功能肺与放射性肺损伤
211015539_小鼠肺功能测定及其在放射性肺损伤中的应用

doi:10.11659/jjssx.10E022152·基础研究·小鼠肺功能测定及其在放射性肺损伤中的应用李 杰,焦 露,张 静,陈用来,卢敬萱,舒 畅,柳随义,郝玉徽 (陆军军医大学军事预防医学系防原医学教研室,重庆400038)[摘 要] 目的 使用FlexiVent动物肺功能仪测量放射性肺损伤小鼠的各项肺功能参数,为评估放射性肺损伤模型小鼠肺功能变化情况提供数据支撑。
方法 170只C57BL/6小鼠随机分为对照组和辐照组,对照组再分为C0W组和C24W组,辐照组小鼠胸部经钴源一次性总剂量为15Gy的γ射线照射后随机分为F8W组、F16W组和F24W组,测量小鼠体质量和肺功能指标,并对肺组织进行HE染色,观察肺组织病理改变。
结果 与C0W组相比,C24W组小鼠体质量、深吸气量、呼吸系统阻力、呼吸系统顺应性、中央气道阻力和体积压力环面积明显增加(P<0.05),呼吸系统弹性、组织弹性、静态顺应性显著降低(P<0.05)。
与C0W组相比,辐照组小鼠体质量无明显差异(P>0.05),F16W组小鼠深吸气量、呼吸系统阻力、静态顺应性和小气道阻力变化显著(P<0.05)。
HE染色显示,辐照组小鼠肺泡间隔增厚和炎症细胞聚集。
结论 通过FlexiVent动物肺功能仪测定C57BL/6小鼠肺功能指标的参考值,可为呼吸系统疾病研究提供参考依据;其中深吸气量、呼吸系统阻力和静态顺应性等可以作为放射性肺损伤的观察指标。
[关键词]FlexiVent;肺功能;静态顺应性;γ射线;放射性肺损伤[中图分类号]R818 [文献标识码]A [收稿日期]2022 10 29Determinationofpulmonaryfunctioninmiceanditsapplicationinradiation inducedlunginjuryLIJie,QIAOLu,ZHANGJing,CHENYong lai,LUJing xuan,SHUChang,LIUSui yi,HAOYu hui (TeachingandResearchSectionofPreventiveMedicine,DepartmentofMilitaryPreventiveMedicine,ArmyMedicalUniversity,Chongqing400038,China)Abstract:Objective TheFlexiVentanimalpulmonaryfunctioninstrumentwasusedtomeasurevariousparametersofpulmonaryfunc tioninmicewithradiation inducedlunginjury,soastoprovidedatasupportforevaluatingthechangesofpulmonaryfunctioninmicemodelwithradiation inducedlunginjury.Methods Atotalof170C57BL/6micewererandomlydividedintothecontrolgroupandtheirradiationgroup.ThemiceinthecontrolgroupwerefurtherdividedintotheC0WgroupandtheC24Wgroup.Themiceintheirradiationgroupwere [基金项目]国家重点实验室开放课题(SKLZZ201903);重庆市科技攻关计划(2022NSCQ MSX4675) [通信作者]郝玉徽,E mail:yuhui_hao@126.com[11]HaoY,RenJ,LiuC,etal.Zincprotectshumankidneycellsfromdepleteduranium inducedapoptosis[J].BasicClinPharmacolToxicol,2014,114(3):271-280.doi:10.1111/bcpt.12167.[12]MahmoodT,QureshiIZ,IqbalMJ.Histopathologicalandbiochemicalchangesinratthyroidfollowingacuteexposuretohexavalentchromium[J].HistolHistopathol,2010,25(11):1355-1370.doi:10.14670/hh-25.1355.[13]ZhangS,ZhaoX,HaoJ,etal.TheroleofATF6inCr(VI) inducedapoptosisinDF 1cells[J].JHazardMater,2021,410:124607.doi:10.1016/j.jhazmat.2020.124607.[14]XueF,LuJ,BuchlSC,etal.Coordinatedsignalingofactivatingtran scriptionfactor6alphaandinositol requiringenzyme1alpharegulateshepaticstellatecell mediatedfibrogenesisinmice[J].AmJPhysiolGastrointestLiverPhysiol,2021,320(5):G864-G879.doi:10.1152/ajpgi.00453.2020.[15]IbrahimIM,AbdelmalekDH,ElfikyAA.GRP78:acell sresponsetostress[J].LifeSci,2019,226:156-163.doi:10.1016/j.lfs.2019.04.022.[16]ZhouS,ZhongZ,HuangP,etal.IL 6/STAT3inducedneuronapoptosisinhypoxiabydownregulatingATF6expression[J].FrontPhysiol,2021,12:729925.doi:10.3389/fphys.2021.729925.[17]OakesSA,PapaFR.Theroleofendoplasmicreticulumstressinhumanpathology[J].AnnuRevPathol,2015,10:173-194.doi:10.1146/annurev pathol 012513-104649.[18]PaoHP,LiaoWI,TangSE,etal.Suppressionofendoplasmicreticulumstressby4 PBAprotectsagainsthyperoxia inducedacutelunginjuryviaup regulatingClaudin 4expression[J].FrontImmunol,2021,12:674316.doi:10.3389/fimmu.2021.674316.[19]HuQ,ZhengJ,XuXN,etal.Uraniuminduceskidneycellsapoptosisviareactiveoxygenspeciesgeneration,endoplasmicreticulumstressandinhibitionofPI3K/AKT/mTORsignalinginculture[J].EnvironToxicol,2022,37(4):899-909.doi:10.1002/tox.23453.[20]YiJ,YuanY,ZhengJ,etal.Hydrogensulfidealleviatesuranium inducedkidneycellapoptosismediatedbyERstressvia20Sprotea someinvolvinginAkt/GSK 3beta/Fyn Nrf2signaling[J].FreeRadicRes,2018,52(9):1020-1029.doi:10.1080/10715762.2018.1514603.(编辑:杨 颖)691局解手术学杂志 JREGANATOPERSURG 2023,32(3) http://www.jjssxzz.cnCopyright©博看网. All Rights Reserved.randomlydividedintotheF8Wgroup,theF16Wgroup,andtheF24Wgroupafterthechestwasirradiatedwithgammarayswithatotaldoseof15Gybycobaltsource.Thebodyweightandpulmonaryfunctionindexesofmiceweremeasured,andthelungtissuewasstainedwithHEstainingtoobservethepathologicalchangesoflungtissues.Results ComparedwiththeC0Wgroup,thebodyweight,inspiratorycapacity,respiratoryresistance,respiratorycompliance,centralairwayresistance,andpressure volumeloopareaintheC24Wgroupweresignificantlyincreased(P<0.05),whiletherespiratoryelasticity,tissueelasticityandstaticcomplianceweresignificantlydecreased(P<0.05).ComparedwiththeC0Wgroup,therewasnosignificantdifferenceinthebodyweightofmiceintheirradiationgroup(P>0.05),butthereweresignificantchangesintheinspiratorycapacity,respiratoryresistance,staticcomplianceandsmallairwayresistanceofmiceintheF16Wgroup(P<0.05).HEstainingshowedthatthealveolarseptaoftheirradiationgroupthickenedandgatheredtheinflammatorycells.Conclusion ThereferencevaluesofpulmonaryfunctionindexesofC57BL/6micemeasuredbyFlexiVentanimalpulmonaryfunctioninstru mentcanprovideareferencebasisforthestudyofrespiratorydiseases;amongthem,theinspiratorycapacity,respiratoryresistanceandstaticcompliancecanbeusedastheobservationindicatorsofradiation inducedlunginjury.Keywords:FlexiVent;pulmonaryfunction;staticcompliance;gammaray;radiation inducedlunginjury 肺功能检查是临床上常见的检查,常用于健康人群体检和呼吸系统疾病检查,在呼吸系统疾病的早期筛查和诊断中具有重要作用[1 2]。
放射性肺损伤的风险预测进展

万方数据
匡堂!堕鏖煎壅;!!!生!!旦 整!!堂箜!!塑』竺!!!垦!!!型!!:!!!!!塑!!!:塑!!
性肺损伤发生的严重程度与超过肺放射性耐受量( 阈值)的肺体积大小有着非常密切的关系。全肺照 射时,发生放射性肺损伤的阈值很低,约为6~8 Gy,但部分肺组织受到照射时,放射性肺损伤的阈 值一般为20~30 Gy。美国放射肺癌学协作组 (RTOG)在一个前瞻性的研究中发现V20的大小不 仅与放射性肺炎的发生率高低相关,而且与放射性 肺炎的严重程度明显相关。V20<20%时,无放射 性肺炎发生,22%~31%时。8%的患者发生2级 放射性肺炎,32%时,才出现3级以上的放射性肺 炎【引。Claude等[73分析了90例接受3一DCRT的 NSCLC患者放射性肺炎的发生情况:所有患者 Vdose平均值为V20=18%,V30=13%,V40= 10%;单因素和多因素分析均表明Vdose与放射性 肺炎发生率相关。Hernando等回顾性分析201例 未手术接受放疗的NSCLC病例,39例(19%)发 生1级及以上放射性肺炎。放射性肺炎组的平均 V20、V30、V40值分别为34.7%、29.9%、24.4%(" =39);未发生放射性肺炎组的平均V20、V30、V40 值分别为28.7%、23.8%、20.2%(咒一162)。因而 V20、30、V40是放射性肺炎的有效预测因子。
放射性肺炎症状及护理

放射性肺炎症状及护理肺炎相信很多人都听说过,但是放射性肺炎是什么呢?很多人对于放射性肺炎的了解却不是很多。
放射性肺炎系由于肺部、纵隔、肿瘤、食管癌、乳腺癌、恶性淋巴瘤或胸部其他部位肿瘤经放射治疗后,在放射野内正常肺组织受到损伤引起的炎症反应。
轻者无症状,炎症自行消散;重者产生广泛性肺纤维化,导致呼吸功能损害,甚至呼吸衰竭。
放射性肺炎的发生、肺部损伤的严重程度与放射面积、放射量、放射速度和放射的方法均有密切关系。
一般在5周内放射量阈值在25Gy的常规照射量较为安全。
放射剂量在6周内20Gy极少产生放射性肺炎,在相同时间内,剂量超过40Gy,放射性肺炎发生率达100%,放射量超过60Gy,可引起严重肺损伤。
放射量越大,发生率越高,肺的损伤越严重。
对于老人和小孩来说,老人和小孩对放射性治疗的耐受性差。
化学疗法所用药物(如博来霉素)引起的肺毒性可能加重放射性肺的损害。
放射性肺炎的症状放射性肺炎的症状主要有哪些呢?只有了解了它的症状,才能够及早的发现并予以及时的治疗,下面,让我们一起来了解一下放射性肺炎的症状主要有哪些吧!对于放射性肺炎,轻者无症状。
可在放射治疗后立即出现刺激性咳嗽,多数在放射治疗2~3个月后出现症状,个别在停止放射治疗半年后出现刺激性干咳,活动后加剧,伴有气急,心悸和胸痛。
不发热或低热,偶有高热,体温高达40℃。
放射性损伤产生肋骨骨折,局部有疼痛。
放射性食管炎可产生吞咽困难。
随肺纤维化加剧逐渐出现呼吸困难。
易发生呼吸道感染而使症状加重,出现发绀。
1、放射性肺炎大多数是以慢性起病,也有的一开始就是急性的。
最初是以肺泡和肺泡壁内,产生炎症反应为初始症状,然后炎症蔓延到周围的,间质部分和血管人体,引起间质性纤维化,导致肺组织破坏和瘢痕产生。
2、这些疾病有许多共同的特点,包括类似的症状,X线征象及肺功能检查特点。
继发感染时可有黏液浓痰,伴明显消瘦、乏力、厌食、四肢关节痛等全身症状,急性期可伴有发热3、使通气功能降低,炎症也可累及气管、毛细支气管,往往伴机化性肺炎,也是放射性肺炎的一种表现。
放射性肺损伤的诊断与治疗

推荐静脉使用地塞米松
缺点:对HPA的抑制作用明显,半衰期长。不适宜
长程用药,在呼吸困难明显好转或3级稳定到2级后 应换成等效剂量的强的松并逐渐减量
糖皮质激素选择
甲基强的松龙(甲强龙)
优点:肺泡中浓度高,达峰时间短,半衰期短,HPA 抑制作用弱
缺点:抗炎作用较弱。
放射性肺损伤分级标准
CTCAE、RTOG、SWOG、Michigan、LENT-SOMA 等标准
CTCAE 4.0应用较多
CTCAE 4.0放射性肺炎分级
1级:无症状;仅有临床或影像学改变;无需治疗 2级:有症状;需要药物治疗;工具性日常活动受限(如做饭、 购物、使用电话、理财等) 3级:有严重症状;个人日常生活活动受限(如洗澡、穿脱衣、 吃饭、洗漱、服药、并未卧床不起);需要吸氧 4级:有危及生命的呼吸症状;需要紧急处理(气管切开或气管 插管) 5级:死亡
正常肺组织限量
NCCN指南:V20≤35%;V5 ≤65%;MLD ≤20Gy CAMS要求:单纯放疗 V20 ≤30%,V30 ≤20%;同步
放化疗或之前有化疗者 V20 ≤28%, V30 ≤20%;肺楔形 切除术后V20 ≤25%;肺叶切除术后V20 ≤20%;单侧肺 切除术后V20 ≤10%
PR 2016年10月复查胸部CT提示局部病灶进展 2016年10月27日至12月8日行局部放疗,95%PTV 60Gy/2Gy/30F 12月6日打乒乓球出大汗后感冒,高热,并咳嗽咳黄痰,活动后
稍有胸闷
放疗前
剂 量 曲 线
12月7日
肺炎诊治经过
放射性肺炎,2级,急性渗出期 治疗方案:激素+抗生素+止咳化痰 12月7日开始应用左氧氟沙星针0.6,QD,共10日 12月7日至10日,地塞米松针,7.5mg,QD 12月11日至14日,地塞米松针,5mg,QD 12月15日至19日,地塞米松针,3.5mg,QD 12月20日至24日,地塞米松针,2mg,QD 12月25日至29日,地塞米松片,1.5mg,QD
干细胞移植相关的伴随症状与并发症介绍

干细胞移植相关的伴随症状与并发症介绍干细胞移植是一项先进的医疗技术,可用于治疗多种疾病,包括白血病、淋巴瘤、多发性骨髓瘤等。
然而,干细胞移植也会伴随一些症状和并发症,因此在进行这项治疗时,患者和医护人员需要对其有所了解。
本篇文章将介绍干细胞移植相关的伴随症状与并发症,以帮助读者更加全面地了解这一治疗过程。
干细胞移植的伴随症状主要包括:1. 骨髓抑制: 干细胞移植过程中,患者会接受强化化疗和放疗来准备骨髓的移植。
这些治疗会导致骨髓抑制,使血液中产生血细胞的能力下降。
患者可能会出现贫血、白细胞减少和血小板减少等症状,如疲劳、易出血和感染等。
2. 消化道症状: 干细胞移植后,患者可能出现消化道症状,如恶心、呕吐、腹泻和口腔溃疡等。
这些症状主要是由于化疗药物对胃肠道黏膜的损伤所致。
3. 皮肤反应: 干细胞移植会导致皮肤过敏反应和皮肤损伤。
患者可能会出现皮疹、瘙痒、干燥、脱屑和色素沉着等症状。
4. 肝脏和肾脏功能异常: 干细胞移植后,患者的肝脏和肾脏功能可能会受到影响。
他们可能会出现黄疸、肝功能异常和尿频等症状。
这些症状往往是由化疗药物的毒副作用引起的。
5. 免疫系统异常: 干细胞移植会导致患者的免疫系统受损,使其容易感染病菌。
患者可能会出现反复发热、感染性病变和呼吸系统症状等。
干细胞移植的并发症主要包括:1. 移植物排斥反应: 在干细胞移植过程中,患者的免疫系统可能会对移植物产生排斥反应。
这可能导致移植物无法存活和成功植入,最终影响治疗效果。
2. 移植物抗宿主病: 移植物抗宿主病是干细胞移植治疗中较为严重的并发症之一。
它是由移植物中的免疫细胞攻击患者的组织和器官引起的。
患者可能会出现皮肤疹、黄疸、腹泻和肝脾肿大等症状。
3. 放射性肺损伤: 干细胞移植前,患者通常会接受全身或局部放疗治疗,以准备骨髓的移植。
这可能会导致患者出现放射性肺损伤,表现为气短、咳嗽和呼吸困难等症状。
4. 心血管系统并发症: 干细胞移植后,患者可能会出现心血管系统并发症,如心律失常、心肌损伤和心力衰竭等。
放射性与化疗性肺损伤

1)从微小到致命性的肺毒性, 2)导致直接和间接的早期与晚期肺毒性 3)不同化疗药物作用不同靶点 4)可逆和不可逆的肺损伤 5 )一般在疗后的2个月
6)一些可修复损伤,合用照射后 可能不可修复的潜在性致死性损伤 7)化疗药物也可使放疗中可修复 亚致死性损伤为潜在性致死性损伤
影像学改变
影像学改变
影像学改变
影像学改变
影像学改变
影像学改变
表2、晚期放射性肺损伤的SOMA分级
表3、 放射性肺炎发生情况
表4、 胸部放疗后的放射影像学改变
表5、胸部放疗后影像学改变与症 状性肺炎的比较
表6、 胸部放疗后肺功能变化
全身或半身照射(TBI与HBI) 1)RP的临界值为7Gy,TD5为8.2Gy, TD50为9.3Gy,而TD90为11Gy (肺校正后剂量)。 2)2Gy变化可导致致死性放射性肺炎从0到50%的发生率 3)肺校正因子为15-20%,如不行校正,临界值也可导致严重并发症。 4)低剂量率(从0.5到0.1Gy/秒)可减少RP的发生(从90%到50%)。
NTCP预测放射性肺损伤 NTCP (Normal tissue complication probability) NTCP =1/(2II)1/2 -exp(-x2/2)dx+c T=(NTD mean –NTD50 ) / (m.NTD50 )
2、抗炎性作用: 1)、抑制T和B细胞生长和活性,使自然杀伤细胞和IGA下降。 2)、抑制NO产物,调节巨噬细胞的细胞毒性。
3、调节细胞外基质含量 1)增加细胞外基质合成。 2)减低和抑制细胞外基质降解酶的含量,使细胞外基质降解酶的含量降低。 3)TGF-1可导致健康的动物产生纤维化。 4)在肝、肺发生纤维化者,血浆TGF-1和组织内TGF-1表达增加。 4)它与PDGF、IL-1、IGF-1和TNF-相互作用导致肺纤维化与损伤的修复。
放射性肺损伤PPT课件

预防比治疗更重要!
放疗前了解患者一般情况、肺功能、是否行化疗等; 设计放疗计划时,了解并限制正常肺组织所照射的体 积及剂量; 放疗中密切观察,如对渐进性的咳嗽、呼吸困难应及 时处理,明确诊断。
根据放射性肺损伤分级标准(CTCAE 4.0)
建议治疗原则如下:
1级:观察;
2级:无发热,密切观察±对症治疗±抗生素;
升高; (3)C反应蛋白、血清LDH、血沉等可能升高; (4)轻者仅在剧烈活动时测得的动脉血气分析氧分压下降,症状严重
者静息时即可能测得血氧分压下降; (5)与疗前基线水平相比,肺功能异常主要表现为弥散功能减低,也
可伴有肺容量降低,肺通气功能降低,呼吸频率可能增加。另外,在 通气动力学方面,可见肺顺应性降低,小气道阻力增加。
(4)激素剂量:根据病情轻重,以及症状控制情况调整个 体化给药。换算成强的松等效剂量,通常情况下,推荐的 糖皮质激素初始剂量30~40 mg/d,分2次口服。按照该 等效剂量足量给药2~4周若症状和胸部影像明显好转,并 且症状稳定1周以上,可开始逐步减量。每周减量10~15 mg强的松,观察病情变化,若减量太快致症状反跳,排除 由感染所致后,需将剂量调回前一有效剂量,延长该剂量 使用时间,减缓减量速度。使用总时间达4~6周。
(2)给药途径:激素可静脉或口服给药,首选口服给药。 口服给药指征:①3级放射性肺损伤症状稳定后;②3级放 射性肺损伤无明显缺氧;③2级放射性肺损伤伴有发热。 静脉给药指征:①症状急性加重;②静息下明显呼吸困难; ③缺氧;④高热;⑤CT显示渗出改变明显;⑥4级放射性 肺损伤。
(3)糖皮质激素种类的选择:推荐包括口服强的松、地塞 米松或静脉地塞米松、甲强龙。优先推荐口服强的松。地 塞米松起效快,抗炎效力强,在症状较重或病情较急时推 荐静脉使用地塞米松;但因地塞米松对下丘脑一垂体一肾 上腺轴的明显抑制作用,不适宜长疗程用药,在呼吸困难 明显好转或3级放射性肺损伤患者症状稳定到2级后(一般 静脉用药时间1~2周)应换成等效剂量的强的松再逐步减 量。甲强龙在肺泡中浓度较其他激素高;达峰时间是地塞 米松的1/10~1/20;对下丘脑—垂体一肾上腺轴的抑制作 用仅为地塞米松的1/10,与强的松近似。但在放射性肺 损伤治疗中,尚无将甲强龙与地塞米松或强的松进行比较 的研究。
放射性肺损伤诊治共识解读

常规分割(25-27F)
SABR
RTOG 0813
全肺切除术后:V20 ≤ 10% 50Gy/5F: V12.5 ≤ 1500 cc, V13.5 ≤ 1000 cc
RTOG 0915 34Gy/1F: V7 ≤ 1500 cc, V7.4 ≤ 1000 cc
48Gy/4F: V11.6 ≤ 1500 cc, V12.4 ≤ 1000 cc
RF
放射性肺纤维化(Radiation fibrosis, RF)
放射性肺损伤
(Radiation Induced Lung Injury, RILI)
症状性放射性肺损伤
(Symptomatic Radiation Induced Lung Injury, SRILI )
诊断标准
病史 临床表现 影像表现 鉴别诊断 其他参考信息
糖皮质激素用法-适应征
▪ 3级和4级SRILI
▪ 伴有发热或CT上有急性渗出性改变的2 级SRILI
糖皮质激素用法-给药途径
▪ 首选口服
▪ 口服给药指征: 2级SRILI伴有发热 3级SRILI症状稳定后 3级SRILI无明显乏氧
糖皮质激素用法-给药途径
▪ 静脉给药指征: 症状急性加重 静息下明显呼吸困难 缺氧 高热 CT显示明显渗出改变 4级SRILI
诊断标准-其他信息
1. 肺部体征多无明显特异性。最常见表现为呼吸音粗糙,其 它包括干啰音,湿啰音,呼吸音减低
2. 中性粒细胞百分比多高于正常。白细胞总数多无明显升高
3. C反应蛋白、血清LDH、血沉等可能升高
4. 动脉血气分析氧分压下降。轻者仅在剧烈活动时测得,症 状严重者静息时即可能测得
5. 肺弥散功能减低。也可伴有肺容量降低,肺通气功能降低 ,呼吸频率可能增加
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EXPERIMENTAL AND THERAPEUTIC MEDICINE 2: 1017-1022, 2011Abstract. The aim of this study was to determine whether functional dose-volume histograms (FDVHs) are valuable for predicting radiation pneumonitis (RP), and to identify whether FDVHs have advantages over conventional dose-volume histograms (DVHs) for the prediction of RP in patients with locally advanced non-small cell lung cancer (LANSCLC). Fifty-seven patients with LANSCLC undergoing functional image-guided late-course accelerated hyperfractionated radiotherapy were enrolled. The grade of RP was evaluated according to the Common Toxicity Criteria 3.0. To identify predictive factors of RP, the FDVHs, including the volume of the functional lung receiving 5 Gy (FV5) through 50 Gy (FV50), mean perfusion-weighted lung dose (MPWLD) and functional normal tissue complication probability (FNTCP), were analyzed and compared to their counterparts [total lung receiving 5 Gy (V5) through 50 Gy (V50), mean lung dose (MLD) and normal tissue complication probability (NTCP)] derived from conventional DVHs. Univariate analysis revealed that V5-V40, MLD, NTCP and FV5-FV50, MPWLD, FNTCP were all statistically significant relative to the development of RP (all p<0.05). Multivariate analysis showed that only MLD and FV15 were associated with RP (p=0.001 and 0.044, respectively). Receiver operator characteristic curve anaysis indicated that almost all of the FDVHs had larger areas under the curve compared to the DVHs, although no statistically significant difference was observed (p-value ranged from 0.066 to 0.951). FDVHs are valuable for predicting RP with the predictive efficiency equivalent to or slightly advanta-geous over conventional DVHs. More homogeneous studies involving larger numbers of patients are required to further assess the value of FDVHs for predicting RP. IntroductionPlatinum-based chemoradiotherapy represents the current treat-ment standard for locally advanced non-small cell lung cancer (LANSCLC). However, treatment success is constrained by poor local control and radiation pneumonitis (RP). According to a systematic review (1), clinically significant RP usually develops in 13-37% of patients receiving radical dose radiation therapy for lung cancer. Despite the large number of studies (2-8,23,24) involving clinical and dosimetric prognostic factors for RP, there are currently no validated and standardized factors for prediction. In clinical practice, the mean lung dose (MLD) and VDth (the volume of lung receiving more than a threshold dose) are the most common parameters used as predictors (2-7). However, these parameters are not ideal due to their limited accuracy, sensitivity and specificity (1). This may be explained by the fact that radiation ideally should be delivered in a manner that minimizes its functional consequences (9). For the most part, this goal has been sought by trying to mini-mize the volume of computed tomography-defined lung tissue within the treatment fields. This approach does not, however, consider possible variations in the functional competence of different regions of the lung. The same problem arises in the interpretation of dose-volume histograms (DVHs) and calcula-tions of normal tissue complication probability (NTCP). From the viewpoint of biophysics, these parameters are constructed to consider both lungs as a homogeneous organ, however, conventional models do not take the possible spatial differences of lung radiosensitivity into account (10,11,27). Furthermore, co-existent lung diseases in the majority of patients presenting with lung cancer result in regional differences in lung function. Nioutsikou et al (12) considered that the functional heteroge-Functional dose-volume histograms for predicting radiation pneumonitis in locally advanced non-small cell lung cancer treated with late-course accelerated hyperfractionated radiotherapyDONGQING WANG1,2, BAOSHENG LI1, ZHONGTANG WANG1,JIAN ZHU3, HONGFU SUN1, JIAN ZHANG1 and YONG YIN31Sixth Department of Radiation Oncology, Shandong Cancer Hospital; 2Shandong Academy of Medical Sciences;3Department of Radiotherapy Physics, Shandong Cancer Hospital, Jinan, P.R. ChinaReceived March 10, 2011; Accepted June 23, 2011DOI: 10.3892/etm.2011.301Correspondence to: Dr Baosheng Li, Sixth Department of RadiationOncology, Shandong Cancer Hospital, Jiyan Road 440, Jinan,P.R. ChinaE-mail: baoshli@Abbreviations: FDVHs, functional dose-volume histograms;MPWLD, mean perfusion-weighted lung dose; FNTCP, functionalnormal tissue compilation probability; RP, radiation pneumonitis;LANSCLC, locally advanced non-small cell lung cancer; FL,functional lungKey words: non-small cell lung cancer, radiation pneumonitis,functional dose-volume histogramWANG et al: FUNCTIONAL DOSE-VOLUME HISTOGRAMS FOR PREDICTING RADIATION PNEUMONITIS 1018neity of an organ as a factor contributes to the probability ofcomplications in the normal tissues following radiotherapy.Using the functional dose-volume histograms (FDVHs) and thefunctional normal tissue complication probability (FNTCP)may be more meaningful for plan evaluation and is anticipatedto show a better correlation with RP.Materials and methodsPatient characteristics. Fifty-seven patients with stage IIINSCLC enrolled in a prospective phase II study from March2006 to April 2010 were analyzed. Eligibility criteria includedbiopsy-proven NSCLC, no prior chemotherapy or radio-therapy, no concurrent malignancy and no past history of lungcancer. The protocol was approved by the IRB, and informedconsent was obtained from all patients. All patients receivedlate-course accelerated hyperfractionated radiotherapy(LCAHRT) with three dimensional conformal (3D-CRT) orintensity-modulated radiotherapy (IMRT) techniques. Theinitial volume was treated with conventional fractionation to atotal dose of 40 Gy in 2-Gy fractions over 4 weeks; the boostvolume was irradiated with LCAHRT to additional doses of19.6-39.2 Gy in 2 fractions of 1.4 Gy with an interval of 6-8 hper day, 5 days per week over 2-3 weeks. Fifty (88%) patientsreceived 2-4 cycles of concurrent or sequential chemotherapywith cisplatin-based regimens. Seventy-nine percent of patientshad a history of smoking. The median baseline forced expira-tory volume in 1 sec (FEV1.0) was 2.08 liters (range 0.62-3.59).Patient characteristics are shown in Table I.Treatment planning and delivery. All patients were scannedusing a dedicated positron emission tomography/computedtomograpy (PET/CT; 4 slice Discovery LS; GE) simulator inthe supine position with arms extended above the head andimmobilized by a vacuum cradle device to improve the setupreproducibility during planning and delivery of treatmentaccording to the 18F-fluorodeoxyglucose (18F-FDG) PET/CTimaging protocol (13).Single photon emission computed tomography (SPECT;GE Infinia) scans were also performed in the treatment posi-tion on the next day, following injection of technetium-99m (99m Tc) labeled with macro-aggregated albumin (MAA) tracer. SPECT image acquisition and reconstruction were performed as previously described (9,10,20). After the required SPECT lung perfusion imaging, these functional images were all transferred to a Philips Pinnacle3 planning system (Philips Radiation Oncology Systems, Milpitas, CA, USA), and then registered manually with the aid of fiducial markers (12,14). The 18F-FDG PET/CT image was used to delineate the gross tumor volume (GTV), including the primary disease plus any involved regional lymph nodes as determined by size on the CT scan to be ≥1 cm or FDG-avid tumor and lymph nodes, regardless of their anatomic size. Before commencing the visual contouring, a diagnostically adequate window for image display was adjusted with the assistance of our nuclear medicine physician. The planning target volume (PTV) was considered to include the GTV plus a 10- to 15-mm margin. Ninety-five percent isodose line encompassed the PTV. Normal tissues (esophagus, spinal cord, heart and total lung) were contoured as usual. In particular, functional lung (FL) was weighted by 99m Tc-MAA SPECT lung perfusion. According to the study of Seppenwoolde et al (15), ≥30% of the maximum pre-RT perfusion was defined as ‘well-perfused’. It is assumed that perfusion is proportional to function (16,17). We delineated the regional well-perfused lung contours as FL. Based on the functional information, PET/CT/SPECT-guided radiotherapy planning was optimized (14,18).For 3D-CRT, four or five beams were consistently employed in the treatment plans, typically anterior-posterior beams in combination with oblique beams. In IMRT plans, five to seven beam angles were usually employed for dose optimization. Dose calculations were performed using Pinnacle3 version 7.6c (ADAC, Milpitas, CA, USA) with tissue heterogeneity correction. Planning objective for organs at risk was defined as follows: total lung receiving >20 Gy (V20) limited to ≤37%; maximum dose of spinal cord limited to ≤45 Gy; for heart, with constraints: D1/3 ≤50 Gy, D2/3 ≤45 Gy, D3/3 ≤40 Gy (D x is dose received by x of the volume). The treatment plans were reviewed by peers and Table I. Patient characteristics.Characteristic No. of patients(ratio and %) GenderMale:female 48 (84):9 (16) Age (years)≥60:<60 36 (63):21 (37) Histopathology, n (%)Squamous cell carcinoma 28 (49) Adenocarcinoma 20 (35) Large cell carcinoma 3 (5) NSCLC, not otherwise specified 6 (11) Clinical stageIIIA:IIIB 19 (33):38 (67) Karnofsky performance status≥80:<80 54 (95):3 (5) Smoking historyNo:yes 12 (21):45 (79) ChemotherapyConcurrent:sequential 34 (60):16 (28)Table II. Association of baseline characteristics with grade ≥2 radiation pneumonitis (RP).Characteristic No-RP RP p-value a(mean ± 1 SD)FEV1.0 (liters) 2.2±0.7 1.7±0.6 0.06 FVC (liters) 3.0±0.8 2.5±0.9 0.08 FEV1.0/FVC (%) 71.5±12.3 72.0±12.8 0.90 FEV1.0, forced expiratory volume in 1 sec; FVC, forced vital capacity.a Analyzed by independent-sample t-test.EXPERIMENTAL AND THERAPEUTIC MEDICINE 2: 1017-1022, 20111019delivered using 6 MV beams on linear accelerators (21EX, 23EX or Trilogy; Varian Inc., CA, USA).Functional dose-volumetric parametersFDVHs and mean perfusion-weighted lung dose (MPWLD). After a SPECT scan was adequately registered with the PET/ CT dataset, the entire 3D-RT dose distribution was overlaid onto the SPECT scan. The traditional DVHs of the total lung volume defined by CT were converted into new histograms, which were termed FDVHs (9,12,19,20). Based on these homogeneous functional sub-units, FDVHs were calculated from FV5 to FV50; meanwhile, conventional parameters V5-V50 were also calculated. The MLD was defined as the average dose throughout the total lung volume minus the GTV. Subsequently, the MLD was weighted with the local perfu-sion resulting in the MPWLD (10,20,26). The adjustment of the dose to the biologically equivalent dose by conventional fractionation size at 2 Gy was not carried out. Functional normal tissue complication probability. The Lyman model was used to calculate the NTCP from the DVHs. Assumptions used in the calculation were: n=0.87; m=0.18; TD50=24.5 Gy (21). The FNTCP was calculated from the FDVHs with the same n, m and TD50 values, and was used as an additional parameter.Evaluation of RP and follow-up. After completion of treat-ment, patients were followed up at 3-month intervals until RP was observed or the patients died. In our study, follow-up time ranged from 3 to 42 months, with follow-up for living patients determined to be a median of 14 months. In our analysis, the RP grade was defined according to the National Cancer Institute Common Toxicity Criteria, version 3.0 (22). The development of RP was considered as a binary variable: no-RP (RP grade ≤1) and RP (RP grade ≥2).Statistical analysis. The Chi-square test was applied to test patient characteristic distribution between the no-RP and RP groups. Univariate and multivariate analyses were used to evaluate the impact of DVHs and FDVHs on the develop-ment of RP. For the multivariate analysis, backward stepwise logistic regression analysis was adopted. Receiver operator characteristic (ROC) curves were used to identify the refer-ence threshold of FDVHs and to assess the predictability of the parameters. The correlation between the FDVHs and DVHs was tested by calculating the Pearson correlation coefficient. All statistical tests were two-tailed and were performed using statistical software programs Medcalc V.11.2 and SPSS V.11.5.A p-value of <0.05 was considered significant.ResultsClinical parameters. In the present study, 36 (63%) patients did not develop RP, 10 (18%) patients developed grade 1, 7 (12%) grade 2, 3 (5%) grade 3 and 1 grade 5 RP. The actuarial development of grade 2 or worse RP was 19.3%. There was no significant difference in the distribution of clinical parameters (gender, age, Karnofsky performance status, smoking history and chemotherapy) between the two groups of patients (no-RP vs. RP). FEV1.0 and forced vital capacity (FVC) investigated at borderline exhibited significance (p=0.06 and 0.08, respec-tively), where FEV1.0/FVC did not (p=0.90) (Table II).Dose-volumetric parameters. Tables III and IV summarize the analysis of the potential predictors of DVHs to RP. V5-V40, MLD and NTCP were statistically significant, whereas multi-variate analysis showed that MLD was the only risk factor (p=0.001).Tables III and V summarize the analysis of the potential predictors of FDVHs to RP. FV5-FV50, MPWLD and FNTCP were all statistically significant, whereas multivariate logistic regression analysis showed that FV15 was the most important risk factor (p=0.044).Table VI reports the sensitivity and specificity of FDVHs for RP prediction. Using ROC curve analysis, all of the FDVHs, with the exception of MPWLD, had larger AUCs than their counterparts from DVHs, although no significant differenceTable III. Univariate analysis of the association of FDVHs (DVHs) with grade ≥2 radiation pneumonitis (RP). Parameter Threshold RP rate (%) p-valueFV5 (V5) 0.8022 (0.7073) 5.3b:47.4c (5.4:45.0) 0.001FV10 (V10) 0.4538 (0.5603) 5.4:45.0 (5.1:50.0) 0.001FV15 (V15) 0.3933 (0.4069) 2.9:43.5 (0.0:39.3) 0.001FV20 (V20) 0.2961 (0.3218) 5.6:42.9 (3.2:38.5) 0.001FV25 (V25) 0.2778 (0.2606) 9.1:53.8 (5.9:39.1) 0.001 (0.004) FV30 (V30) 0.2086 (0.2124) 7.7:44.4 (8.6:36.4) 0.002 (0.015) FV35 (V35) 0.1518 (0.1686) 7.3:50.0 (7.9:42.1) 0.001 (0.004) FV40 (V40) 0.1412 (0.1669) 7.1:53.3 (7.1:31.0) 0.001 (0.041) FV45 (V45) 0.1052 (0.1330) 7.1:53.3 (9.7:30.8) 0.001 (0.089) FV50 (V50) 0.0721 (0.1083) 7.1:53.3 (12.8:37.5) 0.001 (0.061) MPWLD (MLD) (Gy) 17.051 (18.734) 5.5:42.9 (2.4:66.7) 0.001 FNTCP (NTCP) 0.0105 (0.0742) 0.0:40.7 (8.3:77.8) 0.001 MPWLD, mean perfusion-weighted lung dose; MLD, mean lung dose; FNTCP, functional normal tissue complication probability. b RP rate calculated when V x < threshold, c RP rate calculated when V x ≥ threshold.WANG et al : FUNCTIONAL DOSE-VOLUME HISTOGRAMS FOR PREDICTING RADIATION PNEUMONITIS1020Table VI. ROC curve analysis for the association of FDVHs with grade ≥2 radiation pneumonitis.Parameter Threshold Sensitivity (95% CI) Specificity (95% CI) AUC p-value FV 5 0.8022 0.8182 (0.482-0.977) 0.7826 (0.636-0.891) 0.833 0.0001FV 10 0.4538 0.8182 (0.482-0.972) 0.7826 (0.636-0.890) 0.844 0.0001FV 15 0.3933 0.9091 (0.587-0.998) 0.7391 (0.589-0.857) 0.869 0.0001FV 20 0.2961 0.8182 (0.482-0.972) 0.7391 (0.589-0.857) 0.844 0.0001FV 25 0.2778 0.6364 (0.309-0.888) 0.8913 (0.764-0.963) 0.828 0.0001FV 30 0.2086 0.7273 (0.391-0.937) 0.8043 (0.661-0.906) 0.817 0.0001FV 35 0.1518 0.7273 (0.391-0.937) 0.8261 (0.686-0.922) 0.798 0.0001FV 40 0.1412 0.7273 (0.391-0.937) 0.8696 (0.737-0.950) 0.798 0.0002FV 45 0.1052 0.7273 (0.391-0.937) 0.7478 (0.711-0.936) 0.789 0.0003FV 500.0721 0.7273 (0.390-0.940) 0.8478 (0.711-0.937) 0.760 0.0008MPWLD (Gy) 17.051 0.8333 (0.516-0.979) 0.7556 (0.605-0.857) 0.844 0.0001FNTCP0.01051.0000 (0.735-1.000)0.6667 (0.510-0.810)0.8610.0001ROC, receiver operator characteristics; CI, confidence interval; AUC, area under the ROC curve; MPWLD, mean perfusion-weighted lungdose; FNTCP, functional normal tissue complication probability.Figure 1. ROC curve comparison for predictive value between FDVHs and DVHs. AUC, areas under the curve. (A) FV 5 vs. V 5, (B) FV 10 vs. V 10, (C) FV 20 vs. V 20, (D) FV 30 vs. V 30, (E) FV 40 vs. V 40, (F) FV 50 vs. V 50, (G) MPWLD vs. MLD and (H) FNTCP vs. NTCP.A B C DE F G HTable IV . Multivariate analysis of the association of DVHs with grade ≥2 radiation pneumonitis.Parameter B SE Ward p-value MLD4.422 1.178 14.086 0.001MLD, mean lung dose.Table V . Multivariate analysis of the association of FDVHs with grade ≥2 radiation pneumonitis.Parameters B SE Ward p-valueFV 52.436 1.3353.332 0.068FV 152.815 1.398 4.056 0.044EXPERIMENTAL AND THERAPEUTIC MEDICINE 2: 1017-1022, 20111021was observed (Fig. 1). Close correlations between FDVHs and DVHs were found (range of Spearman r, 0.725-0.940; p<0.001). DiscussionThe present results indicate that multiple conventional and functional dosimetric parameters can be predictors of RP for patients with LANSCLC, who were treated with LCAHRT. The predictive efficiency using functional parameters tend to be slightly improved compared to conventional counterparts. Currently, although numerous studies have investigated predictive factors for RP, there are no validated and standard-ized methods for prediction. In particular, dosimetric factors have mostly been reported using conventionally fractionated radiotherapy schedules, and their reliability while using LCAHRT is unknown. Jenkins et al (23) reported that V20 and MLD were useful factors for predicting the risk of RP after treatment with continuous hyperfractionated acceler-ated radiotherapy (CHART). In terms of our study, many dose-volumetric parameters (V5-V40, MLD and NTCP) were significantly correlated with an increased risk of RP. Among these parameters, MLD was shown to be the only indepen-dent predictor by multivariate analysis. A previous study (24) using different theoretical models generated a different single parameter from the DVHs, for example, MLD and VDth, to estimate the predictive value, which confirmed that MLD was the most accurate predictor for the incidence of RP, although the correlation between VDth and MLD was strong. Compared to conventional DVHs, FDVHs were correlated with the local FL injury. In previous studies (9,15,16,19,25,26), regional lung damage, assessed by SPECT perfusion combining the 3D dose distribution of individual patients with the average dose-effect relations, was predictive for the radiation-induced change in the overall pulmonary function, and possibly for the incidence of RP. Seppenwoolde et al (10) reported a statistically significant correlation between the incidence of RP and the MPWLD. In our initial study, FV5-FV50, MPWLD and FNTCP were all strongly correlated with RP, while multivariate analysis showed that only FV15 remains significant. For the promise of functional parameters, we evaluated their performance using ROC curve analysis compared to conventional equivalents. Unfortunately, the results of this study were quite unexpected, with MPWLD exhibiting a slight reduction in predictive efficiency compared to MLD (Fig. 1). Although almost all of the FDVHs had larger AUC than DVHs, the predictive efficiency of FDVHs among FV5-FV40 did not increase significantly, with the exception of FV50 with sensitivity 72.73% (95% CI 0.39-0.94), speci-ficity 84.74% (95% CI 0.71-0.94) and accuracy 76.0% (area under the ROC curve) which was of borderline significance to V50. Kocak et al (20) prospectively tested the predictive abilities of dosimetric/functional parameters on two cohorts of patients from the Duke and Netherlands Cancer Institute (NKI). This previous study reported that perfusion weighted parameters (FV20, FV25 and FV30) had equivalent or slightly larger ROC areas (0.55 vs. 0.54, 0.54 vs. 0.52 and 0.54 vs.0.51, respectively) than using conventional counterparts in the Duke cohort. In the NKI data, MPWLD appeared to be the slightly advantaged predictor over MLD (0.71 vs. 0.61). From these studies, we considered that FDVHs are valuable for predicting RP with the predictive efficiency no worse at least than conventional DVHs. The results of our study further revealed that the FDVHs had a strong relationship with DVHs. Contemplating the present study, several factors may confine the predictive outcome of FDVHs. Firstly, in our study, we considered a perfusion value of 30% or more of the maximum radioactivity to be functional and the remaining regional lung was not (15). In fact, normal lung function is similar to a spec-trum; the use of a 30% cutoff point creates FL and non-FL, which may result in losing parts of the ‘non-FL’ information or underestimating the function in these regions. Secondly, adequate lung function requires both ventilation and perfu-sion. Furthermore, clinical studies (3,4,8) have found that the incidence of pneumonitis is higher in patients with lower lobe tumors. Therefore, further study combining anatomical informa-tion with ventilation/perfusion (V/Q) scan weighted functional dose-volumetric parameters should be investigated. Finally, we compared the efficiency between FNTCP and NTCP only as an experiment. If m, n and TD50 were unchanged in the Lyman model, the area under the ROC curve of FNTCP was larger than NTCP, although no statistical significance was observed. Ideally, FNTCP should be calculated using FL parameters, which would be more meaningful (12). Further study involving functional m (mf), n (nf), TD50 (TD50f) and FNTCP calculated based on these functional parameters should be established, which may be a superior predictor to their counterpart.In summary, this study suggests that multiple conventional DVHs and FDVHs may be predictors of RP for LANSCLC patients treated with LCAHRT. The predictive efficiency of FDVHs is equivalent to or slightly advantageous over DVHs. More homogeneous studies involving larger numbers of patients are required to further assess the value of FDVHs in the prediction of RP.AcknowledgementsThis study was supported, in part, by the National Nature Science Foundation (grant no. 30970861) and by the Science and Technology Project of Shandong Province (2006GG2202012 and 2009GG10002011).References1. Rodrigues G, Lock M, D'Souza D, et al: Prediction of radiation pneumonitis by dose-volume histogram parameters in lung cancer – a systematic review. Radiother Oncol 71: 127-138, 2004.2. Fay M, Tan A, Fisher R, et al: Dose-volume histogram analysis as predictor of radiation pneumonitis in primary lung cancer patients treated with radiotherapy. Int J Radiat Oncol Biol Phys 61: 1355-1363, 2005.3. Claude L, Pérol D, Ginestet C, et al: A prospective study on radiation pneumonitis following conformal radiation therapy in non-small cell lung cancer: clinical and dosimetric factors analysis. Radiother Oncol 71: 175-181, 2004.4. Graham MV, Purdy JA, Emami B, et al: Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 45: 323-329, 1999.5. Kim TH, Cho KH, Pyo HR, et al: Dose-volumetric parameters for predicting severe radiation pneumonitis after three-dimensional conformal radiation therapy for lung cancer. Radiology 235: 208-215, 2005.6. Oh D, Ahn YC, Park HC, et al: Prediction of radiation pneu-monitis following high-dose thoracic radiation therapy by 3 Gy/ fraction for non-small cell lung cancer: analysis of clinical and dosimetric factors. Jpn J Clin Oncol 39: 151-157, 2009.WANG et al: FUNCTIONAL DOSE-VOLUME HISTOGRAMS FOR PREDICTING RADIATION PNEUMONITIS 10227. Piotrowski T, Matecka-Nowak M and Milecki P: Prediction of radiation pneumonitis: dose-volume histogram analysis in 62 patients with non-small cell lung cancer after three-dimensional conformal radiotherapy. Neoplasma 52: 56-62, 2005.8. Yorke ED, Jackson A, Rosenzweig KE, et al: Dose-volume factors contributing to the incidence of radiation pneumonitis in non-small-cell lung cancer patients treated with three-dimensional conformal radiation therapy. Int J Radiat Oncol Biol Phys 54: 329-339, 2002.9. Marks LB, Spencer DP, Sherouse GW, et al: The role of three dimensional functional lung imaging in radiation treatment planning: the functional dose-volume histogram. Int J Radiat Oncol Biol Phys 33: 65-75, 1995.10. Seppenwoolde Y, de Jaeger K, Boersma LJ, et al: Regional differences in lung radiosensitivity after radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 60: 748-758, 2004.11. Marks LB and Prosnitz LR: Estimation of normal tissue compli-cation probabilities with three-dimensional technology. Int J Radiat Oncol Biol Phys 28: 777-779, 1994.12. Nioutsikou E, Partridge M, Bedford JL, et al: Prediction of radiation-induced normal tissue complications in radiotherapy using functional image data. Phys Med Biol 50: 1035-1046, 2005.13. Nestle U, Kremp S and Grosu AL: Practical integration of (18F)-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives. Radiother Oncol 81: 209-225, 2006.14. Lavrenkov K, Christian JA, Partridge M, et al: A potential to reduce pulmonary toxicity: the use of perfusion SPECT with IMRT for functional lung avoidance in radiotherapy of non-small cell lung cancer. Radiother Oncol 83: 156-162, 2007.15. Seppenwoolde Y, Muller SH, Theuws JC, et al: Radiation dose-effect relations and local recovery in perfusion for patients with non-small cell lung cancer. Int J Radiat Oncol Biol Phys 47: 681-690, 2000.16. Boersma LJ, Damen EM, de Boer RW, et al: A new method to determine dose-effect relations for local lung-function changes using correlated SPECT and CT data. Radiother Oncol 29: 110-116, 1993.17. Fan M, Marks LB, Hollis D, et al: Can we predict radiation-induced changes in pulmonary function based on the sum of predicted regional dysfunction? J Clin Oncol 19: 543-550, 2001.18. Seppenwoolde Y, Engelsman M, de Jaeger K, et al: Optimizing radiation treatment plans for lung cancer using lung perfusion information. Radiother Oncol 63: 165-177, 2002.19. Marks LB, Munley MT, Spencer DP, et al: Quantification of radiation-induced regional lung injury with perfusion imaging. Int J Radiat Oncol Biol Phys 38: 399-409, 1997.20. Kocak Z, Borst GR, Zeng J, et al: Prospective assessment of dosimetric/physiologic-based models for predicting radiation pneumonitis. Int J Radiat Oncol Biol Phys 67: 178-186, 2007. 21. Emami B, Lyman J, Brown A, et al: Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21: 109-122, 1991.22. Trotti A, Colevas AD, Setser A, et al: CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol 13: 176-181, 2003. 23. Jenkins P, D'A mico K, Benstead K, et al: Radiation pneumonitis following treatment of non-small cell lung cancer with continuous hyperfractionated accelerated radiotherapy (CHART). Int J Radiat Oncol Biol Phys 56: 360-366, 2003.24. Seppenwoolde Y, Lebesque JV, de Jaeger K, et al: Comparing different NTCP models that predict the incidence of radiation pneumonitis. Normal tissue complication probability. Int J Radiat Oncol Biol Phys 55: 724-735, 2003.25. Boersma LJ, Damen EM, de Boer RW, et al: Estimation of overall pulmonary function after irradiation using dose-effect relations for local functional injury. Radiother Oncol 36: 15-23, 1995. 26. De Jaeger K, Seppenwoolde Y, Boersma LJ, et al: Pulmonary function following high-dose radiotherapy of non-small cell lung cancer. Int J Radiat Oncol Biol Phys 55: 1331-1340, 2003. 27. Liao ZX, Travis EL and Tucker SL: Damage and morbidity from pneumonitis after irradiation of partial volumes of mouse lung. Int J Radiat Oncol Biol Phys 32: 1359-1370, 1995.。