初中数学 有理数的乘方 教案2
七年级数学《有理数的乘方》教案设计优秀5篇

教学目标:1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算。
2.已知一个数,会求出它的正整数指数幂,渗透转化思想。
3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力。
教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算。
教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算。
教学过程设计:(一)创设情境,导入新课提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)(多媒体演示细胞分裂过程)其中一种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1个小时后分裂成2某2个,1.5小时后分裂成2某2某2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.(二)合作交流,解读探究一般地,n个相同的因数a相乘,即,记作an,读作a的n次方。
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an 中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂。
说明:(1)举例94来说明概念及读法。
(2)一个数可以看作这个数本身的一次方,通常省略指数1不写。
(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算。
(4)乘方是一种运算,幂是乘方运算的结果。
(三)应用迁移,巩固提高【例1】(1)(-4)3;(2)(-2)4;(3)-24.点拨:(1)计算时仍然是要先确定符号,再确定绝对值。
(2)注意(-2)4与-24的区别。
根据有理数的乘法法则得出有理数乘方的符号规律:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何正整数次幂都是0.【例2】计算:(1)(3; (2)(-)3;(3)(-)4;(4)-;(5)-22某(-3)2;(6)-22+(-3)2.(四)总结反思,拓展升华1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念。
有理数的乘方(2)(教案)

北师大版数学七年级2.9有理数的乘方(2)教学设计课题 2.9有理数的乘方(2)单元第二单元学科数学年级七教材分析本课内容主要是学习有理数的乘方的应用,在实际生活中的应用十分广泛。
它既是有理数乘法运算的延伸,也是学生后续学习有理数乘方运算及四则运算等有理数运算的基础,也是今后学习实数运算、代数式的运算、解方程以及函数知识等等的基础。
学情分析学生在小学六年级已学习了一个数的平方、立方运算。
上节课又学习了有理数的乘方运算,本课学习其应用。
所以学生在教学活动中学生会大胆说出自己的认知、体会。
在动手,思考和合作交流的过程中,将能主动探索,敢干实践,勇于发现,学生对学习有理数的乘方应用也很兴趣。
学习目标1.进一步理解有理数乘方的意义并能解决一些相关的数学问题.经历有理数乘方的符号法则的探究过程,通过实际计算发现底数为10的幂的特点.2.利用有理数的乘方运算解决一些简单实际问题,使学生初步了解转化、类比、归纳的数学思想方法.3.参与操作折纸活动让学生在探索问题的过程中体验学习数学的乐趣,增强自主学习、合作学习的意识与习惯.重点利用有理数的乘方法则准确地进行有理数的乘方运算,并适时总结运算规律.难点把实际问题转化成有理数的乘方运算,以此来解决实际问题.教学过程教学环节教师活动学生活动设计意图导入新课1、教师出示课件:计算(1)63(2)(-2)4(3)动手计算通过熟悉的计算,让学生热身讲授新课1、教师出示课件:看一看:观察图片:教师以对底数是10的幂的特点引入:例3:(1)102 = 100, 103 = 1000, 104 =10000, 105=100000(2)(-10)2 = 100,,(-10)3 = -1000, (-10)4 =10000,(-10)5= -100000.教师向提出问题:观察例3的结果,你能发现什么规律?与同伴进行交学生通过观察底数是10的幂的特点,交学生对有理数乘方运算已有认识,以底数是10的幂的特点流从而引出今天学习内容有理数的乘法运算及应用。
初一数学教案:《有理数的乘法》9篇

初一数学教案:《有理数的乘法》优秀9篇初中数学《有理数的乘法》教学设计篇一一、知识与能力掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力二、过程与方法经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算三、情感、态度、价值观培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性四、教学重难点一、重点:熟练进行有理数的乘除运算二、难点:正确进行有理数的乘除运算预习导学通过看课本§1.4的内容,归纳有理数的乘法法则以及乘法运算律五、教学过程一、创设情景,谈话导入我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律二、精讲点拨质疑问难根据预习内容,同学们回答以下问题:1、有理数的乘法法则:(1)同号两数相乘___________________________________(2)异号两数相乘___________________________________(3)0与任何自然数相乘,得____2、有理数的乘法运算律:(1)乘法交换律:ab=_________(2)乘法结合律:(ab)c=_______(3)乘法分配律:(a+b)c=________3、有理数的除法法则:除以一个不等于0的数,等于乘这个数的__________比较有理数的乘法,除法法则,发现_________可能转化为__________有理数的乘法数学教案篇二教材分析“数的运算”是“数与代数”学习领域的重要内容。
有理数的乘法运算是加法运算的另一种运算形式,它也是今后学习有理数的除法、乘方及混合运算的基础。
因此本节内容具有承前启后的重要作用。
学情分析1、让学生亲身经历将实际问题抽象成数学问题的过程,增加他们对问题的感性认识。
最新北师大课标版七年级数学上册《有理数的乘方》教案2(优质课一等奖教学设计)

最新北师大课标版七年级数学上册《有理数的乘方》教案2(优质课一等奖教学设计)教学目标:1.理解有理数乘方的意义,能进行有理数的乘方运算,掌握用计算器完成乘方运算。
2.能够求出一个数的正整数指数幂,渗透转化思想。
3.通过对乘方意义的探究过程,向学生渗透比较、归纳、猜想,建立数学模型的数学思想。
教学重难点:重点:理解乘方的意义,会进行有理数的乘方运算。
难点:负数的乘方运算。
教学过程:一、创设情境,导入新课在某个王国里,国王答应满足一位聪明大臣的一个要求:在棋盘上放些米粒。
第一个格放2粒米,第二格放4粒米,第三格放8粒米,然后是16粒米,32粒米……一直到第64格。
通过这个故事,引出乘方的概念。
二、重点突出1.引出概念:求n个相同的因数的积的运算,叫做乘方,乘方的结果叫做幂。
对照各部分名称:指数、底数、幂。
2.进行概念辨析练,让学生分辨出乘方运算的底数和指数。
3.研究乘方运算的例题,如计算(1)53和(1)(2)3.4.用计算器计算负数的乘方运算,如(8)4和(3)6.根据学生手中计算器类型的不同,可以有两种较常见的按法。
三、巩固练1.练求正整数指数幂,如计算2的3次幂和5的2次幂等。
2.练求有理数的乘方,如计算(2)5和3.2的4次幂等。
3.练应用,如求出一个数的平方根和立方根等。
四、课堂小结通过本节课的研究,我们了解了有理数乘方的意义和运算方法,掌握了用计算器进行乘方运算的技巧,并深化了对数学思想的理解。
一种计算负数幂的方法是使用带符号键的计算器,另一种方法是使用符号转换键+/-的计算器。
师生们进行了自主交流和归纳小结,总结出了负数的奇次幂是负数,偶次幂是正数的规律。
同时,他们也探讨了正数的任何次幂都是正数的问题。
接着,师生们共同研究了例3,其中包括了一些数字的幂运算,如102,103,104,105,以及(10)2,(10)3,(10)4,(10)5等。
在活学活用环节中,师生们解决了一个数学问题,即第六十四格里要放多少粒米。
七年级数学下册 有理数的乘方教案(2) 苏科版

课 题:
知识目标: 1、能确定有理数 加、减、乘、除、乘方混合 运算的顺序; 2、会进行有理数的混合运算; 过程目标:培养并提高正确迅速的运算能力; 情 感目标:通过参与 数学学习活动,对数学有 好奇心和求知欲,形成主动学习态度,培 养 科学探索精神。 教学重点:运算顺序的确定和性质符号的处理 教学难点:有理数的混合运算
教学过程: 问 题 与 情 境 设 计 活动 1 1、在 2 3 (6) 这个式子中,存在着几种运算.
2
设计意图 通过提问, 复 习旧知,引 入新知
2、请你们以 4 人一个小组讨论、交流,上面这个式子应该先 算什么,再算 什么,最后算什么. 活动 2 1、P43 例题 3,请你试练 2、师生共同探 讨 P43 例题 4 3、练习 计算 3 [
2
2 5 ] 3 9
活动 3 : 10 3 计算: 1、 (—1) ×2+(—2) ÷4
3 2、 (—5) —3× ( ) 4
1 2
4
3、
2
11 1 1 3 5 ( ) 5 3 2 11 4
4、 (—10) +[ (—4) —(3+3 )×2]
2
4 2 5、 2 9 3
3
3
活动 4
1
活 5 小 结:
2
2.9.2有理数乘方的运算(教案)

一、教学内容
本节课选自七年级数学教材《数学》第二章第九节“内容主要包括以下两个方面:
1.掌握有理数乘方的定义:即对同一个有理数a连乘若干次,可以表示为a^n(n为整数),其中a称为底数,n称为指数。
2.学习有理数乘方的运算规则,包括:
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过实际计算,演示有理数乘方的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“有理数乘方在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
4.难点解析:通过对比分析、实际操作等方式,帮助学生理解负整数指数幂的意义,以及零指数幂的特殊性质,提高学生的数学思维能力和运算准确性。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“2.9.2有理数乘方的运算”。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算多次重复的加减乘除的情况?”(如:计算一个数的平方、立方等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数乘方的奥秘。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数乘方的定义、运算规则以及在实际生活中的应用。通过实践活动和小组讨论,我们加深了对有理数乘方的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.9有理数乘方(2)教案

银川十六中教案
课题:2。
9。
2有理数的乘方(2) 主备人:马艳华课时: 1 组长审核:
教学目标
1理解并掌握有理数的乘方、幂、底数、指数的概念及意义;通过观察、推理,归纳出有理数乘方的符号法则,能够正确进行有理数的乘方运算.
2让学生获得有理数乘方的初步经验;培养学生观察、分析、归纳、概括力;经历从乘法到乘方的推广的过程,从中感受转化的数学思想.3经历知识的拓展过程,培养学生探究的能力和动手操作的能力,体会与他作交流的重要性.
教学重点有理数乘方的运算方法
教学难点有理数的乘方、幂、底数、指数的概念及其相互间的关系的理解.
教学设计
一、说(3分钟)知识回顾
求几个相同因数的积的运算叫做乘方,即
.
做一做
1、(口答)把下列相同因数的乘积写成幂的形式,并说出底数和指数.
(1)(-6)×(-6)×(-6)
(2)错误!×错误!×错误!×错误!
2、把(-错误!)5写成几个相同因数相乘的形式。
3、把(-2)×(-2)×(-2)×…×(-2)写成幂的形
设计意
图
其中乘
方的结果
n
a叫幂,
相同的因
数a叫幂
的底数,相
同因数的
个数n叫
幂的指数。
修改与
补充。
《有理数的乘方》第二课时参考教案

教学目标: 1、通过实例感受有理数的乘方运算,当底数大于 1 时,幂增大的很快 . 2、熟练掌握有理数的乘方运算 . 3、参与折纸操作数学活动,在具体的情境中初步掌握估算的方法,获得一
些经险 . 4、在经历发现问题、探索规律的过程中体会数学的乐趣 ,激发学生的好奇心
师:你们小组已经做的很好了,其他的同学有没有得到最后的结果?
生(二组的代表):我们的答案是 18 446 744 073 709 551 615 粒,大约是
18 446 744 073 709袋,还有我们组也没有计算器(表现很得意)
师:那你们是如何计算的?
生:课本第 62 页读一读当中有答案,我们只是做了一个小小的改动,得到
了最后的答案
师:太好了,你们小组的做法值得我们全班同学学习,看来你们预习的很
充分,希望我们大家能以该小组为榜样, 做好上课的准备。 现在我们一块看看身
边的例子:(折纸活动)
(二)探究活动 2
(投影显示)折纸活动:一边折,一边思考以下问题:纸的厚度为 0.1mm ,对折
一次后 ,厚度为 2*0.1mm,对折两次后 ,厚度为多少毫米 ?
一、有关概念 an
二、生活中的实例 ( 1)象棋问题 ( 2)折纸问题
四、小结
三、例解
例三:
练习
八、教学反思
4/ 4
1/ 4
本节课活动的积极性, 才能促使学生课后主动地去解决这些问题, 引入本节课的
内容。
二、探究活动,展示自我
(一)探究活动 1
师:根据故事的内容,大家觉得那位聪明的大臣是不是有点傻呢?大家可
以根据下列问题找出事情的真像(展示问题)棋盘上的米究竟有多少 ?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.5.1 乘方
教学任务分析
有理数的混合运算.
准确地掌握有理数的运算顺序和运算中的符号问题.
板书设计
课后反思
活动一:课前复习
从学生原有认知结构提出问题. 1.计算(十分钟练习): (1)52=; (2) (-5)2= (3)-52= (4)(-2)3; (5)-23= (6) (-1)101= (7)021=; (8) 020=; (9)104÷102
(10) (-1)2n =
;
(-1)2n +1=
.(n 是正整数).
(11)在2
33⎪⎭
⎫
⎝⎛中,底数是 ,
指数是 ,幂是 . 活动二:探究新知 例1计算: (1)(-3)×(-5)2; (2)[(-3)×(-5)]2; (3)(-3)2-(-6); (4)(-4×32)-(-4×3)2
解:
(1) (-3)×(-5)2=(-3)×25=-75 (2)[(-3)×(-5)]2=(15)2=225
(3) (-3)2-(-6) (4) (-4×32)-(-4×3)2 =9-(-6) =(-4×9)-(-12)2 =9+6 = -36-144
=15 = -180.
例2计算]
)3(2[31)5.01()1(24--⨯⨯---解:-
14-(1-05)×3
1×[2-(-3)2]
=-1-21×31×[2-9](先计算小括号、乘方)
=-1-61×(-7) (再算中括号)
=-1+6
7 (先乘)
学生课前独立完成检测题目.
学生分小组讨论,并互相交流作法与结果.
教师引导审题:运算顺序如何?
注意:搞清(1),(2)的运算顺序,
(1)中先乘方,再相乘,(2)中先计算括号内的,然后
再乘方
(3)中先乘方,再相减,
(4)中的运算顺序要分清,第一项(-4×32
)里,
先乘方再相乘,第二项(-4×3)2
中,小括号里先相乘,再乘方,最后相减.
学生独立完成
师生共同回忆小学学过的在带有括号的运算的顺序,先算小括号,再算中括号,最后算大括号.
课堂练习 ——基础过关 (1)3×23; (2)(3×2)3;; (3)(-1)10×2+(-2)3÷4
(4)-23-[(-3)2-22×41-8.5]÷2)21(- 能力测试1: (-2)2-(-52)×(-1)5
+87÷(-3)×(-1)4 解: (-2)2-(-52)×(-1)5+87÷(-3)×(-1)4 =4-(-5)×(-1)+87÷(-3)×1 (先乘方) =4-25-29(再乘除) =-50.(最后相加)
能力测试2:
三、小结与作业
小结:教师引导学生一起总结有理数
混合运算的规律. 1先乘方,再乘除,最后加减; 2同级运算从左到右按顺序运算; 3
若有括号,先小再中最后大,依
次计算. 作业: (1) ;4)2(5)
1(4100
÷-+⨯-
(2) ;)3
1
(3)3(43-⨯-- (3)
;5
3143)3161(67÷⨯-⨯ (4) ]2)31()4[()10(2
2
3
⨯---+- 学生独立完成,教师巡视,记录常见错误.同学互相检查.
教师讲解同学们的典型错误.
学生独立完成后,教师讲评:
(1)存在哪几级运算?
(2)运算顺序如何确定?
请同学们分析这道题在计算
中要注意那几点容易出错的
地方.
注意:(-2)2=4,-52=-25,
(-1)5=-1,(-1)4=1.
学生独立完成小结,巩固本节课的重点.
及时反馈学生的课堂表现.教师
的记录有助于对学生的了解与
帮助.
通过这道题中的几个数
(-2)2=4,-52=-25,(-1)5=
-1,(-1)4=1
提醒同学们注意乘方运算中的
符号问题.
注重培养学生良好的学习习惯.
32)
2(311323211-⨯-⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-⨯⨯。