【压轴题】动点存在性问题集锦

【压轴题】动点存在性问题集锦
【压轴题】动点存在性问题集锦

【压轴题】动点存在性问题集锦

1如图,在平面直角坐标系中,已知点A 坐标为(2,4),直线2=x 与x 轴相交于点B ,连结OA ,抛物线2x y =从点O 沿OA 方向平移,与直线2=x 交于点P ,顶点M 到A 点时停止移动.

(1)求线段OA 所在直线的函数解析式; (2)设抛物线顶点M 的横坐标为m ,

①用m 的代数式表示点P 的坐标; ②当m 为何值时,线段PB 最短;

(3)当线段PB 最短时,相应的抛物线上是否存在点Q ,使△QMA 的面积与△PMA 的面积相等,若存在,请求出点Q 的坐标;若不存在,请说明理由.

2如图所示,已知二次函数图象的顶点坐标为C (1,1),

直线,y =k x +m 的图象与该二次函数的图象交于A ,B

两点,其中,点A 坐标为(52,13

4

),点B 在Y 轴上,直线与x 轴的交点为

F , P 为线段AB 上的一个动点(点P 与A 、B 不重合),过P 作X 轴的垂线与这个二次函数的图象交于E 点.

(1)求k 、m 的值及这个二次函数的解析式;

(2)设线段PE 的长为h,点P 的横坐标为x,求h 与x 之间的函数关系,并写出自变量x 的取值范围; (3)D 为直线AB 与这个二次函数图象对称轴的交点,在线段AB 上是否存在点p ,使得以点P 、E 、D 为顶点的三角形与△BOF 相似?若存在,请求出P 点的坐标;若不存在,请说明理由.

3已知:抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB

(1)求A 、B 、C 三点的坐标; (2)求此抛物线的表达式; (3)求△ABC 的面积;

(4)若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;

(5)在(4)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.

4.已知,如图抛物线y=ax 2

+3ax+c (a>0) 与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在B 点左侧,点B 的坐标为(1,0),OC=3OB. (1) 求抛物线的解析式;

(2) 若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值;

(3) 若点E 在x 轴上,点P 在抛物线上,是否存在以A 、C 、E 、P 为顶点且以AC 为一边

的平行四边形?若存在,求点P 的坐标;若不存在,请说明理由。

5.如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =?∠. (1)求点E 到BC 的距离; (2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.

①当点N 在线段AD 上时(如图2),P M N △的形状是否发生改变?若不变,求出PMN

△的周长;若改变,请说明理由; ②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.

A D E B

F C

图4(备

A

D E

B

F C

图5(备

A D E B

F C 图1 图2 A D E B

F C P N M

图3

A D E

B

F C

P N M (第25

6.

如图,已知(1

0)(0A E --,,,,以点A 为圆心,以AO 长为半径的圆交x 轴于另一点B ,过点B 作BF AE ∥交A 于点F ,直线FE 交x 轴于点C . (1)求证:直线FC 是A 的切线; (2)求点C 的坐标及直线FC 的解析式;

(3)有一个半径与A 的半径相等,且圆心在x 轴上运动的P .若P 与直线FC 相交于M N ,两点,是否存在这样的点P ,使PMN △是直角三角形.若存在,求出点P 的坐标;

若不存在,请说明理由.

7.已知抛物线2

y ax bx c =++

经过02P E ??

? ???

,及原点(00)O ,.

(1)求抛物线的解析式.

(2)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于

B 点,直线QA 与直线P

C 及两坐标轴围成矩形OABC (如图).是否存在点Q ,使得OPC

△与PQB △相似?若存在,求出Q 点的坐标;若不存在,请说明理由.

(3)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形

OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系?为什么?

1. 如图所示,在平面直角坐标中,四边形OABC 是等腰梯形,BC ∥OA ,OA=7,AB=4,∠ COA=60°,点P 为x 轴上的—个动点,点P 不与点0、点A 重合.连结CP ,过点P 作PD 交AB 于点D . (1)求点B 的坐标;

(2)当点P 运动什么位置时,△OCP 为等腰三角形,求这时点P 的坐标;

(3)当点P 运动什么位置时,使得∠CPD=∠OAB ,且

AB BD =8

5

,求这时点P 的坐标。

2.如图,已知射线DE 与x 轴和y 轴分别交于点(30)D ,和点(04)E ,.动点C 从点(50)M ,

出发,以1个单位长度/秒的速度沿x 轴向左作匀速运动,与此同时,动点P 从点D 出发,也

以1个单位长度/秒的速度沿射线DE 的方向作匀速运动.设运动时间为t 秒. (1)请用含t 的代数式分别表示出点C 与点P

(2)以点C 为圆心、1

2

t 个单位长度为半径的C ⊙与B 的

左侧),连接P A 、PB .

①当C ⊙与射线DE 有公共点时,求t 的取值范围; ②当PAB △为等腰三角形时,求t 的值.

3.已知直角坐标系中菱形ABCD 的位置如图,C ,D 两点的坐标分别为(4,0),(0,3).现有两动

点P ,Q 分别从A ,C 同时出发,点P 沿线段AD 向终点D 运动,点Q 沿折线CBA 向终点A 运动,设运动时间为t 秒.

(1)填空:菱形ABCD 的边长是 ▲ 、面积是 ▲ 、

高BE 的长是 ▲ ; (2)探究下列问题:

①若点P 的速度为每秒1个单位,点Q 的速度为每秒2个单位.当点Q 在线段BA 上时,求△APQ 的面积S 关于t 的函数关系式,以及S 的最大值; ②若点P 的速度为每秒1个单位,点Q 的速度变为每秒k 个单位,在运动过程中,任何时刻都有相应的k 值,使得 △APQ 沿它的一边翻折,翻折前后两个三角形组成的四边 形为菱形.请探究当t =4秒时的情形,并求出k 的值.

4.如图13,在梯形ABCD 中,24AD BC AD BC ==∥,,,点M 是AD 的中点,

MBC △是等边三角形.

(1)求证:梯形ABCD 是等腰梯形;

(2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =?∠保持不变.设

PC x MQ y ==,,求y 与x 的函数关系式;

(3)在(2)中:①当动点P 、Q 运动到何处时,以点P 、M 和点A 、B 、C 、D 中

的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;②当

y 取最小值时,判断PQC △的形状,并说明理由.

1 如图,在矩形ABCD 中,9AB =

,AD =点P 是边BC 上的动点(点P 不与点B ,点C 重合),过点P 作直线PQ BD ∥,交CD 边于Q 点,再把PQC △沿着动直线PQ 对

折,点C 的对应点是R 点,设CP 的长度为x ,

PQR △与矩形ABCD 重叠部分的面积为y .

(1)求CQP ∠的度数;

(2)当x 取何值时,点R 落在矩形ABCD 的AB 边上?

(3)①求

y 与x 之间的函数关系式;

②当x 取何值时,重叠部分的面积等于矩形面积的7

27?

2.在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x . (1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切?

(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?

D

Q

C B

P

R A

B

A

D

C

(备用图1)

B

A

D

C

(备用图2)

A

D

C

B

P M

Q

60°

图13

图 3

B

D 图 2

B

图 1

3.将一矩形纸片OABC 放在平面直角坐标系中,(00)O ,

,(60)A ,,(03)C ,.动点Q 从点O 出发以每秒1个单位长的速度沿OC 向终点C 运动,运动2

3

秒时,动点P 从点A 出发以相等的速度沿AO 向终点O 运动.当其中一点到达终点时,另一点也停止运动.设点P 的运

动时间为t (秒).

(1)用含t 的代数式表示OP OQ ,;

(2)当1t 时,如图1,将O

P Q △沿PQ 翻折,点O 恰好落在CB 边上的点D 处,求点D 的坐标;

(3)连结AC ,将O

P Q △沿PQ 翻折,得到EPQ △,如图2.问:PQ 与AC 能否平行?PE 与AC 能否垂直?若能,求出相应的t 值;若不能,说明理由.

1.已知抛物线(

)与

轴相交于点,顶点为

.直线分

别与

轴相交

两点,并且与直

线相交于

. (1)填空:试用含的代数式分别表示点与

的坐标,则

(2)如图,将沿

轴翻折,若点

的对应点′恰好落在抛物线上,′与轴

交于点

,连结

,求的值和四边形

的面积;

(3)在抛物线(

)上

是否存在一点

,使得以

顶点的四边形是平行四边形?若存在,求 出点的坐标;若不存在,试说明理由.

图1

2.已知:如图① , A 是半径为2的⊙O 上的一点,P 是OA 延长线上的一动点..,过P 作⊙O 的切线,切点为B 、设PA =m , PB =n . (1)当n =4时,求m 的值;

(2)⊙O 上是否存在点C ,使△PBC 为等边三角形?若存在,请求出此时m 的值;若不

存在,请说明理由;

(3)当m 为何值时,⊙O 上存在唯一点M 和PB 构成以PB ..

为底的等腰三角形?并直接答出:此时⊙O 上能与PB 构成等腰三角形的点共有几个?(图②、图③供解题时选用)

选题理由:

(1)、该题是存在性探究题,涉及圆与直线相切时性质的运用,等腰三角形的判定等知识点,体现了数形结合、分类讨论等数学思想 。 (2)、近几年的中考题压轴题以考学生的能力为导向,选题中涉及的作图部分也能较好地反映这一点。

3.如图,已知点A 的坐标是(-1,0),点B 的坐标是(9,0),以AB 为直径作⊙O′,交y 轴的负半轴于点C ,连接AC 、BC ,过A 、B 、C 三点作抛物线.

(1)求抛物线的解析式;

(2)点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O′于点D ,连结BD ,求直线BD 的解析式;

(3)在(2)的条件下,抛物线上是否存在点P ,使得∠PDB =∠CBD?如果存在,请求出点P 的坐标;如果不存在,请说明理由.

1.如图,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时

针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设x AB =. (1)求x 的取值范围;

(2)若△ABC 为直角三角形,求x 的值; (3)探究:△ABC 的最大面积?

A

B 图① P

· O

A · O

A

· O

图②

图③

(第24题)

2.如图,抛物线23y ax bx =+-与x 轴交于A B ,两点,与y 轴交于C 点,且经过点

(23)a -,,对称轴是直线1x =,顶点是M .

(1)求抛物线对应的函数表达式;

(2)经过C ,M 两点作直线与x 轴交于点N ,在抛物线上是否存在这样的点P ,使以点P A C N ,,,为顶点的四边形为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;

(3)设直线3y x =-+与y 轴的交点是D ,在线 段BD 上任取一点E (不与B D ,重合),经过 A B E ,,三点的圆交直线BC 于点F ,试判断

AEF △的形状,并说明理由;

(4)当E 是直线3y x =-+上任意一点时,

(3)中的结论是否成立?(请直接写出结论).

3.如图25-1,正方形ABCD 和正方形QMNP ,∠M =∠B ,M 是正方形ABCD 的对称中心,MN 交AB 于F ,QM 交AD 于E . ⑴求证:ME = MF .

⑵如图25-2,若将原题中的“正方形”改为“菱形”,其他条件不变,探索线段ME 与线段MF 的关系,并加以证明.

⑶如图25-3,若将原题中的“正方形”改为“矩形”,且AB = m BC ,其他条件不变,探索线段ME 与线段MF 的关系,并说明理由.

⑷根据前面的探索和图25-4,你能否将本题推广到一般的平行四边形情况?若能,写出推广命题;若不能,请说明理由.

图25 - 4

图25 - 3

图25 - 2

图25 -1

1.如图,已知抛物线C 1:()522

-+=x a y 的顶点为P ,与x 轴相交于A 、B 两点(点

A 在点

B 的左边),点B 的横坐标是1.

(1)求P 点坐标及a 的值;(4分) (2)如图(1),抛物线C 2与抛物线C 1关于x

轴对称,将抛物线C 2向右平移,平移后的抛物线记为C 3,C 3的顶点为M ,当点P 、M 关于点B 成中心对称时,求C 3的解析式;(4分)

(3)如图(2),点Q 是x 轴正半轴上一点,将抛物线C 1绕点Q 旋转180°后得到抛物线C 4.抛物线C 4的顶点为N ,与x 轴相交于E 、F 两点(点E 在点F 的左边),当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标.(5

分)

2. 如图①,点A ',B '的坐标分别为(2,0)和(0,4-),将A B O ''△绕点O 按逆时针方向旋转90°后得ABO △,点A '的对应点是点A ,点B '的对应点是点B .

(1)写出A ,B 两点的坐标,并求出直线AB 的解析式;

(2)将ABO △沿着垂直于x 轴的线段CD 折叠,(点C 在x 轴上,点D 在

AB 上,点D 不与A ,B 重合)如图②,使点B 落在x 轴上,点B 的对应

点为点E .设点C 的坐标为(0x ,),C D E △与ABO △重叠部分的面积为S .

i )试求出S 与x 之间的函数关系式(包括自变量x 的取值范围); ii )当x 为何值时,S 的面积最大?最大值是多少?

iii )是否存在这样的点C ,使得ADE △为直角三角形?若存在,直接写出点C 的坐标;若不存在,请说明理由.

3.如图1,已知P 为正方形ABCD 的对角线AC 上一点(不与A 、C 重合),PE ⊥BC 于点E ,

PF ⊥CD 于点F .

(1)求证:BP =DP ;

(2)如图2,若四边形PECF 绕点C 按逆时针方向旋转,在旋转过程中是否总有BP =DP ?若是,请给予证明;若不是,请用反例加以说明;

(3)试选取正方形ABCD 的两个顶点,分别与四边形PECF 的两个顶点连结,使得到的两条线段在四边形PECF 绕点C 按逆时针方向旋转的过程中长度始终相等,并证明你的结论 .

图2

图1

1.如图①②,图①是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图②.已知铁环的半径为5个单位(每个单位为5cm),设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为A,∠MOA

=α,且sinα=3

5

.

(1)求点M离地面AC的高度BM(单位:厘米);

(2)设人站立点C与点A的水平距离AC等于11个单位,求铁环钩MF的长度(单位:厘米).

动点问题题型方法归纳

动点问题 知识点: 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1、(2009年齐齐哈尔市)直线3 6 4 y x =-+ 与坐标轴分别交于A B 、两点,动点P Q 、同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动. (1)直接写出A B 、两点的坐标; (2)设点 Q的运动时间为t秒,OPQ △的面积为S,求出S与t之间的函数关系式; (3)当 48 5 S= 时,求出点P的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M的坐标.

提示:第(2)问按点P到拐点B所有时间分段分类; 第(3)问是分类讨论:已知三定点O、P、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP为边、OQ为边,②OP为边、OQ为对角线,③OP为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。 2、(2009年衡阳市)如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60o. (1)求⊙O的直径; (2)若D是AB延长线上一点,连结CD,当BD长为多少时,CD与⊙O相切; (3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速 度从B点出发沿BC方向运动,设运动时间为 )2 )( (<

中考数学压轴题解题策略(3)直角三角形的存在性问题解题策略(最新整理)

中考数学压轴题解题策略(3) 直角三角形的存在性问题解题策略 《挑战压轴题·中考数学》的作者 上海 马学斌 专题攻略 解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根. 一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程. 有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便. 解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起. 如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便. 在平面直角坐标系中,两点间的距离公式常常用到. 怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点). 例题解析 例? 如图1-1,在△ABC 中,AB =AC =10,cos ∠B =.D 、E 为线段BC 上的两个45 动点,且DE =3(E 在D 右边),运动初始时D 和B 重合,当E 和C 重合时运动停止.过E 作EF //AC 交AB 于F ,连结DF .设BD =x ,如果△BDF 为直角三角形,求x 的值. 图1-1 【解析】△BDF 中,∠B 是确定的锐角,那么按照直角顶点分类,直角三角形BDF 存在两种情况.如果把夹∠B 的两条边用含有x 的式子表示出来,分两种情况列方程就可以了. 如图1-2,作AH ⊥BC ,垂足为H ,那么H 是BC 的中点. 在Rt △ABH 中,AB =10,cos ∠B = ,所以BH =8.所以BC =16.45由EF //AC ,得,即.所以BF =.BF BE BA BC =31016BF x +=5(3)8x + 图1-2 图1-3 图1-4

苏教版中考数学压轴题:动点问题

运动变化型问题专题复习 【考点导航】 运动变化题是指以三角形、四边形、圆等几何图形为载体,设计动态变化,并对变化过程中伴随着的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行考察研究的一类问题,这类试题信息量大,题目灵活多变,有较强的选拔功能,是近年来中考数学试题的热点题型之一,常以压轴题的面目出现.解决此类问题需要运用运动和变化的观点,把握运动和变化的全过程,动中取静,静中求动,抓住变化过程中的特殊情形,建立方程、不等式、函数模型. 【答题锦囊】 例1 如图在Rt △ABC 中,∠C =90°,AC =12,BC =16,动点P 从点A 出发沿AC 边向点C 以每秒3个单位长的速度运动,动点Q 从点C 出发沿CB 边向点B 以每秒4个单位长的速度运动.P ,Q 分别从点A ,C 同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ 关于直线PQ 对称的图形是△PDQ .设运动时间为t (秒). (1)设四边形PCQD 的面积为y ,求y 与t 的函数关系式; (2)t 为何值时,四边形PQBA 是梯形? (3)是否存在时刻t ,使得PD ∥AB ?若存在,求出t 的值;若不存在,请说明理由; (4)通过观察、画图或折纸等方法,猜想是否存在时刻t ,使得PD ⊥AB ?若存在,请估计t 的值在括号中的哪个时间段内(0≤t ≤1;1<t ≤2;2<t ≤3;3<t ≤4);若不存在,请简要说明理由. 例2 如图2,直角梯形ABCD 中,AB ∥CD ,∠A=900,AB=6,AD=4,DC=3,动点P 从点A 出发,沿A →D →C →B 方向移动,动点Q 从点A 出发,在AB 边上移动.设点P 移动的路程为x ,点Q 移动的路程为 y ,线段PQ 平分梯形ABCD 的周长. (1)求y 与x 的函数关系式,并求出x y ,的取值范围; (2)当PQ ∥AC 时,求x y ,的值; (3)当P 不在BC 边上时,线段PQ 能否平分梯形ABCD 的面积?若能,求出此时x 的值;若不能,说明理 由. 图1 P A C D Q P B 图2

直角三角形存在性

直角三角形的存在性问题代数法 1.写出三边的平方 2.分类列方程 3.解方程 几何法 1.分类 2.画图——“两线一圆” 3.计算

例1.如图,抛物线y=ax2+bx+c经过点A(-3,0),B(1,0),C(0,-3). (1)求抛物线的解析式; (2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标; (3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

例 2.如图,在直角坐标系中,R t△O A B的直角顶点A在x轴上,O A=4,A B=3.动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O 移动;同时点N从点O出发,以每秒 1.25个单位长度的速度,沿O B 向终点B移动.当两个动点运动了x秒(0

例 3.(2015·益阳中考)已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A,B关于y轴的对称点分别为点A′,B′. (1)求m的值及抛物线E2所表示的二次函数的表达式. (2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q,B,B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由. (3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连接O P并延长与抛物线E2相交于点P′,求△P AA′与△P′BB′的面积之比.

动点问题、存在性问题小结

动点问题和存在性问题小结训练 一、基础训练 1.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示对称轴为X=﹣.下列结论中, 正确的是() A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b 2.二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论: ① b2-4ac>0;② 2a+b<0;③ 4a-2b+c=0;④ a:b:c= -1:2:3. 其中正确的是( ) (A) ①② (B) ②③ (C) ③④ (D)①④ 3.已知二次函数的图象过(-2,0)、(4,0)、(0,3)三点,求这个二次函数的关系式. 4.已知一个二次函数当x = 8时,函数有最大值9,且图象过点(0,1),求这个二次函数的关系式. 5.已知二次函数的图象过(3,0)、(2,-3)二点,且对称轴是x=1,求这个二次函数的关系式. 6.某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系. (1)试求y与x之间的函数关系式; (2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少? 7.如图,在平面直c bx ax y+ + =2角坐标系中,抛物线c bx ax y+ + =2经过 A(-2,-4),O(0,0),B(2,0)三点. (1)求抛物线的解析式; (2)若点M是抛物线对称轴上一点,求AM+OM的最小值. (3)在此抛物线上是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.

2018年中考数学专题等腰三角形存在性问题(题型全面)压轴题

专题等腰三角形存在性问题 题型一:几何图形 1、如图(1),在△ABC中,AB=AC,∠A=36°. (1)直接写出∠ABC的度数; (2)如图(2),BD是△ABC中∠ABC的平分线. ①找出图中所有等腰三角形(等腰三角形ABC除外),并选其中一个写出推理过程; ②在直线BC上是否存在点P,使△CDP是以CD为一腰的等腰三角形?如果存在,请在图(3)中画出满足条件的所有的点P,并直接写出相应的∠CPD的度数;如果不存在,请说明理由.

变式一:如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,设运动时间为t秒. (1)当t=1时,求△ACP的面积. (2)t为何值时,线段AP是∠CAB的平分线? (3)请利用备用图2继续探索:当t为何值时,△ACP是以AC为腰的等腰三角形?(直接写出结论) 变式二:如图,已知在△ABC中,∠B=90°,AB=8cm,BC=6cm,点P开始从点A 开始沿△ABC的边做逆时针运动,且速度为每秒1cm,点Q从点B开始沿△ABC 的边做逆时针运动,且速度为每秒2cm,他们同时出发,设运动时间我t秒.(1)出发2秒后,求PQ的长; (2)在运动过程中,△PQB能形成等腰三角形吗?若能,则求出几秒后第一次形成等腰三角形;若不能,则说明理由; (3)从出发几秒后,线段PQ第一次把直角三角形周长分成相等的两部分?

变式三:在△ABC中,∠C=90°,AC=BC=2,将一块三角板的直角顶点放在斜边AB 的中点P处,将此三角板绕点P旋转,三角板的两直角边分别交射线AC、CB与点D、点E,图①,②,③是旋转得到的三种图形. (1)观察线段PD和PE之间的有怎样的大小关系,并以图②为例,加以说明;(2)△PBE是否构成等腰三角形?若能,指出所有的情况(即求出△PBE为等腰三角形时CE的长);若不能请说明理由. 变式四:如图,在矩形ABCD中,AB=4,BC=3,点E是边CD上任意一点(点E 与点C、D不重合),过点A作AF⊥AE,交边CB的延长线于点F,连接EF,交边AB于点G.设DE=x,BF=y. (1)求y关于x的函数解析式,并写出自变量x的取值范围; (2)如果AD=BF,求证:△AEF∽△DEA; (3)当点E在边CD上移动时,△AEG能否成为等腰三角形?如果能,请直接写出线段DE的长;如果不能,请说明理由.

中考数学压轴题专题 动点问题

2012年全国中考数学(续61套)压轴题分类解析汇编 专题01:动点问题 25. (2012吉林长春10分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到 点B停止.点P在AD的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作 PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s). (1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).(2)当点N落在AB边上时,求t的值. (3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式. (4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s 的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P 在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 【答案】解:(1)t-2。 (2)当点N落在AB边上时,有两种情况: ①如图(2)a,当点N与点D重合时,此时点P在DE上,DP=2=EC,即t-2=2,t=4。 ②如图(2)b,此时点P位于线段EB上. ∵DE=1 2 AC=4,∴点P在DE段的运动时间为4s, ∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4。 ∵PN∥AC,∴△BNP∽△BAC。∴PN:AC = PB:BC=2,∴PN=2PB=16-2t。 由PN=PC,得16-2t=t-4,解得t=20 3 。 综上所述,当点N落在AB边上时,t=4或t=20 3 。 (3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况:

中考数学 专题16 函数动点问题中三角形存在性(解析版)

专题16 函数动点问题中三角形存在性 模型一、等腰三角形存在性问题 以腰和底分类讨论,借助勾股定理、相似性质、三角函数等知识进行求解. 模型二、直角三角形存在性问题 以直角顶点不同分类讨论,借助勾股定理、相似性质、三角函数等知识进行求解.常见的模型为“一线三直角”. 【例1】 (2019·郑州外国语模拟)如图,在平面直角坐标系中,抛物线y=ax2-3 2 x+c经过点A(-1,0),B(4,0), 与y轴交于点C,点P是x轴下方的抛物线上一动点(包含点A、B).作直线BC,若过点P作x轴的垂线,交直线BC于点Q. (1)求抛物线的解析式; (2)在点P的运动过程中,是否存在点P,使△CPQ是等腰三角形?若存在,直接写出点P的横坐标,若不存在,请说明理由. 【答案】见解析. 【解析】解:(1)由题意,抛物线的解析式可表示为:y=a(x+1)(x-4), 将点(0,-2)代入上式,得:a=1 2 , 即抛物线的解析式为:y=1 2 x2- 3 2 x-2; (2)由y=1 2 x2- 3 2 x-2得:C(0,-2), 由勾股定理得:BC 由C(0,-2), B(4,0)得直线BC的解析式为:y=1 2 x-2, 设P(m,1 2 m2- 3 2 m-2),则Q(m, 1 2 m-2), 过Q作QM⊥y轴于M,则QM∥AB,

∴ CQ QM BC AB = ,4 m =, ∴CQ , PQ =-12m 2+2m , PC ①当CQ =PQ 时, =-1 2 m 2+2m ,解得:m =0(舍)或m =4; ②当CQ =PC 时, = m =0(舍)或m =2或m =4(舍); ③当PQ =PC 时, -12m 2+2m = m =0(舍)或m =32; 综上所述,存在点P ,使△CPQ 是等腰三角形,点P 的横坐标为:42或3 2 . 【变式1-1】(2018·开封二模)如图,抛物线L :y =ax 2+bx +3与x 轴交于A 、B 两点(A 点在B 点的左侧),与y 轴交于点C ,已知点B (3,0),抛物线的对称轴为x =1. (1)求抛物线的解析式; (2)将抛物线向下平移h 个单位长度,使平移后所得的抛物线的顶点落在△OBC 内部(包含△OBC 边界),求h 的取值范围; (3)设点P 是抛物线L 上任一点,点Q 在直线l :x =-3上,△PBQ 能否成为以点P 为直角顶点的等腰直角三角形?若能,写出符合条件的点P 的坐标,若不能,请说明理由. 【答案】见解析.

特殊平行四边形动点及存在性问题(压轴题)复习课程

特殊平行四边形动点及存在性问题(压轴题)

特殊平行四边形中的动点及存在性问题 【例1】正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN 的最小值为 。 【练习1】如图,在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点. (1)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标; (2)若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,求点E 、F 的坐标. 【例2】 如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 的坐标分别为(10,0),(0,4),点D 是OA 的中点,点P 在BC 上运动,当三角形△ODP 是腰长为5的等腰三角形时,P 的坐标为 ; 【练习2】如图,在平面直角坐标系中,AB ∥OC ,A (0,12),B (a ,c ),C (b ,0),并且a ,b 满 足16b =.一动点P 从点A 出发,在线段AB 上以每秒2个单位长度的速度向点B 运动;动点Q 从点O 出发在线段OC 上以每秒1个单位长度的速度向点C 运动,点P 、Q 分别从点A 、O 同时出发,当点P 运动到点B 时,点Q 随之停止运动.设运动时间为t (秒) (1)求B 、C 两点的坐标; (2)当t 为何值时,四边形PQCB 是平行四边形?并求出此时P 、Q 两点的坐标; (3)当t 为何值时,△PQC 是以PQ 为腰的等腰三角形?并求出P 、Q 两点的坐标. x

【例3】(1)如图,矩形ONEF 的对角线相交于点M ,ON 、OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),则点M 的坐标为 ; (2)在直角坐标系中,有A (-1,2),B (3,1),C (1,4)三点,另有一点D 与点A 、B 、C 构成平行四边形的顶点,求点D 的坐标. 【练习3】如图,四边形ABCD 为矩形,C 点在x 轴上,A 点在y 轴上,D 点坐标是(0,0),B 点坐标是(3,4),矩形ABCD 沿直线EF 折叠,点A 落在BC 边上的G 处,E 、F 分别在AD 、AB 上,且F 点的坐标是(2,4). (1)求G 点坐标; (2)求直线EF 解析式; (3)点N 在x 轴上,直线EF 上是否存在点M ,使以M 、N 、F 、G 为顶点的四边形是平行四边形?若存在,请直接写出M 点的坐标;若不存在,请说明理由. 【例4】在Rt △ABC 中,∠B =90°,AC =60cm ,∠A =60°,点D 从点C 出发沿CA 方向以4cm /s 的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2cm /s 的速度运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D ,E 运动的时间是ts (0

数学“存在性”问题的解题策略(含解答)-

数学“存在性”问题的解题策略 存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。这类题目解法的一般思路是:假设存在→推理论证→得出结论。若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。 由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。 【典型例题】 例1. 223(1)9200x x m x m m -++-+=若关于的一元二次方程有两个实数根, 390cos 5 a b c ABC A B C C B ==又已知、、分别是△的∠、∠、∠的对边,∠°,且, 3b a m Rt -=,是否存在整数,使上述一元二次方程两个实数根的平方和等于 ABC c m △的斜边的平方?若存在,求出满足条件的的值,若不存在,请说明 理由。 分析:这个题目题设较长,分析时要抓住关键,假设存在这样的m ,满足的条件有m 是整数,一元二次方程两个实数根的平方和等于Rt △ABC 斜边c 的平方,隐含条件判别式Δ≥0等,这时会发现先抓住Rt △ABC 的斜边为c 这个突破口,利用题设条件,运用勾股定理并不难解决。 解:在△中,∠°,∵Rt ABC C B ==903 5 cos ∴设a=3k ,c=5k ,则由勾股定理有b=4k , 33343==-=-k k k a b ∴,∴, ∵ ∴,,a b c ===91215 设一元二次方程的两个实数根为,x m x m m x x 2 2 12319200-++-+=() 则有:,x x m x x m m 12122 31920+=+=-+() ∴x x x x x x m m m 1222 12212222312920+=+-=+--+()[()]() =+-736312 m m 由,x x c c 12 22 2 15+== 有,即7363122573625602 2 m m m m +-=+-= ∴,m m 124647 ==-

二次函数的动点问题(等腰、直角三角形的存在性问题)

二次函数中的动点问题 三角形的存在性问题 一、技巧提炼 1、利用待定系数法求抛物线解析式的常用形式 (1)、【一般式】已知抛物线上任意三点时,通常设解析式为,然后解三元方程组求解;(2)、【顶点式】已知抛物线的顶点坐标和抛物线上另一点时,通常设解析式为求解; 2、二次函数y=ax2+bx+c 与 x 轴是否有交点,可以用方程ax2 +bx+c = 0是否有根的情况进行判定; 判别式 b 24ac二次函数与x 轴的交点情况一元二次方程根的情况△> 0与 x 轴交点方程有的实数根 △< 0与 x 轴交点实数根 △= 0与 x 轴交点方程有的实数根 3、抛物线上有两个点为A(x , y), B( x , y) 12 (1) 对称轴是直线x x 1 x2Q 2 (2) 两点之间距离公式: 已知两点 P x1 , y1,Q x2 ,y2 ,P G ( x1 x2 ) 2( y1 y2 ) 2O 则由勾股定理可得:PQ 练一练:已知 A( 0, 5)和 B(- 2, 3),则 AB=。 4、常见考察形式 1)已知 A( 1,0 ), B( 0, 2),请在下面的平面直角坐标系 坐标轴上找一点C,使△ ABC是等腰三角形; 总结:两圆一线 方法规律 :平面直角坐标系中已知一条线段,构造等腰三角形,用的是“两圆一线”:分别以线段的两个端点为圆心,线段长度为半径作圆,再作线段的垂直平分线;

2)已知 A( -2,0 ), B( 1, 3),请在平面直角坐标系中坐标轴 上找一点C,使△ ABC是直角三角形; 总结:两线一圆 方法规律 {平面直角坐标系中已知一条线段,构造直角三角形,用的是“两线一圆”:分别过已知线段的两个端点作已知线段的垂线,再以已知线段为直径作圆; 5、求三角形的面积: ( 1)直接用面积公式计算;( 2)割补法;( 3)铅垂高法; 如图,过△ ABC 的三个顶点分别作出与水平线垂直的三条直线, A铅垂高 外侧两条直线之间的距离叫△ABC 的“水平宽” ( a),中间的C h 这条直线在△ ABC 内部线段的长度叫△ ABC 的“铅垂高” ( h). 我们可得出一种计算三角形面积的新方法:B 水平宽1 S△ABC =2ah,即三角形面积等于水平宽与铅垂高乘积的一半。a 6、二次函数中三角形的存在性问题 解题思路:( 1)先分类,罗列线段的长度;(2)再画图;(3) 后计算

动点存在性问题

第一讲动点存在性问题 一.考情分析 二.知识回顾 1、题型分类 在中考中,存在性问题一般分为四类: 1.是否存在三角形(等腰三角形、直角三角形); 2.是否存在四边形(平行四边形、直角梯形和等腰梯形); 3.是否存在三角形与已知三角形相似或者全等; 4.是否存在三角形与已知三角形的面积之间有数量关系。 2、方法归纳 在解决动点存在性问题时,一般先假设其存在,得到方程,如果有解,则存在,反之,则不存在。而在列方程时,一般要用到特殊三角形以及特殊平行四边形的性质、相似、解直角三角形等知识点,需要注意的是,列方程时,一定要遵循:用两种不同的方法表示同一个量,否则,将会得到“1=1”之类的恒等式。 对于是否存在三角形,一般按顶点分为三类情况。 而对于是否存在平行四边形则有两种形式的题目:如果已知三个定点,就有三种情况,一般利用平移坐标法即可求出答案;如果只有两个定点就应该按与边平行以及与对角线平行两种情况考虑了。 对于等腰梯形,就应该考虑腰长在下底边上的投影了。 对于是否存在三角形与已知三角形相似或者全等,则与是否存在三角形一样,分三类情况,当然,如果有一个角是一个定角(比如直角),则就分为两类情况。

类型一:是否存在三角形(等腰三角形、直角三角形) (A )【典型例题1】如图,在直角梯形ABCD 中,AD ∥BC ,∠C =90°,BC =16,DC =12,AD =21。动点P 从点D 出发,沿射线DA 的方向以每秒2两个单位长的速度运动,动点Q 从点C 出发,在线段CB 上以每秒1个单位长的速度向点B 运动,点P ,Q 分别从点D ,C 同时出发,当点Q 运动到点B 时,点P 随之停止运动。设运动的时间为t (秒)。当t 为何值时,以B ,P ,Q 三点为顶点的三角形是等腰三角形? (C )【典型例题2】如图2,在等腰梯形中,,是的中点,过点作交于点.,. (1)求点到的距离; (2)点为线段上的一个动点,过作交于点,过作交折线于点,连结,设. ①当点在线段上时(如图3),的形状是否发生改变?若不变,求出的周长;若改变,请说明理由; ②当点在线段上时(如图4),是否存在点,使为等腰三角形?若存在, 请求出所有满足要求的的值;若不存在,请说明理由. (B )【典型例题3】如图,已知直线1 12y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线 21 2y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。 学习心得 A B Q C P D 图1

二次函数压轴题之正方形存在性

正方形存在性问题 作为特殊四边形中最特殊的一位,正方形拥有更多的性质,因此坐标系中的正方形存在性问题变化更加多样,从判定的角度来说,可以有如下: (1)有一个角为直角的菱形; (2)有一组邻边相等的矩形; (3)对角线互相垂直平分且相等的四边形. 依据题目给定的已知条件选择恰当的判定方法,即可确定所求的点坐标. 从未知量的角度来说,正方形可以有4个“未知量”,因其点坐标满足4个等量关系,考虑对角线性质,互相平分(2个)垂直(1个)且相等(1个). 比如在平面中若已知两个定点,可以在平面中确定另外两个点使得它们构成正方形,而如果要求在某条线上确定点,则可能会出现不存在的情况,即我们所说的未知量小于方程个数,可能无解. 从动点角度来说,关于正方形存在性问题可分为: (1)2个定点+2个全动点; (2)1个定点+2个半动点+1个全动点; 甚至可以有:(3)4个半动点. 不管是哪一种类型,要明确的是一点,我们肯定不会列一个四元一次方程组求点坐标! 常用处理方法: 思路1:从判定出发 若已知菱形,则加有一个角为直角或对角线相等; 若已知矩形,则加有一组邻边相等或对角线互相垂直; 若已知对角线互相垂直或平分或相等,则加上其他条件. 思路2:构造三垂直全等 若条件并未给关于四边形及对角线的特殊性,则考虑在构成正方形的4个顶点中任取3个,必是等腰直角三角形,若已知两定点,则可通过构造三垂直全等来求得第3个点,再求第4个点. 总结:构造三垂直全等的思路仅适合已知两定点的情形,若题目给了4个动点,则考虑从矩形的判定出发,观察该四边形是否已为某特殊四边形,考证还需满足的其他关系. 正方形的存在性问题在中考中出现得并不多,正方形多以小题压轴为主.

专题:直角三角形存在性问题

直角三角形存在性问题 方法提炼: ●找点 已知“两个定点,求作直角三角形”,可借用“两线一圆法”找到第三个顶点的位置; ●直角三角形存在性问题探讨 1.先假设结论成立,根据直角顶点的不确定性,分情况讨论 2.方法一:画出具体图形,依托直角,作“横平竖直”辅助线,造“一线三直角”,利用相似列方程解 方法二:引入一个字母,用它表示出三角形的三边,再分类谈论,利用勾股定理列方程求解; 例1:如图在菱形ABCD中,∠ABC=60°,AB=2,点P是菱形外部的一点,若以点P、A、C为顶点的三角形 (1)求点A、B的坐标; (2)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.

例3.如图,二次函数y=x2+bx+c图像经过原点和点A(2,0),直线AB与抛物线交于点B,且∠BAO =45°. (1)求二次函数解析式及其顶点C的坐标; (2)在直线AB上是否存在点D,使得△BCD 为直角三角形.若存在,求出点D的坐标,若不存在,说明理由. 例4.(2017年.娄底)如图,抛物线y=ax2+bx+c与x轴交于两点A(﹣4,0)和B(1,0),与y轴交于点C(0,2),动点D沿△ABC的边AB以每秒2个单位长度的速度由起点A向终点B运动,过点D作x轴的垂线,交△ABC的另一边于点E,将△ADE沿DE折叠,使点A落在点F处,设点D的运动时间为t 秒. (1)求抛物线的解析式和对称轴; (2)是否存在某一时刻t,使得△EFC为直角三角形?若存在,求出t的值;若不存在,请说明理由;

●针对性演练: 1、如图,已知二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点P,顶点为C(1,-2).(1)求此函数的关系式; (2)作点C关于x轴的对称点D,顺次连接A,C,B,D.若在抛物线上存在点E,使直线PE将四边形ABCD 分成面积相等的两个四边形,求点E的坐标; (3)在(2)的条件下,抛物线上是否存在一点F,使得△PEF是以P为直角顶点的直角三角形?若存在,求出点F的坐标及△PEF的面积;若不存在,请说明理由. 2、如图,直线y=-x+3与x轴,y轴分别相交于点B,点C,经过B,C两点的抛物线y=ax2+bx+c与x 轴的另一交点为A,顶点为P,且对称轴是直线x=2。 (1)求点A的坐标; (2)求该抛物线的函数表达式; (3)请问在抛物线上是否存在点Q,使得以点B、C、Q为顶点的三角形为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.

15题压轴题练习--图形折叠及动点问题的相关计算

图形折叠及动点问题的相关计算 考情总结:图形折叠及动点问题的相关计算是近五年河南中招考试的重点及必考点,均在填空题第15题进行考查,分值为3分,常见的类型有三角形折叠相关计算、四边形结合的相关计算,常见的设问为探究特殊三角形存在时的线段长、探究动点在特殊位置时的线段长. 【方法指导】对于河南中招考试中的几何图形折叠与动点问题的计算,常涉及特殊三角形的探究及动点特 殊位置的探究. 1.掌握折叠的性质是解决问题的关键.(1)折叠前后位置的图形全等,对应边、角相等;(2)折痕两边的图形关于折痕对称;(3)折叠前后对应点的连线被折痕垂直平分; 2.特殊三角形:(1)直角或等腰三角形的判定:首先从可能满足直角的顶点或腰入手,通过矩形的性质、折叠的性质或结合直角三角形勾股定理直接计算,或设出某条线段长,根据相似、勾股定理等,列方程进行求解; 3.河南中招考试中,此类问题的重点为分类讨论,即该题多为多解题,注意等腰三角形的腰,直角三角形的直角顶点,特殊点的位置等. 1.(2017年)如图,在Rt △ABC 中,∠A=90°,AB=AC ,BC=+1,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠∠B ,使点B 的对应点B′始终落在边AC 上,若△MB′C 为直角三角形,则BM 2 1 或1 . 【分析】①如图1,当∠B′MC=90°,B′与A 重合,M 是BC 的中点,于是得到结论;②如图2,当∠MB′C=90°, 推出△CMB′是等腰直角三角形,得到CM= MB′,列方程即可得到结论. 【解答】解:①如图1, 当∠B′MC=90°,B′与A 重合,M 是BC 的中点, ∴BM=BC=+; ②如图2,当∠MB′C=90°, ∵∠A=90°,AB=AC , ∴∠C=45°, ∴△CMB′是等腰直角三角形,

直角三角形的存在性问题(教案)

直角三角形的存在性问题(教案) 学习目标: 1、经历探索直角三角形存在性问题的过程,熟练掌握解题技巧。 2、体会分类讨论的数学思想,体验解决问题方法的多样性。 一、课前准备 1.已知直角三角形的两边长分别是3和4,则第三边的长为 . 2.如图,A (0,4),C (4,0),点P 是线段OC 的中点,AP ⊥BP ,BC ⊥PC ,则BC 的长度为 . 【设计意图】通过两个简单的关于直角三角形的练习,检测学生对勾股定理、M 型相似的应用情况,同时引出课题——直角三角形的存在性问题. 二、我们一起来探究 如图,A (0,1),B (4,3)是直线12 1 += x y 上的两点,点P 是x 轴上一个动点. 问:是否存在这样的点P ,使得△ABP 为直角三角形?如果存在,请求出满足条件的点P 的坐标. y x B A O y x B A O y x B A O (备用图1) (备用图2) 提问:(1)这样的问题,你怎么思考的? 需要针对直角顶点进行分类. (2)一般会有几种情况? 三种. (3)分类之后需要做什么? 画图. (4)解题有哪些方法? (5)当直角顶点在点P 的时候,如何精确地找到点P ? 以AB 为直径的圆与x 轴的交点. 变式跟进:将上述直线向上平移a 个单位,A 、B 两点也同时向上平移到相应的位置,x 轴上存在唯一的点P ,使得∠APB=90°. 求a 的值. 【小结】直角三角形的存在性问题解题策略: . 【设计意图】通过这个环节,探究直角三角形存在性问题解题策略:分类——画图——解题,重在让学生了解这类题的的三种解法:几何法、解析法、代数法,从而为后面的练习做好铺垫. 三、反馈练习 1.如图,点O (0,0),A (1,2),若存在格点P ,使△APO 为直角三角形,则点P 的个数有 个.

专题06 动点折叠类问题中图形存在性问题(解析版)

专题06 动点折叠类问题中图形存在性问题 一、基础知识点综述 动点型问题是指题设中的图形中存在一个或多个动点,它们在线段、射线、直线、抛物线、双曲线、弧线等上运动的一类非常具有开放性的题目. 而从其中延伸出的折叠问题,更能体现其解题核心——动中求静,灵活运用相关数学知识进行解答,有时需要借助或构造一些数学模型来解答. 实行新课标以来,各省(市)的中考数学试卷都会有此类题目,这些题目往往出现在选择、填空题的压轴部分,题型繁多,题意新颖,具有创新力. 其主要考查的是学生的分析问题及解决问题的能力. 要求学生具备:运动观点;方程思想;数形结合思想;分类讨论思想;转化思想等等. 存在性问题 主要有等腰三角形存在性、直角三角形存在性、特殊落点存在性等问题,常用的数学解题模型有“一线三直角”等模型,作图方法是借助圆规化动为静找落点. 解题思路:分析题目→依据落点定折痕→建立模型→设出未知数列方程求解→得到结论. 解题核心知识点: 折叠性质; ①折叠前后图形大小、形状不变;②折痕是折叠前后对应点连线的垂直平分线; 勾股定理; 相似图形的性质、三角函数等. ★等腰三角形存在性问题 解题思路:依据圆规等先确定落点,再确定折痕; ★直角三角形存在性问题 解题思路:依据不同直角顶点位置分类讨论,作出图形求解. 二、精品例题解析 题型一:折叠问题中等腰三角形存在性问题 例1.(2019·金水区校级模拟)如图,∠AOB=90°,点P为∠AOB内部一点,作射线OP,点M在射线OB 上,且OM= ,点M与点M’关于射线OP对称,且直线MM’与射线OA交于点N,当△ONM’为等腰三角形时,ON的长为.

中考压轴题等腰三角形存在性问题 -

中考压轴题等腰三角形存在性问题 数学因运动而充满活力,数学因变化而精彩纷呈.动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等.解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况.以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射. 动态几何形成的存在性问题是动态几何中的基本类型,包括等腰(边)三角形存在问题;直角三角形存在问题;平行四边形存在问题;矩形、菱形、正方形存在问题;梯形存在问题;全等三角形存在问题;相似三角形存在问题;其它存在问题等.本专题原创编写面动形成的等腰三角形存在性问题模拟题. 在中考压轴题中,面动形成的等腰三角形存在性问题的重点和难点在于应用分类思想和数形结合的思想准确地进行分类. 原创模拟预测题1.如图,抛物线 223 y x x =-++与y轴交于点C,点D(0,1),点P是 抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为. 【答案】(122)或(122). 【分析】当△PCD是以CD为底的等腰三角形时,则P点在线段CD的垂直平分线上,由C、D坐标可求得线段CD中点的坐标,从而可知P点的纵坐标,代入抛物线解析式可求得P 点坐标. 【解析】 ∵△PCD是以CD为底的等腰三角形,∴点P在线段CD的垂直平分线上,如图,过P作 PE⊥y轴于点E,则E为线段CD的中点,∵抛物线 223 y x x =-++与y轴交于点C,∴C (0,3),且D(0,1),∴E点坐标为(0,2),∴P点纵坐标为2,在 223 y x x =-++中, 令y=2,可得 2232 x x -++=,解得x=12 ±,∴P点坐标为(122)或(12, 2),故答案为:(122)或(12,2).

二次函数的动点问题(等腰、直角三角形的存在性问题)解析

_ Q _ G _ P _ O 二次函数中的动点问题 三角形的存在性问题 一、技巧提炼 1、利用待定系数法求抛物线解析式的常用形式 (1)、【一般式】已知抛物线上任意三点时,通常设解析式为 ,然后解三元方程组求解; (2)、【顶点式】已知抛物线的顶点坐标和抛物线上另一点时,通常设解析式为 求解; 2、二次函数y=ax 2 +bx+c 与x 轴是否有交点,可以用方程ax 2 +bx+c = 0是否有根的情况进行判定; 判别式ac b 42-=? 二次函数与x 轴的交点情况 一元二次方程根的情况 △ > 0 与x 轴 交点 方程有 的实数根 △ < 0 与x 轴 交点 实数根 △ = 0 与x 轴 交点 方程有 的实数根 3、抛物线上有两个点为A (x 1,y ),B (x 2,y ) (1)对称轴是直线2 x 2 1x x += (2)两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:2 21221)()(y y x x PQ -+-= 练一练:已知A (0,5)和B (-2,3),则AB = 。 4、 常见考察形式 1)已知A (1,0),B (0,2),请在下面的平面直角坐标系 坐标轴上找一点C ,使△ABC 是等腰三角形; 总结:两圆一线 方法规律:平面直角坐标系中已知一条线段,构造等腰三角形,用的是“两圆一线”:分别以线段的两个 端点为圆心,线段长度为半径作圆,再作线段的垂直平分线;

2)已知A (-2,0),B (1,3),请在平面直角坐标系中坐标轴 上找一点C ,使△ABC 是直角三角形; 总结: 两线一圆 方法规律{平面直角坐标系中已知一条线段,构造直角三角形,用的是“两线一圆”:分别过已知线段的 两个端点作已知线段的垂线,再以已知线段为直径作圆; 5、求三角形的面积: (1)直接用面积公式计算;(2)割补法;(3)铅垂高法; 如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线, 外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的 这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高”(h ). 我们可得出一种计算三角形面积的新方法: S △ABC =1 2ah ,即三角形面积等于水平宽与铅垂高乘积的一半。 6、二次函数中三角形的存在性问题 解题思路:(1)先分类,罗列线段的长度;(2)再画图;(3) 后计算 B C 铅垂高 水平宽 h a A

【压轴题】动点存在性问题集锦

【压轴题】动点存在性问题集锦 1如图,在平面直角坐标系中,已知点A 坐标为(2,4),直线2=x 与x 轴相交于点B ,连结OA ,抛物线2x y =从点O 沿OA 方向平移,与直线2=x 交于点P ,顶点M 到A 点时停止移动. (1)求线段OA 所在直线的函数解析式; (2)设抛物线顶点M 的横坐标为m , ①用m 的代数式表示点P 的坐标; ②当m 为何值时,线段PB 最短; (3)当线段PB 最短时,相应的抛物线上是否存在点Q ,使△QMA 的面积与△PMA 的面积相等,若存在,请求出点Q 的坐标;若不存在,请说明理由. 2如图所示,已知二次函数图象的顶点坐标为C (1,1), 直线,y =k x +m 的图象与该二次函数的图象交于A ,B 两点,其中,点A 坐标为(52,13 4 ),点B 在Y 轴上,直线与x 轴的交点为 F , P 为线段AB 上的一个动点(点P 与A 、B 不重合),过P 作X 轴的垂线与这个二次函数的图象交于E 点. (1)求k 、m 的值及这个二次函数的解析式; (2)设线段PE 的长为h,点P 的横坐标为x,求h 与x 之间的函数关系,并写出自变量x 的取值范围; (3)D 为直线AB 与这个二次函数图象对称轴的交点,在线段AB 上是否存在点p ,使得以点P 、E 、D 为顶点的三角形与△BOF 相似?若存在,请求出P 点的坐标;若不存在,请说明理由. 3已知:抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB

相关文档
最新文档