演示(20分钟)1. 教师通过课件或黑板,给出一个直角三角形的例题。
2. 详细讲解如何应用勾股定理求解该例题。
3. 引导学生思考和讨论解题思路,解决其他类似的例题。
四、练习与巩固(15分钟)1. 学生个体或小组完成练习册上的相关练习题。
2. 教师巡回指导,解答学生的问题。
五、拓展与应用(10分钟)1. 提供一些拓展问题,让学生运用勾股定理解决实际问题。
2. 鼓励学生思考并尝试解决这些问题。
六、总结与反思(5分钟)1. 教师对本节课的重点内容进行总结,并强调勾股定理的重要性。
2. 学生回答教师提出的问题,对本节课的学习进行反思。
教学延伸:1. 学生可以在课后进一步练习和应用勾股定理,巩固所学知识。
2. 教师可以设计一些探究性实验或活动,让学生亲自验证勾股定理的正确性。
教学评估:1. 教师观察学生在课堂上的参与和表现。
2. 学生完成的练习册和作业本的成果。
3. 学生对勾股定理的理解和应用能力。
教学反馈:1. 教师对学生的学习成果进行及时的评价和反馈。
2. 针对学生的问题和困惑,进行个别或集体的辅导和讲解。
探索勾股定理微型课教案第一课时

探索勾股定理微型课教案第一课时
通过展示一个直角三角形或直角三角形的图片,引导学生思考如何求解直角三角形的边长。
2. 学习
(1)讲解勾股定理的概念及应用。
(2)通过示例,讲解如何使用勾股定理求解直角三角形的边长。
(3)让学生自己尝试使用勾股定理求解直角三角形的边长。
3. 课堂练习
(1)让学生自己完成几道勾股定理的练习题。
(2)让学生分组合作,通过比赛的形式来巩固所学内容。
4. 课堂小结
通过小结,让学生对勾股定理的概念及应用有更加深入的理解。
四、教学方法
1. 讲解法。
2. 实践操作法。
3. 比赛法。
五、教学手段
1. 课件。
2. 教学板书。
3. 练习题。
4. 勾股定理的模型。
六、教学评估
1. 学生能否正确理解勾股定理的概念及其应用?
2. 学生能否熟练地使用勾股定理求解直角三角形的边长?
3. 学生能否合作协作,团队比赛的形式来巩固所学内容?
4. 整体教学效果如何?
七、教学反思
本节课采用了讲解法、实践操作法和比赛法相结合的教学方法,通过生动有趣的教学形式来激发学生的学习兴趣,同时培养学生的数学思维和逻辑思维能力,课堂效果较好。
但需要注意的是,在课堂教学中要注意学生的学习情况,及时调整和改进教学方法,以提高教学效果。
勾股定理的教学设计(热门14篇)

勾股定理的教学设计(热门14篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的教学设计(热门14篇)勾股定理的教学设计(1)1、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史。
八年级数学上册《勾股定理》教案、教学设计

(三)学生小组讨论
1.分组讨论:将学生分成若干小组,针对勾股定理的证明和应用进行讨论。鼓励学生发表自己的观点,分享解题思路。
2.交流展示:每个小组选派代表进行成果展示,其他小组成员认真倾听,互相学习,共同进步。
-通过实际操作,如拼图、构造三角形等,让学生直观感受逆定理的应用。
-设计开放性问题,如“如何确定一个三角形是直角三角形?”鼓励学生多角度思考问题。
5.情感态度与价值观的培养:在教学过程中,注重渗透数学文化,介绍勾股定理的历史背景和我国古代数学家的贡献。
-增强学生的民族自豪感,激发学生对数学文化的兴趣。
5.能够运用勾股定理推导出相似直角三角形的边长比例关系。
(二)过程与方法
在本章节的教学过程中,教师将采用以下方法引导学生学习:
1.通过实际问题引入勾股定理,激发学生的学习兴趣,培养学生的观察力和思考能力。
2.采用探究式教学方法,引导学生通过观察、实验、归纳等方法发现勾股定理,并理解其内涵。
3.运用数形结合的方法,将勾股定理与图形相结合,培养学生的空间想象能力和几何直观。
(五)总结归纳
1.学生总结:让学生回顾本节课所学内容,分享自己的收获和感悟。
2.教师总结:强调勾股定理的重要性,概括本节课的重点和难点,提醒学生课后巩固。
3.情感态度与价值观的渗透:引导学生认识到勾股定理在几何学中的重要地位,激发学生对数学的热爱和探索精神。
五、作业布置
为了巩固学生对勾股定理的理解和应用,以及培养学生的独立思考和解决问题的能力,特布置以下作业:
-培养学生严谨、踏实的科学态度,认识到数学知识在实际生活中的广泛应用。
勾股定理教案第一课时

勾股定理教案第一课时
一、教学目标
1. 理解勾股定理的基本概念,知道勾股定理的定义。
2. 能够熟练地运用勾股定理解决实际问题。
3. 通过实例分析,提高学生的数学思维能力。
二、教学重点与难点
1. 教学重点:勾股定理的定义与运用。
2. 教学难点:勾股定理的运用与解释。
三、教学过程
1. 导入新课:通过提问的方式,引导学生思考勾股定理的实际应用,激发学生的学习兴趣。
2. 新课讲授:
a. 讲解勾股定理的定义,让学生理解什么是勾股定理。
b. 通过实例分析,让学生掌握勾股定理的运用方法。
c. 通过实际问题解决,让学生熟练掌握勾股定理的运用。
3. 课堂练习:通过课堂练习,让学生巩固勾股定理的运用方法。
4. 课堂总结:总结本节课的主要内容,强调勾股定理的重要性和运用方法。
四、教学评价
通过课堂表现、课堂练习等方式,对学生的学习情况进行评价。
五、教学反思
通过本节课的教学,学生是否能够理解勾股定理的定义,是否能够熟练运用勾股定理解决实际问题,是否有足够的课堂参与度等,都是需要进行教学反思的内容。
勾股定理第一课时教学设计

勾股定理第一课时教学设计
一、教学目标
1. 理解勾股定理,掌握勾股定理的证明方法;
2. 能够熟练运用勾股定理来解决正三角形中求直角顶点边长问题。
二、教学重点
1. 勾股定理本身及其证明方法;
2. 运用勾股定理求解正三角形直角顶点边长问题。
三、教学用具
多媒体讲解,白板、笔等。
四、教学方法
1. 提问式教学法:老师以提问的形式向学生们提出勾股定理的证明方
法与应用,并请学生们积极思考,结合例题,提出解答。
2. 交流式教学法:老师在此过程中,可以针对学生们的回答进行纠正,补充,以便学生们对勾股定理进行更全面的理解;
3. 讨论式教学法:将学生们分成几个小组,由小组成员之间通过互动
的方式,深入讨论勾股定理的证明方法,并尝试用勾股定理解决正三
角形直角顶点边长问题,加深学生们的理解。
五、教学步骤
1. 老师先介绍勾股定理,引入后进行证明;
2. 给出相关例题,让学生尝试求解;
3. 将学生们分组,互动讨论勾股定理及其证明方法;
4. 小组讨论完成后,老师做小结并总结勾股定理的证明方法及其应用;
5. 最后老师让学生练习,完成本节课的学习任务。
勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。
求点F和点E坐标。
6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
视频播放
14年东莞市初中数学“微课”教学设计
学校:茶山中学设计者:宋剑平时间:_2014年6月5日_
基本信息
微课名称
《勾股定理》
教学对象
八年级学生
时间长度
8分30秒
教学目标:
1、从探究1、探究2推导得出直角三角形的勾股定理
2、掌握直角三角形勾股定理的具体内容
教学资源与环境:
PPT、录屏软件Camtasia Studio 7.1
教学过程:
1、从探究一、探究二推导得出直角三角形三边关系;
2、利用拼图法验证直角三角形三边关系;
3、讲授直角三角形勾股定理的具体内容;
设计理念与特色:
从探究一、探究二的探索推导过程出发,层层深入,抽丝剥茧,从而得出直角三角形的三边关系,再利用动画制作,用拼图法验证这个三边关系,最后得到直角三角形的勾股定理。