塑料力学性能
第五章-塑料力学性能测试

成型、压延成型或吹膜成型等; 不同方法制样的试验结果不具备可比性; 同一种制样方法,要求工艺参数和工艺过程也要相同; 试样制备好后,要按GB/T 2918-1998标准,在恒温
恒湿条件下放置处理。
(2)材料试验机
影响因素主要有:测力传感器精度、速度控制精度、 夹具、同轴度和数据采集频率等。
第五章 力学性能测试
第一节 拉伸性能
一、概念及测试原理
1.基本概念
应变:当材料受外力作用,而所处的条件使它不能产生惯 性移动时,它的几何形状和尺寸将发生变化,这种变化就 称为应变。
应力:在任何给定时刻,在试样标距长度内,每单位原始 横截面积上所受的拉伸负荷。
拉伸强度:是在拉伸试验过程中,试样承受的最大拉伸应 力。
L0 100
L0
L
100
L
X
(3)标准偏差值按下式(5-4)计算
S
(Xi X)2
n 1
式中:S,标准偏差值;X
,单个测定值;X
i
,组
测定值的算术平均值;n,测定个数。
计算结果以算术平均值表示,σt取三位有效数字,
εt、S取二位有效数字。
3.影响因素
(1)试样的制备与处理 拉伸试验要求做成哑铃形试样; 制样方式有两种:一是用原材料制样;另一种是从制
精密度更高的平均值,试样数量可多于5个。
推荐试验速度
速度
允许偏差 速度
允许偏差
(mm/min) (%) (mm/min) (%)
1
±20
50
±10
2
±20
100 ±10
5
±20
200 ±10
塑料的几种力学性能的测试

塑料常规力学性能的测试(拉伸冲击弯曲)影响塑料力学性能的因素•影响塑料力学性能的因素很多,有聚合物结构的影响(如:聚合物种类,分子量及其分布,是否结晶等),有成型加工的影响(如:成型加工的方式及加工条件导致结晶度、取向度的变化,试样的缺陷等);有测试条件的影响(如:测试温度,湿度,速度等),它们会导致实验重复性差等缺陷,所以力学性能的测试有严格的测试标准,如GB1042-92规定:环境温度为25±1℃,相对湿度为65±5%,样品的尺寸、形状均有统一规定,实验结果往往为五次以上平均。
拉伸实验•一实验目的•掌握塑料拉伸强度的测试原理及测试方法,并能分析影响因素;加深对应力----应变曲线的理解,并从中求出有用的多种机械性能数据;观察拉伸时出现的屈服,裂纹,发白等现象。
二实验原理•拉伸试验是对试样沿纵轴向施加静态拉伸负荷,使其破坏。
通过测定试样的屈服力,破坏力,和试样标距间的伸长来求得试样的屈服强度,拉伸强度和伸长率。
定义•拉伸应力:试样在计量标距范围内,单位初始横截面上承受的拉伸负荷。
•拉伸强度:在拉伸试验中试样直到断裂为止,所承受的最大拉伸应力。
•拉伸断裂应力:在拉伸应力-应变曲线上,断裂时的应力。
•拉伸屈服应力:在拉伸应力-应变曲线上,屈服点处的应力。
•断裂伸长率:在拉力作用下,试样断裂时,标线间距离的增加量与初始标距之比,以百分率表示。
•ε断=(L-L0)/L0×100%•式中:L0------试样标线间距离,mm•L-------试样断裂时标线间距离,mm•弹性模量:在比例极限内,材料所受应力与产生响应的应变之比。
应力-应变曲线•由应力-应变的相应值彼此对应的绘成曲线,通常以应力值作为纵坐标,应变值作为横坐标。
应力-应变曲线一般分为两个部分:弹性变形区和塑性变形区,在弹性变形区,材料发生可完全恢复的弹性变形,应力和应变呈正比例关系。
曲线中直线部分的斜率即是拉伸弹性模量值,它代表材料的刚性。
机械工程中塑料材料力学性能测试及分析

机械工程中塑料材料力学性能测试及分析塑料材料广泛应用于机械工程领域,例如汽车零部件、家电产品等。
塑料的力学性能对于产品的质量和可靠性至关重要。
因此,进行塑料材料力学性能测试及分析具有重要意义。
一、拉伸强度测试拉伸强度是衡量塑料材料抗拉断能力的指标之一。
拉伸强度测试通常使用万能试验机进行。
首先,将塑料样品制备成标准尺寸,然后将样品夹于两个牵引夹具之间。
通过施加拉力,逐渐增加载荷直到材料断裂。
测试过程中,记录下拉力和拉伸位移的变化,从而得到应力-应变曲线。
根据应力-应变曲线,可以计算出材料的拉伸强度和断裂伸长率等指标。
二、冲击韧性测试塑料材料的冲击韧性是衡量其抵抗冲击破坏能力的指标。
常见的冲击韧性测试方法有夏比冲击强度测试和缝合剪切冲击强度测试。
夏比冲击强度测试使用夏比冲击强度试验机进行,将样品定位在夹具中央,在弗拉尔奇试样上以标准速率施加冲击载荷,通过测量样品破裂后的能量吸收来评估材料的冲击韧性。
缝合剪切冲击强度测试则是采用剪切冲击试验机进行,通过测量材料在不同温度下的缝合剪切冲击强度,评估材料的冲击性能。
三、硬度测试硬度是一种衡量材料硬度和抗刮伤能力的物理性能参数。
常见的塑料材料硬度测试方法有巴氏硬度测试和仪表硬度测试。
巴氏硬度测试是通过将巴氏针尖压入材料表面,根据巴氏硬度计示数来评估材料的硬度。
仪表硬度测试则采用仪表硬度计进行,常用的仪表硬度测试方法有布氏硬度、维氏硬度和洛氏硬度等。
四、刚度测试刚度是指材料对应力的抵抗能力,对塑料材料而言,刚度直接影响材料的承载能力、变形行为等。
常见的刚度测试方法有弯曲刚度测试和剪切刚度测试。
弯曲刚度测试通过施加弯曲载荷,测量材料在不同弯曲跨度下的挠度来评估材料的刚度。
剪切刚度测试则是通过测量材料在剪切荷载作用下的变形量和应力来评估材料的刚度。
综上所述,机械工程中塑料材料的力学性能测试及分析对于评估材料的质量和可靠性具有重要意义。
通过拉伸强度测试、冲击韧性测试、硬度测试和刚度测试等方法,可以全面了解塑料材料的力学性能,为机械工程应用提供科学依据。
塑料材料的弹性力学性能研究

塑料材料的弹性力学性能研究塑料是一种广泛应用于日常生活和工业领域的材料,具有轻质、耐腐蚀、耐磨损等优点。
然而,塑料材料的弹性力学性能对于其应用的可靠性和稳定性至关重要。
本文将探讨塑料材料的弹性力学性能研究,包括弹性模量、屈服强度和断裂韧性等方面。
弹性模量是衡量材料在受力作用下变形程度的重要指标。
塑料材料的弹性模量通常较低,这意味着其在受力作用下容易发生较大的变形。
这是由于塑料的分子结构决定的。
相较于金属材料,塑料材料的分子链较长且间距较大,导致其分子间相互作用较弱。
因此,塑料的弹性模量较低,容易发生塑性变形。
然而,塑料材料的屈服强度相对较高。
屈服强度是指材料在受力作用下开始发生塑性变形的应力值。
塑料的分子链结构使其能够承受较大的拉伸力,因此具有较高的屈服强度。
这使得塑料材料在工程领域中得到广泛应用,例如制造汽车零部件和航空器构件等。
另一个重要的弹性力学性能是断裂韧性。
断裂韧性是指材料在受力作用下抵抗断裂的能力。
塑料材料通常具有较高的断裂韧性,这是由于其分子链结构具有较强的韧性。
然而,塑料材料的断裂韧性也受到其分子链结构的影响。
一些特殊的塑料材料,如聚碳酸酯和聚酰亚胺等,具有较高的断裂韧性,可以用于制造高强度和高韧性的材料。
为了研究塑料材料的弹性力学性能,科学家们采用了多种实验和理论方法。
其中,拉伸试验是最常用的实验方法之一。
在拉伸试验中,塑料材料被加在拉伸机上,施加拉力,并测量其应变和应力。
通过绘制应力-应变曲线,可以得到材料的弹性模量、屈服强度和断裂韧性等参数。
除了实验方法,理论模型也被广泛应用于塑料材料的弹性力学性能研究。
其中,弹性力学理论和分子模拟方法是常用的理论模型。
弹性力学理论基于固体力学原理,通过假设材料是弹性的,从而推导出材料的应力-应变关系。
分子模拟方法则基于分子动力学理论,通过模拟分子间相互作用,研究材料的力学性能。
总之,塑料材料的弹性力学性能对于其应用的可靠性和稳定性至关重要。
第三章 塑料的力学性能-课.ppt课件

编辑版pppt
3
第一节 概述
塑料是一种高聚物材料。高聚物材料是所有已知材料中 力学性能变化范围最宽的材料,包括从液体(熔体)、高 弹体到刚硬的玻璃体,不同状态下其力学行为差别很大。
如聚苯乙烯制品往往很脆,一敲就碎;尼龙制品则很坚 韧,不易变形也不宜破碎;而聚乙烯塑料薄膜则非常柔软。 高聚物力学性能的这种多样性,为其不同场合的应用提供 了广阔的选择余地。然而,与金属材料相比,高聚物是典 型的粘弹性材料,即同时具有粘性液体和弹性固体的双重 力学性能,其力学行为对温度和时间的依赖性很强。高聚 物的粘弹性使高聚物的力学性能变化复杂,并对高聚物制 品的加工和使用产生重要影响。
性质,表征它们力学性能的材料常数远不止上述 几项。如单轴取向的材料,有5个独立的弹性模量, 包括纵向杨氏模量、横向杨氏模量、纵向剪切模
量、横向剪切模量和体积模量。此外还有纵向泊 松比和横向泊松比。
编辑版pppt
14
第2节 塑料力学性能对时间的依赖性
凡有时间依赖性的性质称为松弛特性,也称为弛 豫特性。高聚物力学行为的特性之一就是具有强 烈的时间依赖性,也就是说,高聚物的力学性能 随外力作用的时间而发生改变。时间t是评价高聚 物力学行为中不可或缺的重要参数。与时间有关 的材料的力学行为主要有蠕变及其回复、应力松 弛。
特
向相反,作用在同 向相反的两个力。 一直线上的两个力。
点
编辑版pppt
10
应变 应力
张应变:
l l0 l0
真应变:
l dl i
l l0 i
张应力:
F
真应力: A 0
F A
切应变:
压缩应变:
塑料物理性能指标

塑料物理性能指标塑料是一种常见的聚合物材料,具有广泛的应用范围。
塑料的物理性能指标是指其在物理上表现出来的性能特点,主要包括力学性能、热学性能、电性能、光学性能等方面。
下面将就这些方面进行详细介绍。
力学性能是指塑料材料在外力作用下所表现出来的抗拉、抗压、抗弯、抗冲击等性能。
其中抗拉强度是指塑料在拉伸时能够承受的最大拉力,通常用MPa表示。
抗压强度是指塑料在受到压力时能够承受的最大压力,通常用MPa表示。
抗弯强度是指塑料在受到弯曲力时能够承受的最大弯曲应力,通常用MPa表示。
抗冲击性能是指塑料在受到冲击时的抗冲击性能,一般用冲击强度或冲击能量表示。
热学性能是指塑料材料在热力学条件下的特性表现。
热膨胀系数是指塑料材料在温度变化时的膨胀性能,通常使用10^-5/℃表示。
热导率是指塑料材料传导热量的能力指标,常用W/(m·K)或cal/(s·cm·K)表示。
热变形温度是指塑料材料在加热过程中开始变形的温度,通常用℃表示。
热稳定性是指塑料材料在高温环境下的稳定性能,可以通过热失重率来评估。
电性能是指塑料材料在电场作用下的特性表现。
电阻率是指塑料材料对电流的阻碍程度,通常使用Ω·cm表示。
绝缘强度是指塑料材料对电场的绝缘能力,通常使用kV/mm表示。
介电常数是指塑料材料在电场中介质的相对电容性能,通常没有单位。
耐电弧性是指塑料材料对电弧击穿的抵抗能力。
光学性能是指塑料材料在光照或光学仪器中的性能表现。
透明度是指塑料材料对光的透过能力,通常使用%表示。
折射率是指塑料材料对光的折射程度,通常没有单位。
色度是指塑料材料对不同颜色的表现,通常使用色坐标表征。
除了以上述的指标外,塑料材料还有一些其他的物理性能指标,如密度、吸水性、湿热环境性能等。
密度是指塑料单位体积的质量,通常使用g/cm^3表示。
吸水性是指塑料材料对水分的吸收性能,可以通过吸水率来评估。
湿热环境性能是指塑料材料在潮湿或高温环境下的表现,通常通过湿热稳定性和湿热绝缘性能来评估。
塑料机械力学性能试验项目有哪些塑料的力学性能测试

塑料机械力学性能试验项目有哪些塑料的力学性能测试塑料材料在载荷作用下抵抗破坏的性能,称为机械性能(或称为力学性能)。
常用的机械性能包括:强度、塑性、硬度、冲击韧性、多次冲击抗力和疲劳极限等。
检测橡塑材料检测实验室可各类塑料性能测试服务。
作为第三方检测中心,机构拥有CMA、CNAS检测资质,检测设备齐全、数据科学可靠。
塑料机械力学性能:密度与比重试验塑料的比重是在一定的温度下,秤量试样的重量与同体积水的重量之比值,单位为g/cm3,常用液体浮力法作测定方法.在质量相同的条件下,密度越轻,根据ρ=m/V,比重越小,在等体积,价格相同的情况下,比重越小的材料可以制造的产品越多,单个产品的材料成本也就越低,而且可以减少产品的重量,节省运输等费用。
所以,比重是非常重要的属性。
特别是在塑料代替金属等材料的时候,是特别大的一个优势。
塑料机械力学性能:拉伸/弯曲试验在拉伸性能的测试中,通常的测试项目为拉伸应力、拉伸强度、拉伸屈服强度、断裂伸长率、拉伸弹性模量,弯曲模量/弯曲强度等。
拉伸测试:测定高聚物材料的基本物性,对材料施加应力后,测出变形量,求出应力,应力应变曲线是最普通的方法。
将样条的两端用器具固定好,施加轴方向的拉伸荷重,直到遭破坏时的应力与扭曲。
弹性模量:E=( F/S)/(dL/L)(材料在弹性变形阶段,其应力和应变成正比例关系)弹性模量”是描述物质弹性的一个物理量,是一个总称,包括“杨氏模量”、“剪切模量”、“体积模量”等。
弹性模量的意义:弹性模量是工程材料重要的性能参数,从宏观角度来说,弹性模量是衡量物体抵抗弹性变形能力大小的尺度,从微观角度来说,则是原子、离子或分子之间键合强度的反应。
塑料机械力学性能:冲击试验定义:摆锤打击简支梁试样的中部,使试样受到冲击而断裂,试样断裂时单位面积或单位宽度所消耗的冲击功即为冲击强度。
意义:冲击韧性是描述高分子材料在高速碰击下所呈现的坚韧程度,或抗断裂能力。
一般来说,冲击韧性包括两个方面:受冲击后的变形能力以及扛断裂能力,前者一般用断裂伸长率表示,而后者一般用冲击强度来表示。
塑料材料力学性能

塑料材料力学性能
引言
塑料材料作为一种常见的材料,在工程应用中扮演着重要的角色。
了解塑料材料的力学性能对于设计和使用塑料制品至关重要。
力学性能的定义
塑料材料的力学性能指的是其在承受外力作用时的表现。
它包括以下几个方面:
强度
塑料材料的强度是指它能承受的最大应力。
常见的强度指标有拉伸强度、屈服强度和抗弯强度等。
不同类型的塑料材料具有不同的强度特点,因此在选择和设计塑料制品时需要考虑相应的强度要求。
刚度
塑料材料的刚度是指其对外力的响应程度。
刚度可以衡量塑料材料的变形能力,即在承受外力时是否会产生明显的变形。
刚度的高低直接影响塑料制品在使用中的性能和稳定性。
韧性
塑料材料的韧性是指其在承受外力时能够吸收能量的能力。
高韧性的塑料材料具有较强的抗冲击性和耐用性,而低韧性的塑料材料容易发生断裂。
影响力学性能的因素
塑料材料的力学性能受多种因素的影响,包括以下几个方面:
组成成分
不同的塑料材料具有不同的化学成分和分子结构,因此其力学性能也有所区别。
例如,聚合物的链结构和交联性质都会直接影响塑料材料的强度和刚度。
加工工艺
塑料材料的加工工艺会对其力学性能产生影响。
不同的加工方法可能会导致塑料材料的分子排列不同,从而影响其力学特性。
因此,在选择加工工艺时,需要考虑该工艺对材料性能的影响。
总结
塑料材料的力学性能是设计和使用塑料制品的重要指标。
了解塑料材料的强度、刚度和韧性等方面的性能特点,以及影响这些性能的因素,能够帮助我们更好地选择和应用塑料材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
塑料弯曲性能试验
2008-1-23 10:44:19 来源:
1.概述
弯曲试验主要用来检验材料在经受弯曲负荷作用时的性能,生产中常用弯曲试验来评定材料的弯曲强度和塑性变形的大小,是质量控制和应用设计的重要参考指标。
弯曲试验采用简支梁法,把试样支撑成横梁,使其在跨度中心以恒定速度弯曲,直到试样断裂或变形达到预定值,以测定其弯曲性能。
2.试验原理
弯曲试验在《塑料弯曲性能试验方法》(《GB/T 9341-2000》)中使用的是三点式弯曲试验。
三点式弯曲试验是将横截面为矩形的试样跨于两个支座上,通过一个加载压头对试样施加载荷,压头着力点与两支点间的距离相等。
在弯曲载荷的作用下,试样将产生弯曲变形。
变形后试样跨度中心的顶面或底面偏离原始位置的距离称为挠度,单位mm。
试样随载荷增加其挠度也增加。
弯曲强度是试样在弯曲过程中承受的最大弯曲应力,单位MPa。
弯曲应变是试样跨度中心外表面上单元长度的微量变化,用无量纲的比或百分数(%)表示。
3.试验方法
3.1试验应在受试材料标准规定的环境中进行,若无类似标准时,应从GB/T2918中选择最合适的环境进行试验。
另有商定的,如高温或低温试验除外。
3.2测量试样中部的宽度b,精确到0.1mm; 厚度h,精确到0.01mm,计算一组试样厚度的平均值h。
剔除厚度超过平均厚度允差±0.5%的试样,并用随机选取的试样来代替。
调节跨度L,使L=(16±1)h ,并测量调节好的跨度,精确到0.5%。
除下列情况外都用上式计算:
3.2.1对于较厚且单向纤维增强的试样,为避免剪切时分层,在计算两撑点间距离时,可用较大L/h比。
3.2.2对于较薄的的试样,为适应试验设备的能力,在计算跨度时应用较小的L/h比。
c、对于软性的热塑性塑料,为防止支座嵌入试样,可用较大的L/h比。
3.3.3试验速度使应变速率尽可能接近1%/min,这一试验速度使每分钟产生的挠度近似为试样厚度值的0.4倍,推荐试样的试验速度为2mm/min。
试样应对称地放在两个支座上,并于跨度中心施加力,如图所示:
4.结果计算和表示
4.1弯曲应力是试样跨度中心外表面的正应力,按式(1)计算,单位MPa。
σf=3FL/2bh2 (1) 式中:F——施加的力,N;L——跨度,mm;b——试样宽度,mm; h——试样厚度,mm。
4.2弯曲模量的测量,先根据给定的弯曲应变εf1=0.0005和
εf2=0.0025,按式(2)计算相应的挠度s1和s2:
si=εfiL2/6h(i=1,2) (2) 式中:si——单个挠度,mm;εfi——相应的弯曲应变,即上述的εf1和εf2值;L——跨度,mm;h——试样厚度,mm。
4.3弯曲弹性模量或弯曲模量Ef,单位MPa,根据式(3)计算:
Ef=(σf2-σf1)/
(εf2)-( εf1) (3)
式中:εf1=0.0005,εf2=0.0025,,σf1——挠度为s1时的弯曲应力, MPa; σf2——挠度为s2时的弯曲应力,MPa。
5.试验影响因素:
5.1试样尺寸
横梁抵抗弯曲形变的能力与跨度和横截面积有很大关系,尤其是厚度对挠度影响更大。
同理,弯曲试验如果跨度相同但试样的横截面积不同,则结果是有差别的。
所以标准方法中特别强调(规定)了试样跨度比,厚度和试验速度等几方面的关系,目的是使不同厚度的试样外部纤维形变速率相同或相近,
(《GB/T 从而使各种厚度之间的结果有一定可比性。
在《塑料弯曲性能试验方法》
9341-2000》)中规定了跨度L,使其符合式(4):
L=(16±1)h (4)
同时规定若选用推荐试样,则尺寸为:长度l=80±2;宽度b=10.0±0.2;厚度h=4.0±0.2。
当不可能或不希望采用推荐试样时,须符合下面的要求:试样长度和厚度之比应与推荐试样相同,如式(5)所示:
l/h=20±1 (5)
试样宽度应采用表1给出的规定值。
表1 与厚度相关的宽度值b mm
5.2试样的机械加对结果有影响。
有必要时尽量采用单面加工的方法来制作。
试验时加工面对着加载压头,使未加工面受拉伸,加工面受压缩。
5.3加载压头圆弧半径和支座圆弧半径
加载压头圆弧半径是为了防止剪切力和对试样产生明显压痕而设定的。
一般只要不是过大或过小,对结果影响较小。
但支座圆弧半径的大小,要保证支座与试样接触为一条线(较窄的面)。
如果表面接触过宽,则不能保证试样跨度的准确。
5.4 应变速度
试样受力弯曲变形时,横截面上部边缘处有最大的压缩变形,下部边缘处有最大的拉伸变形。
所谓应变速率是指在单位时间内,上下层相对形变的改变量,以每分钟形变百分率表示,试验中可控制加载速度来控制应变速度。
随着应变速率和加载速度的增加,弯曲强度也增加,为了消除其影响,在试验方法中对试验速度作出统一的规定,如《GB/T 9341-2000》规定了从表2中选一速度值,使应变速率尽可能接近1%/ min,这一试验速度使每分钟产生的挠度近似为试样厚度值的0.4倍,例如符合推荐试样的试验速度为2mm/min。
一般说来应变速率较低时,其弯曲强度偏低。
表2 试验速度推荐值
试验速度一般都比较低,这是因为塑料在常温下均属粘弹性材料,只有在较慢的试验速度下,才能使试样在外力作用下近似地反映其松弛性能和试样材料自身存在不均匀或其他缺陷的客观真实性。
5.5试验跨度
弯曲试验大多采用“三点式”方式进行。
这种方式在受力过程中,除受弯矩作用外,还受剪力的作用。
故采用“三点式”方式进行测试,对于反映塑料材料的真实性能是存在一定问题的。
因此,国内外有人提出采用“四点式”方式进行测试。
目前进行工作较多的还是采用“三点式”方式,用合理的选择跨度和试样厚度比(L/h)来达到消除剪力影响的目的。
试样跨度与厚度比目前基本上有两种情况,一种是L/h=10;另一种是L/h=16。
从理论上讲,最大正应力与最大剪应力的关系是τmax/σmax=1/2(L/h),由此可以看到随着跨度比的增大,剪应力应减小。
从式中看出,L/h 愈大,剪力所占的比愈小,当L/h=10~4时,其剪力分配为5~12.5%。
可见剪力效应对试样弯曲强度的影响是随着试样所采用跨度与试样厚度比值的增大而减小的。
但是,跨度太大则挠度也增大,且试样两个支承点的滑移也影响试验结果。
5.6环境温度
和其他力学性能一样,弯曲强度也与温度有关。
试验温度无疑对塑料的抗弯曲性能有很大影响,特别是对耐热性较差的热性塑料。
一般地,各种材料的弯曲强度都是随着温度的升高而下降,但下降的程度各有不同。
5.7试样不可扭曲,表面应相互垂直或平行,表面和棱角上应无刮痕、麻点。
6.结论
从以上的试验过程来看影响其结果的因素是多方面的,应严格把握好试验的每个步骤。