桁架与拱 结构力学

合集下载

结构力学5平面桁架讲解课件

结构力学5平面桁架讲解课件

桁架在动力荷载作用下的响应
瞬态响应
当桁架受到突然施加的动荷载 时,它会表现出瞬态响应。这 种响应通常包括一个短暂的过 渡过程,随后达到一个稳定的 振动状态。
频域响应
在周期性动荷载作用下,桁架 会表现出频域响应。通过频域 分析,可以研究桁架在不同频 率下的振动行为,并确定其振 幅和相位响应。
阻尼效应
高效的经济性
平面桁架能以较少的材料 用量承受较大的荷载,具 有较高的经济性。
平面桁架的应用场景
桥梁工程
在桥梁工程中,平面桁架常被用 作桥面板的支撑结构,能提供稳
定的支撑和承载能力。
建筑工程
在建筑工程中,平面桁架常被用于 楼层和屋盖的承重结构,以及建筑 物的支撑体系。
机械工程
平面桁架也被广泛应用于机械工程 领域,如起重机的梁架、设备的支 架等,其优良的受力性能使其在这 些场景中发挥重要作用。
桁架内力计算:轴力、剪力与弯矩
轴力计算
轴力是杆件沿轴线方向的拉力或压力。通过截面法可以得到杆件的轴力分布情况。根据杆 件的轴力和截面积,可以进一步计算杆件的应力状态,以评估其承载能力。
剪力计算
剪力是杆件横截面上的切向力。通过截面法可以得到杆件的剪力分布情况。剪力的大小和 方向决定了杆件的剪切变形和剪切应力,对于桁架的剪切稳定性分析至关重要。
05 平面桁架的数值模拟与实验验证
基于有限元的数值模拟方法
有限元法基本原理
有限元法将连续体离散为一系列小单元,通过节点连接,利用变分 原理建立节点力与位移的关系,进而求解整个结构的响应。
线性弹性有限元法
对于线弹性材料,采用线性弹性有限元法,通过刚度矩阵和载荷向 量的组装,求解节点位移。
非线性有限元法
02 平面桁架的静力学分析

结构力学第三章静定结构组合结构及拱

结构力学第三章静定结构组合结构及拱
0 FNJ 右 FQJ 右 sin FH cos (7.5) (0.447) 10 0.894
3.35 8.94 12.29kN (压)
二、三较拱的压力线
如果三铰拱某截面D以左(或以右)所有外力的 合力FRD已经确定,则该截面的弯矩、剪力、轴 力可按下式计算:
15kN K右
Fº =-2.5kN QK右
0 0 (FH 10kN , FQK左 12.5kN , FQK右 2.5kN )
(sin 0.447, cos 0.894)
0 FQK 左 FQK 左 cos FH sin 12.5 0.894 10 0.447
67.5kN
50
A F C G E
B
30
D
M图
kN.m
求AC杆和BC杆剪力
F
FQAC
y
0, FQAC 7.5kN
22.5kN 7.5 32.5 10kN/m FNAD
FAy
+ _
15
+
7.15 67.5kN 35 FQ图 kN
作业
3-20
§3-6 三铰拱受力分析
拱 (arch)
FN DE 135kN ,
FNDF FN EG =-67.5kN
FAy
D
FCx 135kN , FCy 15kN
FNDA
FNDF
D
FN DA FN EB= kN 151
FNDE
2m
F
50kN.m
求AC杆和BC杆弯矩
22.5kN 5kN.m
20kN.m 10kN/m
30kN.m
MD FRD

第五章静定平面桁架(李廉锟_结构力学)全解

第五章静定平面桁架(李廉锟_结构力学)全解

除一杆外,其余均汇交于一点(力矩法)或均平行(投影法),则该杆
内力仍可首先求得。
返回
退出
02:31
§5-3 截面法
结构力学
示例1:试求图示桁架中杆EF、ED,CD,DG的内力。
截面如何选择?
退出
返回
02:31
§5-3 截面法
解: (1) 求出支座反力FA和FB。
结构力学
(2) 求下弦杆CD内力,利用I-I截面 ,力矩法 取EF和ED杆的交点E为矩心, CD杆内力臂为竖杆 高h,由力矩平衡方程∑ME=0,可求CD杆内力。
结构力学
退出
返回
02:31
§5-1 平面桁架的计算简图
二、按外型分类
1. 平行弦桁架
结构力学
2. 三角形桁架
3. 抛物线桁架
退出
返回
02:31
§5-1 平面桁架的计算简图
三、按几何组成分类
1. 简单桁架 (simple truss)
结构力学
2. 联合桁架 (combined truss)
3. 复杂桁架 (complicated truss)
1 F A
2 F
退出
返回
02:31
§5-2 结点法
结点法计算简化的途径:
结构力学
2.对称结构受对称荷载作用, 内力和反力均为对称:
受反对称荷载作用, 内力和反力均为反对称。
E 点无荷载,红色杆不受力 垂直对称轴的杆不受力 对称轴处的杆不受力
FAy FAy
FBy FBy
退出
返回
02:31
§5-3 截面法
退出
返回
02:31
§5-2 结点法
10 kN 5 kN 2m

结构力学(I)-02-1 结构静力分析篇4(桁架)@@9

结构力学(I)-02-1 结构静力分析篇4(桁架)@@9

4m
15kN 4m
15kN 4m
15kN
F
FNGF
15kN
ME = 0 MF = 0
FNGF = -20 kN FNGE = 25 kN
哈工大 土木工程学院

16 / 53
第二章 静定结构受力分析
有些杆件利用其特殊位置可方便计算
L形结点 结点平面汇交力系中,
除某一杆件外,其它所
结点 单杆
有待求内力的杆件均共 线时,则此杆件称为该 结点的结点单杆。
FN1
FN2 FN
Fy=0 f(FN2 , FN )=0 Fx=0 g(FN2 , FN )=0
38 / 53
FAy
哈工大 土木工程学院

第二章 静定结构受力分析
FP
FP
E b
3
FP
1 2 4
FP D
FP
FP
FP
C
弦杆 斜杆
F F
M
y
x
C
0
0
0
f ( FN 2 , FN ) 0
FN1
FN 2
y
FN 2 FN 0
竖杆
利用对称性取结点D 先求斜杆b,再利用结点E
哈工大 土木工程学院
F F
0 0
FN 4
FN 3
39 / 53
y
第二章 静定结构受力分析
练习求FN1、 FN2 、 FN3
FP
1
FP
2h
对称轴?
3
2
4a
为了使计算简捷应注意: 1)选择一个合适的出发点; 2)选择一个合适的隔离体; 3)选择一个合适的平衡方程。
哈工大 土木工程学院

结构力学第五章平面桁架详解

结构力学第五章平面桁架详解

1‘ 2‘ 3‘ 4‘ e
a
cd
b
4d d3
A 1 2 3 4 5
B
P PP 6d
VA 1.5P
(1) Na Nb
1‘ 2‘
4
Na
d 3
1 2 Nb
1.5P
P
Y 0 M 2 0
VB 1.5P
Na P VA 0.5P
Nb
4 3
d
1.5P 2d
0
Nb 2.25 P
1‘ 2‘ 3‘ 4‘ e
a
cd
b
A 1 2 3 4 5
P PP 6d
4d d3
B
(2) N c
VA 1.5P
Yc 1.5P P 0.5P
Nc
5 4
Yc
0.625P
VB 1.5P
4‘ e
d
Nc
B
45
P 1.5P
A VA 1.5P
1‘
2‘
3‘
4‘
e
a
cd
b
12345 P P P 6d
4d d3
B
VB 1.5P
5-1 桁架的特点和组成分类
桁架是由链杆组成的格构体系,当荷载仅作用在结点上时,
杆件仅承受轴向力,截面上只有均匀分布的正应力,是最理想
的一种结构形式。
上弦杆
理想桁架:
腹杆
下弦杆
(1)桁架的结点都是光滑无摩擦的铰结点; (2)各杆的轴线都是直线,并通过铰的中心; (3)荷载和支座反力都作用在结点上
主应力、次应力
桁架的分类(按几何构造) 1、简单桁架
2、联合桁架
3、复杂桁架
§5-2 结点法
分析时的注意事项:

桁架与拱 结构力学解剖

桁架与拱 结构力学解剖
对于平面桁架,由于平面任意力系的独立平衡方程数 为3,因此所截断的杆件数一般不宜超过3
试用截面法求图示桁架指定杆件的内力。
n
m
1
A 2.5FP
34
n2m
FP
FP
FP
FP
FP
6 5m
6m B
2.5FP
FN1 =-3.75FP FN4=0.65FP
FN2 =3.33FP FN3 =-0.50FP
截面单杆 截面法取出的隔离体, 不管其上有几个轴力,如果某
三、按几何组成分类
简单桁架 (simple truss)
先组成三角形,再由 加二元体组成
联合桁架 (combined truss)
由几个简单桁架通过 二、三刚片规则组成
复杂桁架 (complicated truss)
四、按受力特点分类:
1. 梁式桁架
2. 拱式桁架
竖向荷载下将 产生水平反力
结点法(nodal analysis method)
桁架结构(truss structure)
横梁
主桁架
纵梁
弦杆
上弦杆 斜杆 竖杆 腹杆
下弦杆
桁高
d 节间
跨度
经抽象简化后,杆轴交于一点,且“只受结点荷载 作用的直杆、铰结体系”的工程结构.
特性:只有轴力,而没有弯矩和剪力。轴力又称为 主内力(primary internal forces)。
实际结构中由于结点并非是理想铰,同时还将产生弯矩、 剪力,但这两种内力相对于轴力的影响是很小的,故称为 次内力(secondary internal forces)。
以只有一个结点的隔离体为研究对象,用汇交 力系的平衡方程求解各杆内力的方法

《结构力学》静定桁架和组合结构的内力分析-知识点归纳总结

《结构力学》静定桁架和组合结构的内力分析-知识点归纳总结

5.2 《结构力学》静定桁架和组合结构的内力分析-知识点归纳总结一、桁架按几何组成特征分类(1)简单桁架:由基础或一个基本铰结三角形依次增加二元体形成;(2)联合桁架:由几个简单桁架按几何不变体系的几何组成规则形成;(3)复杂桁架:不是按简单桁架或联合桁架几何组成方式形成。

二、桁架计算的结点法1、取隔离体截取桁架结点为隔离体,作用于结点上的各力(包括外荷载、反力和杆件轴力)组成平面汇交力系,存在两个独立的平衡方程,可解出两个未知杆轴力。

采用结点法计算桁架时,一般从内力未知的杆不超过两个的结点开始依次计算。

计算时,要注意斜杆轴力与其投影分力之间的关系(图1):图1式中,为杆件长度,和分别为杆件在两个垂直方向的投影长度;为杆件轴力,和分别为轴力在两个相互垂直方向的投影分量。

结点法一般适用于求简单桁架中所有杆件轴力。

2、特殊杆件(如零杆、等力杆等)的判断L 形结点(图2a ):呈L 形汇交的两杆结点没有外荷载作用时两杆均为零杆。

T 形结点(图2b ):呈T 形汇交的三杆结点没有外荷载作用时,不共线的第三杆必为零杆,而共线的两杆内力相等且正负号相同(同为拉力或同为压力)。

X 形结点(图2c ):呈X 形汇交的四杆结点没有外荷载作用时,彼此共线的杆件轴力两两相等且符号相同。

K 形结点(图2d ):呈K 形汇交的四杆结点,其中两杆共线,而另外两杆在共线杆同侧且夹角相等。

若结点上没有外荷载作用,则不共线杆件的轴力大小相等但符号相反(即一杆为拉力另一杆为压力)。

Y 形结点(图2e ):呈Y 形汇交的三杆结点,其中两杆分别在第三杆的两侧且夹角相等。

若结点上没有与第三杆轴线方向倾斜的外荷载作用,则该两杆内力大小相等且符号相同。

对称桁架在正对称荷载下,在对称轴两侧的对称位置上的杆件,应有大小相等、性质相y N x x yF F F l l l ==l x l y l N F x F y F同(同为拉杆或压杆)的轴力;在反对称荷载下,在对称轴两侧的对称位置上的杆件,应有大小相等、性质相反(一拉杆一压杆)的轴力。

结构力学静定桁架

结构力学静定桁架
N1=0 N1 N2=N1 N3
N4
N2=0 N1=N2
N3
P
N2=P N3=0
β
N1
β
N2=-N1 N2 N4=N3
5、对称结构在对称荷载作用下
对称轴上的K型结点无外力作用时, 其两斜杆轴力为零。 (注意:4、5、仅用于桁架结点)
6、对称结构在反对称荷载作用下内力
•与对称轴垂直贯穿的杆轴力为零 •与对称轴重合的杆轴力为零。
A K P I a cb d C 4a H G F
0
0
D
0 0
a E
0
M
K
Nd a
P 4
4a 0
B
Nd P
K K
Na a P 4
P 4 0, Yc P 4
M
P 4
C
2a 0
A
Na
I Na a b Ncc Nd d B
H
G
F
0
0
C 4a
0 0 0 a
Y2 P ,
2×3m
0
1
0 0 0
2
③1-1以右
M
0
2A
0
C P E 2 4×4m 1 D P B
N CE 6 4 P 0 , 2 N CE P 3
F
④2-2以下
F N1
N CE 2 3 P

P
NCE
C P
X N CE X 1 0 , 2 X 1 P, 3 5 N1 P 6
1、桁架的基本假定: 1)结点都是光滑的铰结点; 2)各杆都是直杆且通过铰 的中心; 3)荷载和支座反力都 用在结点上。 2、结点法:取单结点为分离体,得一平面汇交力系,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
M x [解] 由式 y x H

ql 2
ql 2
先列出简支梁的弯矩方程
q M x x l x 2
拱的推力为:
MC ql 2 H f 8f
注意
*合理轴线对应的是
一组固定荷载; *合理轴线是一组。
所以拱的合理轴线方程为:
q 8f 4f y x x l x 2 2 x l x 2 ql l
绘制内力图
0
y
13.300 10.958 9.015 7.749 7.500 7.433 3.325 6.796 11.235 11.665 11.700 1.421 3.331 1.060 0.600 1.000 0.472 0.003 0.354
0.600
0.000
A
1
1.125 1.500 1.125 0.000 0.375 4.500 0.375
B 1 1 2 2 B B
a1
b1
c
y f l2
b2 P2
HB
HA
MB 0
A
1 1
2 2
A
A
x
VA
l1
A
B
l
P1 P2
VB
P1
d c f
c
VA
H
x
VB
l1
VA
M 0 荷载与跨度一定 V l P d H f 0 时,水平推力与 M 矢高成反比 M H f 0 H
y0
d q dS 2 N sin 0 2 N qR
q Rd N d 0
R N q
因N为一常数,q也为一常数,所以任一点的曲率半径R也是常数,即拱轴为园弧。
三、按几何组成分类
简单桁架 (simple truss)
先组成三角形,再由 加二元体组成
联合桁架 (combined truss)
由几个简单桁架通过 二、三刚片规则组成
复杂桁架 (complicated truss)
四、按受力特点分类:
1. 梁式桁架
2. 拱式桁架 竖向荷载下将 产生水平反力
结点法(nodal analysis method)
桁架结构的分类:
一、根据维数分类 1. 平面(二维)桁架(plane truss) ——所有组成桁架的杆件以及荷载的作用线都在同一 平面内
2. 空间(三维)桁架(space truss) ——组成桁架的杆件不都在同一平面内
二、按外型分类 1. 平行弦桁架 2. 三角形桁架
3. 抛物线桁架
4. 梯形桁架
0
-33 -8
-33
34.8 19
19
0
-33 -8
-33
34.8 19
-5.4 37.5 19
-8 kN
YDE CD 0.75 X DE CE 0.5
0
-33 -8
-33
-33 -8
-33
34.8 19
-5.4 -5.4 37.5
34.8 19
小结:
以结点作为平衡对象,结点承受汇交力系作用。 按与“组成顺序相反”的原则,逐次建立各结点的
26983 11kN 12 2 6 38 9 VB VB 9 kN 12
y2
4f 44 x l x 312 3 3m 2 2 l 12
dy dx
x 3
MC 11 6 2 6 3 H 7.5kN f 4
桁架结构(truss structure)
横梁
主桁架
纵梁
弦杆 下弦杆
上弦杆
斜杆
竖杆
腹杆 桁高
d 节间 跨度
经抽象简化后,杆轴交于一点,且“只受结点荷载
作用的直杆、铰结体系”的工程结构. 特性:只有轴力,而没有弯矩和剪力。轴力又称为 主内力(primary internal forces)。

截取桁架的某一局部作为隔离体,由平面任意力系的 平衡方程即可求得未知的轴力。
对于平面桁架,由于平面任意力系的独立平衡方程数 为3,因此所截断的杆件数一般不宜超过3
试用截面法求图示桁架指定杆件的内力。
n m 1 3 A FP 4 2 n m B FP FP FP FP 6m
2.5FP
6 5m
FN1 =-3.75FP FN4=0.65FP FN2 =3.33FP FN3 =-0.50FP
结点单杆
零内力杆简称零杆(zero bar)
N1 N2
N2
N1
N1 0
N3
N2 0
N1
N2
N1 N 2 N 3 0 N1


N1 P
P
N2N2 0N 源自 N1判断结构中的零杆
FP FP FP/2
FP/ 2
FP
D
C
7
10
4
1 C
8
5 9 11 6
2
A B
3
A
B


P P k 。
A
RA

B
RB
RB
。 k P P 简单桁架——一般采用结点法计算; 联合桁架——一般采用截面法计算。
例1、求图示平面桁架结构中指定杆件的内力。 1‘ 2‘ 3‘ 4‘ e c d a
A
1
b 2 3 4 5 P P P 6d
4 d d 3
B
VA 1.5P
VB 1.5P
例 1、三铰拱及其所受荷载如图所 示拱的轴线为抛物线方程
f=4m
2 y2 x
4f y 2 x l x l
制内力图。
计算反力并绘
7.5kN
A
B
H 7.5kN VB 9kN
x2=3m VA 11kN
3m 6m 6m
(1)计算支座反力
VA VA
(2)内力计算
以截面2为例
平衡方程,则桁架各结点未知内力数目一定不超过
独立平衡方程数。
由结点平衡方程可求得桁架各杆内力。
利用结点单杆的概念,根据荷载状况可 结点平面汇交力系中,除某一杆件外,其它所有待求内力的杆件均 判断此杆内力是否为零。
共线时,则此杆件称为该结点的结点单杆(nodal single bar) 。 结点单杆的内力可直接根据静力平衡条件求出。
桁架结构
2
桁架的特点和组成分类
桁架是由链杆组成的格构体系,当荷载仅作用在结点上时,杆 件仅承受轴向力,截面上只有均匀分布的正应力,是最理想的 一种结构形式。
理想桁架:
(1)桁架的结点都是光滑无摩擦的铰结点;
(2)各杆的轴线都是直线,并通过铰的中心; (3)荷载和支座反力都作用在结点上
桁架内力分析
VB 1.5P
k
(3) N d N e
M
Ye
k 5 P
0
Xe
4‘
N d P 2d 2d 1.5P 2d 0
N d 0.25P
Nd
4
M
4
0
10 3 Xe 10 P 3 4
B
2d
X e 2.25P
Ne
1 .5 P 2d



凡需同时应用结点法和截面法才能确 定杆件内力时,统称为联合法 (combined method)。
拱的有关名称
平拱
拱肋 拱趾铰 顶铰 拱肋 拱趾铰 矢高
跨度
斜拱
拉杆拱
拱的有关名称
三铰拱
静定拱
两铰拱
超静定拱
超静定拱
无铰拱
三铰拱的支座反力和内力
一、支座反力
d P1 a2
D
与同跨度同荷载对应简支梁比较
MA 0 1 三铰拱的反力只 V Pa P a V V l 与荷载及三个铰 1 V Pb P b V V 的位置有关,与 l 拱轴线形状无关 x 0 H H H
试求图示K式桁架指定杆1、2、3的轴力
ED杆内力如何求?
小结:
熟练掌握 计算桁架内力的基 本方法: 结点法和截面法 采取最简捷的途径计算桁架 内力
拱(arch)
一、简介 杆轴线为曲线 在竖向荷载作 用下不产生水 平反力。 FP
拱--杆轴线为曲
线,在竖向荷载 作用下会产生水 平推力的结构。
曲梁
三铰拱
2.5FP
截面单杆 截面法取出的隔离体, 不管其上有几个轴力,如果某 杆的轴力可以通过列一个平衡 方程求得,则此杆称为截面单 杆。 可能的截面单杆通常有相交型 和平行型两种形式。
相 交 情 况
FP FP FP FP FP FP
a 为 截 面 单 杆
FP
平行情况
FP
b为截面单杆
用截面法灵活截取隔离体
C
1 A 1
C
C
f
二、内力计算 以截面D为例
P1
x-a1
Qo
截面内弯矩要和竖向力及水平力对D点构成
M
H
y
的力矩相平衡,设使下面的纤维受拉为正。
D H x
MD 0
M VA x P 1 x a1 H y
Qo

VA
M M H y
Q
o
P1
2
y2
q=2kN .m
6m x 6m
B
3
2
4 5 6 7 8
P=8kN
0.00 0
M图 kN.m
N图 kN
Q图 kN
拱的合理轴线
在固定荷载作用下,使拱处于无弯矩状态的轴线称为合理轴线。 由上述可知,按照压力曲线设计的拱轴线就是合理轴线。 从结构优化设计观点出发,寻找合理轴线即拱结构的优化选型。
相关文档
最新文档