实验2金属Zn阳极极化曲线的测量

实验2金属Zn阳极极化曲线的测量
实验2金属Zn阳极极化曲线的测量

实验2:金属Zn阳极极化曲线的测量

一、实验目的

1.掌握阳极极化曲线测试的基本原理和方法;

2.测定Zn电极在1M KOH溶液和1M ZnCl2溶液中的阳极极化曲线;

3.通过实验理解金属电极钝化与活化过程。

二、实验原理

线性电位扫描法是指控制电极电位在一定的电位范围内,以一定的速度均匀连续的变化,同时记录下各电位下反应的电流密度,从而得到电位-电流密度曲线,即稳态电流密度与电位之间的函数关系:i= f(ψ)。

特别适用于测量电极表面状态有特殊变化的极化曲线。如下:如阳极钝化行为的阳极极化曲线。

阳极极化:金属作为阳极时在一定的外电势下发生的阳极溶解过程叫做阳极极化,金属

的钝化现象:阳极的溶解速度随电位变正而逐渐增大。这是正常的阳极溶出。但当阳极电位正到某一数值时,其溶解速度达到一最大值。此后阳极溶解速度随着电位变正,反而大幅度的降低,这种现象称为金属的钝化现象。线性电位扫描法不但可以测定阴极极化曲线,也可以测定阳极极化曲线,特别适用于测定电极表面状态有特殊变化的极化曲线,如测定具有阳极钝

化行为的阳极极化曲线,用线性电位扫描法测得的阳极极化曲线,如下图所示

?AB段-----称为活性溶解区;此时金属进行正常的阳极溶解,阳极电流随电位改变服Tafel 公式的半对数关系。

?BC段-----称为钝化过渡区;此时是由于金属开始发生钝化,随着电极电位的正移,金属的溶解速度反而减小了。

?CD段-----称为钝化稳定区;在该区域中金属的溶解速度基本上不随电位二改变;

?DE段-----称为过度钝化区;此时金属溶解速度重新随电位的正移而增大,为氧的析出或者高价金属离子的生成。

从阳极极化曲线上可以得到下列参数:c点对应的电位---临界钝化电位;c点对应的电流—临界钝化电流密度;而这些参数恒电流法是测不出来的。

影响金属钝化的因素很多,包括溶液的组成、金属的组成和结构以及外界条件。

三、仪器与试剂

CHI电化学工作站、锌电极、Hg/HgO电极、甘汞电极、铂电极、三口电解槽、

1M KOH溶液250ml、1M ZnCl2溶液250ml

金属Zn是中性锌锰电池、碱性锌锰电池和锌-空气电池等的负极材料,其电化学行为受到广泛的研究。本实验应用线性电位扫描法测量金属Zn电极在1M KOH和1M ZnCl2 中阳极极化曲线。

四、实验步骤

(1) 电极预处理

将锌电极在砂纸上轻轻打磨至光亮,除去氧化膜,用去离子水冲洗干净,铂电极用硫酸浸泡以除去表面杂质,并用去离子水冲洗。

(2) 极化曲线测定

采用电化学工作站中的线性电位扫描技术(Linear Sweep Voltammetry)分别测量Zn 电极在1M KOH 溶液和1M ZnCl 2溶液中常温和450C 的阳极极化曲线(扫描速率5mV/s ,从开路到截止电压分别为-1.0V 和-0.5V) 。 五、结果分析和讨论

1. 每种溶液中不同温度下的极化曲线叠加在同一张图中。结果分两张图表示。

C u r r e n t /A

Potential/V

图1:1mol/L 的KOH 溶液中Zn 电极分别在25℃和45℃下的阳极极化曲线

C u r

r e n t /A

Potential/V

图2:1mol/L 的ZnCl 2溶液中Zn 电极分别在25℃和45℃下的阳极极化曲线 2. 结合文献,指出图中的活性溶解区、过渡钝化区、稳定钝化区和过度钝化区。

-1.4

-1.2

-1.0

0.000

0.001

0.002

C u r r e n t /A

Potential/V

b

a

c

d

e

图3:1mol/LKOH 溶液中Zn 电极在25℃下的阳极极化曲线

abc 段:活性溶解区;cd 段:过渡钝化区;de 段:稳定钝化区

-1.4

-1.2

-1.0

-0.001

0.0000.0010.0020.0030.004

0.005

0.006C u r r e n t /A

P otential/V

a

b

c

d

图4:1mol/LKOH 溶液中Zn 电极在45℃下的阳极极化曲线 ab 段:活性溶解区;bc 段:过渡钝化区;cd 段:稳定钝化区

C u r r e n t /A

Potential/V

图5:1mol/L的ZnCl2溶液中Zn电极分别在25℃和45℃下的阳极极化曲线

ab段:活性溶解区;bc段:活性溶解区

3.比较不同溶液中电极的阳极极化行为。尝试分析原因。

KOH溶液中,金属Zn发生阳极氧化产生的Zn2+与OH-反应生成难溶的Zn(0H)2阻碍金属Zn的继续氧化,而在ZnCl2溶液中则不会出现这种问题。

4.根据不同温度下氧化峰面积的大小,比较温度对氧化电量的影响。

经过对不同温度下的Zn在1mol/L的KOH溶液中的阳极极化曲线积分,图3峰面积:4.099020035E-4

图4峰面积:9.13397448E-4

可见,温度越高,氧化电量越高。

实验二金属材料的压缩试验1

实验二金属材料的压缩试验 实验时间:设备编号:温度:湿度一、实验目的 二、实验设备和仪器 三、实验数据及处理 材料 直径d o(mm)高度 l(mm) L d o 截面积A0 (mm 2 ) 屈服载荷 F s(K N) 最大载荷 F b(K N) 1 2 平均 低碳钢铸铁

载荷一变形曲线(F—△l曲线)及结果 材料低碳钢铸铁F—△l曲线 断口形状 实验结果屈服极限ós=屈服极限ób= 四、问题讨论 (1)观察铸铁试样的破坏断口,分析破坏原因; (2)公析比较两种材料拉伸和压缩性质的异同。

金属村翻盖的压缩试验 原始试验数据记录 实验指导老师: 200 年月日

实验四金属扭破坏实验、剪切弹性模量测定 实验时间:设备编号:温度:湿度一、实验目的 二、实验设备和仪器 三、实验数据及处理 弹性模量E= 泊松比μ= 实验前 材料标距 L0(mm) 直径d0(mm)平均极惯 性矩I p (mm4) 最小抗扭 截面模量 W T (mm3)截面I 截面II 截面III 1 2 平均 1 2 平均 1 2 平均 低碳钢铸铁

低碳钢钢剪切弹性模量测定 扭矩T(K N)扭转角(rad)扭转角度增量(rad)△φT0= T1 T2 T0 T3 T4 T5 △T= 理论值相对误差 截荷-变形曲线(F-△l曲线及结果) 材料低碳钢铸铁 T—φ曲线 断口形状 实验记录屈服扭矩T s 破坏扭矩T b 破坏扭矩T b 实验结果屈服极限t s 强度极限t b

四、问题讨论 (1)为什么低碳钢试样扭转破坏断面与横截面重合,而铸铁试样是与试样轴线成450螺旋断裂面? (2)根据低碳钢和铸铁拉伸、压缩、扭转试验的强度指标和断口形貌,分析总结两类材料的抗拉、抗压、抗剪能力。

极化曲线1.

极化曲线 原理 1.在研究可逆电池的电动势和电池反应时电极上几乎没有电流通过,每个电极或电池反应都是在无限接近于平衡下进行的,因此电极反应是可逆的。当有电流通过电池时,则电极的平衡状态被破坏,此时电极反应处于不可逆状态,随着电极上电流密度的增加,电极反应的不可逆程度也随之增大。在有电流通过电极时,由于电极反应的不可逆而使电极电位偏离平衡值的现象称作电极的极化。根据实验测出的数据来描述电流密度与电极电位之间关系的曲线称作极化曲线如图1所示。 金属的阳极过程是指金属作为阳极时,在一定的外电势下发生的阳极溶解过程,如下式所示: M→M n++ne - 此过程只有在电极电位大于其热力学电位时才能发生。阳极的溶解速度随电位变正而逐渐增大。这是正常的阳极溶出,但当阳极电位正到某一数值时,其溶解速度达到一最大值。此后阳极溶解速度随着电位变正,反而大幅度的降低,这种现象称为金属的钝化现象。 曲线表明,电位从a 点开始上升(即电位向正方向移动),电流密度也随之增加,电位超过b 点以后,电流密度迅速减至很小,这是因为在金属表面上生成了一层电阻高、耐腐蚀的钝化膜。到达c 点以后,电位再继续上升,电流仍保图1金属极化曲线 ab 活性溶解区;b.临界钝化点;bc.过渡钝化区;cd.稳定钝化区;de.超(过)钝化区

持在一个基本不变的很小的数值上,电位升到d点时,电流又随电位的上升而增大。 2.影响金属钝化过程的几个因素 金属钝化现象已进行了大量的研究工作。影响金属钝化过程及钝化性质的因素,可归纳为以下几点: (1)溶液的组成。在中性溶液中,金属一般比较容易钝化,而在酸性或某些碱性的溶液中,则不易钝化;溶液中卤素离子(特别是Cl-)的存在,能明显地阻止金属的钝化;溶液中存在某些具有氧化性的阴离子(如CrO2-4)则可以促进金属的钝化。 (2)金属的化学组成和结构。各种纯金属的钝化能力不尽相同,例如铁、镍、铬三种金属的钝化能力为铬>镍>铁。因此,添加铬、镍可以提高钢铁的钝化能力及钝化的稳定性。 (3)外界因素(如温度、搅拌等)。一般来说,温度升高以及搅拌加剧,可以推迟或防止钝化过程的发生,这与离子扩散有关。 实验方法: 测量极化曲线有两种方法:控制电流法与控制电势法(也称恒电流法与恒电势法)。控制电势法是通过改变研究电极的电极电势,然后测量一系列对应于某一电势下的电流值。由于电极表面状态在未建立稳定状态前,电流会随时间改变,故一般测出的曲线为“暂态”极化曲线。 恒电位法:将研究电极上的电位维持在某一数值上,然后测量对应于该电位下的电流。由于电极表面状态在未建立稳定状态之前,电流会随时间而改变,故一般测出来的曲线为“暂态”极化曲线。在实际测量中,常采用的控制电位测量方法有下列两种。 (1)静态法:将电极电位较长时间地维持在某一恒定值,同时测量电流随时间的变化,直到电流值基本上达到某一稳定值。如此每隔20~50mV逐点地测量各个电极电位下的稳定电流值,即可获得完整的极化曲线。 (2)动态法:控制电极电位以较慢的速度连续地改变(扫描),并测量对应电位下的瞬时电流值,并以瞬时电流与对应的电极电位作图,获得整个的极化曲线。

(完整word版)实验报告5燃料电池电堆测试

《燃料电池电堆测试与分析》实验报告 一.实验目的: 1.掌握PEMFC电堆测试台的基本结构和操作方法; 2.通过实测,掌握电堆极化曲线的测试方法,学会绘制极化曲线、功率曲线等图谱; 3.能将燃料电池电堆的实测性能应用于燃料电池系统的构建上;锻炼运用理论分析、解决实际问题的能力和方法。 二.实验原理: 将所需测量的PEMFC电堆与NBT燃料电池测试系统连接,通过控制平台调节燃料电池的氢气和空气流量,设置负载的电流值(也就是燃料电池电堆的电流值),观察记录电压值和功率值得变化,利用所记录的数据画出燃料电池的i-V和i-P曲线。 三.实验仪器设备和器材 四.测试平台开机顺序测试 1.打开气源,检查氢气、空气(外部供应时)的压力是否正常、去离子水的液位是否正常;室内氢气泄露报警系统是否正常;氢气、空气与水的排放口是否连接妥当,氢气管路的出口必须接于室外。注意测试时的人员与设备的安全。 2.给测试平台上电,380V AC。 3.开启电脑,与设备联机。 4.手动设置适当的氢、空、冷却水温度(注意不应超过80℃)、各流体最低流量、电堆片数、活性面积等参数。 5.设定数据保存路径和文件名,开始记录数据。

6.测试极化曲线。根据电堆所需要氢空流量,手动设置电流,测试极化曲线。 7.实验结束。 五.提前制作电堆运行所需氢气和空气的流量表,如下表所示。 已知条件:电堆片数:19片,单电池活性面积250cm2; 阴/阳极化学计量比:3.5/1.5; 常压 六.绘制电堆的极化曲线和功率密度曲线,需要标明必要的测试条件。

七.绘制上述极化曲线上最大功率时的单片电池电压柱状图,并计算电压的 标准偏差。 学生(签名): 实验日期:2015.5.25

金属材料的压缩实验

金属材料的压缩实验 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

金属材料压缩实验 一、预习要求 1、电子万能材料试验机在实验前需进行哪些调整如何操作 2、简述测定低碳钢弹性模量E 的方法和步骤。 3、实验时如何观察低碳钢压缩时的屈服极限 三、材料压缩时的力学性能测定 (一)实验目的 1、测定低碳钢压缩时的屈服极限σs 和铸铁压缩时的强度极限σb 。 2、观察比较两种材料压缩破坏现象。 (二)实验仪器及试样 1、万能材料试验机。 2、游标卡尺。 3、压缩试样。压缩试样通常为圆柱形,也分短、长两种(图4a 和b )。短试样用于测定材料抗压强度,通常规定310 ≤≤ d h ;长试样多用于测定钢、铜等材料的弹性 常数E 、μ等。 (三)实验原理 (四)实验步骤及数据处理 1、测量试样尺寸 测定试样的初始高度和直径,并记录到表3中。测定直径时,需在试样中部量取 互相垂直的两个方向的数据取平均值。 2、调整试验机 选择合适的摆锤和示力度盘,自动绘图装置上安装好纸和笔,开动油泵电机。 3、低碳钢压缩实验 安放试样到万能材料试验机活动平台上,注意应放在正中央。开动试验机送油阀,先使活动平台快速提升,当试样与上承压板将要接触时,应减少供油量,放缓提升速度以免压缩过程过快使测试失败。当外载荷加上后观察示力指针,当示力指针停顿并有回摆时说明进入屈服阶段,记录下指针回摆的最低点读数,此值即为对应于屈服极限的载荷值P s 。当示力指针继续上升时,此时进入强化阶段,试样出现明显的变形。变形到一定程度后关闭送油阀打开回油阀卸去载荷,观察试样变形情况。 4、铸铁的压缩实验 准备工作与低碳钢压缩相同。安装好试样后打开送油阀对试样进行压缩直到压断后卸去载荷,通过示力盘上从动指针位置读出最大载荷,此值即为对应于强度极限的载荷值P b 。 5、数据处理 根据测定的试样尺寸计算出试样的横截面积,得: 低碳钢的屈服极限 A P s s = σ 图4 压缩试样

实验3-金属材料的压缩实验

实验三 金属材料的压缩实验 一、实验目的 1.测定低碳钢(Q235 钢)的压缩屈服点sc σ和铸铁的抗压强度bc σ。 2.观察、分析、比较两种材料在压缩过程中的各种现象。 二、设备和仪器 1.WES-600S 型电液式万能试验机。 2.游标卡尺。 三、试样 采用1525??(名义尺寸)的圆柱形试样。 四、实验原理 低碳钢(Q235 钢)试样压缩图如图3-1b 所示。试样开始变形时,服从胡克定律,呈直线上升,此后变形增长很快,材料屈服。此时载荷暂时保持恒定或稍有减小,这暂时的恒定值或减小的最小值即为压缩屈服载荷F SC 。有时屈服阶段出现多个波峰波谷,则取第一个波谷之后的最低载荷为压缩屈服载荷F SC 。尔后图形呈曲线上升,随着塑性变形的增长,试样横截面相应增大,增大了的截面又能承受更大的载荷。试样愈压愈扁,甚至可以压成薄饼形状(如图3-1a 所示)而不破裂,因此测不出抗压强度。 铸铁试样压缩图如图3-2a 所示。载荷达最大值F bc 后稍有下降,然后破裂,能听到沉闷的破裂声。 铸铁试样破裂后呈鼓形,破裂面与轴线大约成45o ,这主要是由切应力造成的。 图3-1 低碳钢试样压缩图 图3-2 铸铁试样压缩图 五、实验步骤 1.测量试样尺寸 用游标卡尺在试样高度重点处两个相互垂直的方向上测量直径,取其平均值,记录数据。

2.开机 打开试验机及计算机系统电源。 3.实验参数设置 按实验要术,通过试验机操作软件设量试样尺寸等实验参数。 4.测试 通过试验机操作软件控制横梁移动对试样进行加载,开始实验。实验过程中注意曲线及数字显示窗口的变化。实验结束后,应及时记求并保存实验数据。 5.实验数据分析及输出 根据实验要求,对实验数据进行分析,通过打印机输出实验结果及曲线。 6.断后试样观察及测量 取下试样,注意观察试样的断口。根据实验要求测量试样的延伸率及断面收缩率 7.关机 关闭试验机和计算机系统电源。清理实验现场.将相关仪器还原。 六、实验结果处理 1. 参考表3-1记录实验原始数据。 表3-1 实验原始数据记录参考表 2. 实验数据处理 据低碳钢(Q235 钢)压缩实验所得到的屈服载荷sc F 计算低碳钢的压缩屈服点sc σ: sc sc 0 F A σ= (3-1) 据铸铁压缩实验所得到的最大载荷bc F 计算铸铁的抗压强度bc σ: bc bc 0 F A σ= (3-2) 七、实验报告要求 包括实验目的,设备名称、型号,实验原始数据记录(列表表示)与实验数据处理,试样破坏形状示意图,分析讨论。

碳钢在碳酸铵溶液中的极化曲线

碳钢在碳酸铵溶液中的极化曲线 【目的要求】 1. 掌握准稳态恒电位法测定金属极化曲线的基本原理和测试方法。 2. 了解极化曲线的意义和应用。 3. 掌握恒电位仪的使用方法。 【实验原理】 1. 极化现象与极化曲线 为了探索电极过程机理及影响电极过程的各种因素,必须对电极过程进行研究,其中极化曲线的测定是重要方法之一。我们知道在研究可逆电池的电动势和电池反应时,电极上几乎没有电流通过,每个电极反应都是在接近于平衡状态下进行的,因此电极反应是可逆的。但当有电流明显地通过电池时,电极的平衡状态被破坏,电极电势偏离平衡值,电极反应处于不可逆状态,而且随着电极上电流密度的增加,电极反应的不可逆程度也随之增大。由于电流通过电极而导致电极电势偏离平衡值的现象称为电极的极化,描述电流密度与电极电势之间关系的曲线称作极化曲线,如图2-19-1 所示。 图2-19-1 极化曲线 A-B:活性溶解区;B:临界钝化点;B-C:过渡钝化区; C-D:稳定钝化区;D-E:超(过)钝化区 金属的阳极过程是指金属作为阳极时在一定的外电势下发生的阳极溶解过程,如下式所示: M→M n++n e 此过程只有在电极电势正于其热力学平衡电势时才能发生。阳极的溶解速度随电位变正而逐渐增大,这是正常的阳极溶出,但当阳极电势正到某一数值时,其溶解速度达到最大值,此后阳极溶解速度随电势变正反而大幅度降低,这种现象称为金属的钝化现象。图2-19-1中曲线表明,从A点开始,随着电位向正方向移动,电流密度也随之增加,电势超过B点后,电流密度随电势增加迅速减至最小,这是因为在金属表面生产了一层电阻高,耐腐蚀的钝化膜。B点对应的电势称为临界钝化电势,对应的电流称为临界钝化电流。电势到达C 点以后,随着电势的继续增加,电流却保持在一个基本不变的很小的数值上,该电流称为维钝电流,直到电势升到D点,电流才又随着电势的上升而增大,表示阳极又发生了氧化过程,可能是高价金属离子产生,也可能是水分子放电析出氧气,DE段称为过钝化区。 2. 极化曲线的测定 (1) 恒电位法 恒电位法就是将研究电极的电极电势依次恒定在不同的数值上,然后测量对应于各电位下的电流。极化曲线的测量应尽可能接近体系稳态。稳态体系指被研究体系的极化电流、电极电势、电极表面状态等基本上不随时间而改变。在实际测量中,常用的控制电位测量方法有以下两种: 阶跃法将电极电势恒定在某一数值,测定相应的稳定电流值,如此逐点地测量一系列各个电极电势下的稳定电流值,以获得完整的极化曲线。对某些体系,达到稳态可能需要很长时间,为节省时间,提高测量重现性,往往人们自行规定每次电势恒定的时间。 慢扫描法控制电极电势以较慢的速度连续地改变(扫描),并测量对应电势下的瞬时电流值,以瞬时电流与对应的电极电势作图,获得整个的极化曲线。一般来说,电极表面建立稳态的速度愈慢,则电位扫描速度也应愈慢。因此对不同的电极体系,扫描速度也不相同。为测得稳态极化曲线,人们通常依次减小扫描速度测定若干条极化曲线,当测至极化曲线不

极化曲线的测定

实验九极化曲线的测定 【目的要求】 1. 掌握稳态恒电位法测定金属极化曲线的基本原理和测试方法. 2. 了解极化曲线的意义和应用. 3. 掌握恒电位仪的使用方法. 【实验原理】 1. 极化现象与极化曲线 为了探索电极过程机理及影响电极过程的各种因素,必须对电极过程进行研究,其中极化曲线的测定是重要方法之一.我们知道在研究可逆电池的电动势和电池反应时,电极上几乎没有电流通过,每个电极反应都是在接近于平衡状态下进行的,因此电极反应是可逆的.但当有电流明显地通过电池时,电极的平衡状态被破坏,电极电势偏离平衡值,电极反应处于不可逆状态,而且随着电极上电流密度的增加,电极反应的不可逆程度也随之增大.由于电流通过电极而导致电极电势偏离平衡值的现象称为电极的极化,描述电流密度与电极电势之间关系的曲线称作极化曲线,如图2-19-1所示. 图2-19-1 极化曲线 A-B:活性溶解区;B:临界钝化点B-C:过渡钝化区;C-D:稳定钝化区D-E:超(过)钝化区 金属的阳极过程是指金属作为阳极时在一定的外电势下发生的阳极溶解过程,如下式所示: M→Mn++ne 此过程只有在电极电势正于其热力学电势时才能发生.阳极的溶解速度随电位变正而逐渐增大,这是正常的阳极溶出,但当阳极电势正到某一数值时,其溶解速度达到最大值,此后阳极溶解速度随电势变正反而大幅度降低,这种现象称为金属的钝化现象.图2-19-1 中曲线表明,从A点开始,随着电位向正方向移动,电流密度也随之增加,电势超过B点后,电流密度随电势增加迅速减至最小,这是因为在金属表面生产了一层电阻高,耐腐蚀的钝化膜.B点对应的电势称为临界钝化电势,对应的电流称为临界钝化电流.电势到达C点以后,随着电势的继续增加,电流却保持在一个基本不变的很小的数值上,该电流称为维钝电流,直到电势升到D点,电流才有随着电势的上升而增大,表示阳极又发生了氧化过程,可能是高价金属离子产生也可能是水分子放电析出氧气,DE段称为过钝化区. 2. 极化曲线的测定 (1) 恒电位法 恒电位法就是将研究电极依次恒定在不同的数值上,然后测量对应于各电位下的电流.极化曲线的测量应尽可能接近体系稳态.稳态体系指被研究体系的极化电流,电极电势,电极表面状态等基本上不随时间而改变.在实际测量中,常用的控制电位测量方法有以下两种: 静态法:将电极电势恒定在某一数值,测定相应的稳定电流值,如此逐点地测量一系列各个电极电势下的稳定电流值,以获得完整的极化曲线.对某些体系,达到稳态可能需要很长时间,为节省时间,提高测量重现性,往往人们自行规定每次电势恒定的时间. 动态法:控制电极电势以较慢的速度连续地改变(扫描),并测量对应电位下的瞬时电流值,以瞬时电流与对应的电极电势作图,获得整个的极化曲线.一般来说,电极表面建立稳态的速度愈慢,则电位扫描速度也应愈慢.因此对不同的电极体系,扫描速度也不相同.为测得稳态极化曲线,人们通常依次减小扫描速度测定若干条极化曲线,当测至极化曲线不再明显变化时,可确定此扫描速度下测得的极化曲线即为稳态极化曲线.同样,为节省时间,对于那些只是为了比较不同因素对电极过程影响的极化曲线,则选取适当的扫描速度绘

1.阴极极化曲线的测量

北京理工大学能源与化学工程实验预习报告 姓名班级学号 实验日期2016年 4 月 27 日指导教师____________________ 同组姓名成绩_______________ 实验名称阴极极化曲线的测量 一、实验目的 1.掌握测量极化曲线的基本原理和测量方法 2.测定铁电极在碱性溶液中的阴极极化曲线 3.学会根据极化曲线分析溶液中添加剂作用的方法 二、实验内容和原理 在电化学研究中,很多电化学反应表现在电极的计划上,因此测量电极的极化曲线是很重要的研究方法。在电流通过电极与电解液界面时,电极电位将偏离平衡电极电位,当电位向负向偏离时,称之为阴极极化,向正向偏离时,称之为阳极极化。在电镀工艺中,用测定阴极极化的方法研究电镀液各组分及工艺条件对阴极极化的影响,而阳极极化可用来研究阳极行为或腐蚀现象。 所谓极化曲线就是电位与电流密度之间的关系曲线。测量极化曲线的方法分为恒电流法和恒电位法,而每种方法又可分为稳流法和暂态法。本实验是测量在碱性镀锌溶液中,香草醛光亮对阴极极化的影响。 三、主要仪器设备 1.实验仪器 CHI电化学工作站1台,电解池1个。 2.试剂及材料 ZnO,NaOH,香草醛,低碳钢电极(表面积为1cm2),铂片电极1块,硫酸亚汞电极1个。

四、操作方法与步骤 本实验采用CHI电化学工作站中的线性电位扫描法分别测量以下两种电解液中的阴极极化曲线: (1)ZnO 12g/L+NaOH 120g/L (2)ZnO 12g/L+NaOH 120g/L+香草醛 0.2g/L 扫描速度:2mV/s;电位扫描范围:-1.18~ -2.18V。 1.接好线路。 2.测量阴极极化曲线 (1)研究电极为低碳钢电极,表面积为1cm2(注意测试面积一定要准确,不测部分要用绝缘漆涂好)。将待测的电极用金相砂纸打磨,除去氧化膜,用丙酮洗涤涂油。再用脱脂棉蘸酒精擦洗,用蒸馏水冲洗干净,再用滤纸吸干,放进电解池中。 (2)电解池中的辅助电极为铂电极,参比电极为硫酸亚汞电极。 (3)启动CHI电化学工作站,运行测试软件。在Setup菜单中点击“Technique”选项。在弹出菜单中选择“Linear Sweep Voltammetry”测试方法,然后点击OK按钮。 (4)在S额突破菜单中点击“Parameters”选项。在弹出菜单中输入测试条件:Init E为-1.18V,Final E为-2.18V,Scan Race为0.002V/S,Sample Interval为0.001V,Quiet Time为2s,Sensitivity为6- 1 ,选择 10 Auto-sensitivity。然后点击OK按钮。 (5)在Control菜单中点击“Run Experiment”选项,进行极化曲线的测量。 (6)改变溶液组成,测试电极在第二种溶液中的阴极极化曲线,测试条件同上。 3.实验完毕,关闭仪器,将研究电极清洗干净待用。 五、实验结果与分析

极化曲线的测定

极化曲线的测定 一、实验目的 掌握恒电位测定极化曲线的方法,测定碳钢(圆型钢筋)在碱性溶液中的恒电位阳极极化曲线及其极化电位。 二、实验原理 实际的电化学过程并不是在热力学可逆条件下进行的。在电流通过电极时,电极电位会偏离其平衡值,这种现象称为极化。在外电流的作用下,阴极电位会偏离其平衡位置向负的方向移动,称为阴极极化;而阳极电位会偏离其平衡位置向正的方向移动,称为阳极极化。在电化学研究中,常常测定极化曲线,即电极电位与电流密度的关系。铁在硫酸溶液中典型的阳极极化曲线如图23.1所示,该曲线分为四个区域: 电 流 密 度 i 阳极电位φ + 图23.1 阳极极化曲线 1.从点a 到点b 的电位范围称金属活化区。此区域内的ab 线段是金属的正常阳极溶解,以铁电极为例,此时铁以二价形式进入溶液,即Fe → Fe 2+ + 2e-。a 点即为金属的自然腐蚀电位。 2.从b 点到c 点称为钝化过渡区。bc 线是由活化态到钝化态的转变过程,b 点所对应的电位称为致钝电位,其对应的电流密度ib 称为致钝电流密度,此时Fe 2+离子与溶液中的-24 SO 离子形成4FeSO 沉淀层, 阻碍了阳极反应进行,导致电流密度开始下降。由于+H 不容易到达4FeSO 沉淀层的内部,因此铁表面的pH 逐步增大。 3.从c 点到d 点的电位范围称为钝化区。由于金属表面状态发生变化,阳极溶解过程的过

电位升高,金属的溶解速率急剧下降。在此区域内的电流密度很小,基本上不随电位的变化而改变。此时的电流密度称为维持钝化电流密度i m 。对铁电极而言,此时32O Fe 在铁表面生成,形成致密的氧化膜,极大地阻碍了铁的溶解,出现钝化现象。 4.de 段的电位范围称为过钝化区。在此区阳极电流密度又重新随电位增大而增大,金属的溶解速度又开始增大,这种在一定电位下使钝化了的金属又重新溶解的现象叫做过钝化。电流密度增大的原因可能是产生了高价离子(如,铁以高价转入溶液),或者达到了氧的析出电位,析出氧气。 测定极化曲线实际上是测定有电流流过电极时电极电位与电流的关系,极化曲线的测定可以用恒电流和恒电位两种方法。恒电流法是控制通过电极的电流(或电流密度),测定各电流密度时的电极电位,从而得到极化曲线。恒电位法是将研究电极的电位恒定地维持在所需的数值,然后测定相应的电流密度,从而得到极化曲线。由于在同一电流密度下可能对应多个不同的电极电位,因此用恒电流法不能完整的描述出电流密度与电位间的全部复杂关系。 本实验采用控制电极电位的恒电位法测定碳钢在碱性溶液中的阳极极化曲线。碳钢常用作建筑钢筋,是大量使用的建筑材料。混凝土凝结过程中会析出氢氧化钙等碱性物质,并在钢筋表面形成保护膜,阻止钢筋的腐蚀。同时,渗入混凝土内部的雨水等外来物质会带入2CO 、 Cl 等,改变钢筋表面的pH 值和腐蚀电位。本实验模拟钢筋在混凝土中所处的碱性环境,通过恒电位法测定其极化曲线,了解影响钢筋腐蚀的各种因素。 三、仪器与试剂 HDY-I 型恒电位仪(南京桑力电子设备厂),三电极池及支架,碳钢电极,铂电极,饱和甘汞电极,34HCO NH 饱和溶液,浓3NH 水,1%(体积比)硫酸溶液,丙酮,金相砂纸。烧杯(100ml )2只,量筒(50或100ml )1只。 恒电位仪前面板如图23.2所示,以功能作用划分为14个区: 图23.2 前面板示意图

金属材料的拉伸与压缩实验

机械学基础实验 指导书 力学实验中心 金属材料的拉伸与压缩实验 1.1 金属材料的拉伸实验 拉伸实验是材料力学实验中最重要的实验之一。任何一种材料受力后都要产生变形,变形到一定程度就可能发生断裂破坏。材料在受力——变形——断裂的这一破坏过程中,不仅有一定的变形能力,而且对变形和断裂有一定的抵抗能力,这些能力称为材料的力学机械性能。通过拉伸实验,可以确定材料的许多重要而又最基本的力学机械性能。例如:弹性模量E 、比例极限R p 、上和下屈服强度R eH 和R eL 、强度极限R m 、延伸率A 、收缩率Z 。除此而外,通过拉伸实验的结果,往往还可以大致判定某种其它机械性能,如硬度等。 我们以两种材料——低碳钢,铸铁做拉伸试验,以便对于塑性材料和脆性材料的力学机械性能进行比较。 这个实验是研究材料在静载和常温条件下的拉断过程。利用电子万能材料试验机自动绘出的载荷——变形图,及试验前后试件的尺寸来确定其机械性能。 试件的形式和尺寸对实验的结果有很大影响,就是同一材料由于试件的计算长度不同,其延伸率变动的范围就很大。例如: 对45#钢:当L 0=10d 0时(L 0为试件计算长度,d 0为直径),延伸率A 10=24~29%,当L 0=5d 0时,A 5=23~25%。 为了能够准确的比较材料的性质,对拉伸试件的尺寸有一定的标准规定。按国标GB/T228-2002、GB/P7314-2005的要求,拉伸试件一般采用下面两种形式: 图1-1 1. 10倍试件; 圆形截面时,L 0=10d 0 矩形截面时,L 0=11.30S 2. 5倍试件 圆形截面时,L 0=5d 矩形截面时, L 0=5.650S = 045 S d 0——试验前试件计算部分的直径;

极化曲线概念

1.极化曲线:表示电极电位与极化电流或极化电流密度之间的关系曲线。如电极分别是阳极或阴极,所得曲线分别称之为阳极极化曲线(anodic polarization curve)或阴极极化曲线(cathodic polarization curve)。 2.极化曲线分为四个区,活性溶解区、过渡钝化区、稳定钝化区、过钝化区。极化曲线可用实验方法测得。分析研究极化曲线,是解释金属腐蚀的基本规律、揭示金属腐蚀机理和探讨控制腐蚀途径的基本方法之一。 极化曲线以电极电位为横坐标,以电极上通过的电流为纵坐标,获得的曲线称为极化曲线。它表征腐蚀原电池反应的推动力电位与反应速度电流之间的函数关系。直接从实验测得的是实验极化曲线。而构成腐蚀过程的局部阳极或者局部阴极上单独电极反应之电位与电流关系称为真实极化曲线,即理想极化曲线。 3.此过程只有在电极电势正于其热力学电势时才能发生。阳极的溶解速度随电位变正而逐渐增大,这是正常的阳极溶出,但当阳极电势正到某一数值时,其溶解速度达到最大值,此后阳极溶解速度随电势变正反而大幅度降低,这种现象称为金属的钝化现象。图1中曲线表明,从A点开始,随着电位向正方向移动,电流密度也随之增加,电势超过B点后,电流密度随电势增加迅速减至最小,这是因为在金属表面生产了一层电阻高,耐腐蚀的钝化膜。B点对应的电势称为临界钝化电势,对应的电流称为临界钝化电流。电势到达C点以后,随着电势的继续增加,电流却保持在一个基本不变的很小的数值上,该电流称为维钝电流,直到电势升到D点,电流才有随着电势的上升而增大,表示阳极又发生了氧化过程,可能是高价金属离子产生也可能是水分子放电析出氢气,DE段称为过钝化区。

阳极极化曲线的测定与分析

阳极极化曲线的测定与分析 了解自腐蚀电位、致钝电位和维钝电位、过钝解自腐蚀电位、致钝电位和维钝电位、过钝化电位以及致钝电流密度和维钝电流密度等概化电位以及致钝电流密度和维钝电流密度等概念;念; 2. 2. 掌握恒电位法测定阳极极化曲线的原理和方掌握恒电位法测定阳极极化曲线的原理和方法;法; 3. 3. 通过阳极极化曲线的测定,判定实施阳极保护通过阳极极化曲线的测定,判定实施阳极保护的可能性,初步选取阳极保护的技术参数;的可能性,初步选取阳极保护的技术参数; 4. 4. 掌握掌握IM6ex IM6ex电化学工作站的使用方法。 电化学工作站的使用方法。 将一种金属将一种金属((电极电极))浸在电解液中,在金属与溶液之间就会浸在电解液中,在金属与溶液之间就会形成电位,这种电位称为该金属在该溶液中的电极电位。 形成电位,这种电位称为该金属在该溶液中的电极电位。 当有外加电流通过此电极时,其电极电位会发生变化,这当有外加电流通过此电极时,其电极电位会发生变化,这种现象称为电极的极化。如果电极为阳极,则电极电位将种现象称为电极的极化。如果电极为阳极,则电极电位将向正方向偏移,称为阳极极化;对于阴极,电极电位将向向正方向偏移,称为阳极极化;对于阴极,电极电位将向负方向偏移,称为阴极极化。 负方向偏移,称为阴极极化。电极电位随电流密度变化的电极电位随电流密度变化的关系曲线称为极化曲线关系曲线称为极化曲线。为了判定金属在电解质溶液中采。为了判定金属在电解质溶液中采取阳极保护的可能性,选择阳极保护的取阳极保护的可能性,选择阳极保护的33个主要技术参个主要技术参数数——致钝电流密度致钝电流密度、、维钝电流密度维钝电流密度和和钝化区的电位范围钝化区的电位范围,,需要测定阳极极化曲线。 需要测定阳极极化曲线。 阳极极化曲线可以用阳极极化曲线可以用恒电位法恒电位法和和恒电流法恒电流法测定。 测定。图图11是一是一条较典型的阳极极化曲线。曲线条较典型的阳极极化曲线。曲线ABCDE ABCDE是恒电位法(即维是恒电位法(即维持电位恒定,测定相对应的电流值)测得的阳极极化曲线。 持电位恒定,测定相对应的电流值)测得的阳极极化曲线。 当电位从当电位从AA逐渐正向移动到逐渐正向移动到BB点时,电流也随之增加到点时,电流也随之增加到BB点,点,当电位过当电位过BB点以后,电流反面急剧减小,这是因为在金属点以后,电流反面急剧减小,这是因为在金属表面上生成了一层高电阻耐腐蚀的钝化膜,钝化开始表面上生成了一层高电阻耐腐蚀的钝化膜,钝化开始发生。人为控制电位的增高,电流逐渐衰减到发生。人为控制电位的增高,电流逐渐衰减到CC。。 在在CC点之后,电位若继续增高,由于金属完全进入点之后,电位若继续增高,由于金属完全进入图 1 可钝化金属的阳极极化曲线钝态,电流维持在一个基本不变的很小的值钝态,电流维持在一个基本不变的很小的值————维钝电流维钝电流ii pp 。当电位增高到。当电位增高到DD点以后,金属进入了点以后,金属进入了过钝化状态,电流又重新增大。从过钝化状态,电流又重新增大。从AA点到点到BB点的范点的范围叫活化区,从围叫活化区,

实验二低碳钢和铸铁的压缩实验

实验二金属材料(低碳钢和铸铁)的压缩实验 一、实验目的 (1)比较低碳钢和铸铁压缩变形和破坏现象。 (2)测定低碳钢的屈服极限σs和铸铁的强度极限σb。 (3)比较铸铁在拉伸和压缩两种受力形式下的机械性能、分析其破坏原因。 二、验仪器和设备 (1)万能材料试验机。 (2)游标卡尺。 三、试件介绍 根据国家有关标准,低碳钢和铸铁等金属材料的压缩试件一般制成圆柱形试件。低碳钢压缩试件的高度和直径的比例为3:2,铸铁压缩试件的高度和直径的比例为2:1。试件均为圆柱体。 四、实验原理及方法 压缩实验是研究材料性能常用的实验方法。对铸铁、铸造合金、建筑材料等脆性材料尤为合适。通过压缩实验观察材料的变形过程、破坏形式,并与拉伸实验进行比较,可以分析不同应力状态对材料强度、塑性的影响,从而对材料的机械性能有比较全面的认识。 压缩试验在压力试验机上进行。当试件受压时,其上下两端面与试验机支撑之间产生很大的摩擦力,使试件两端的横向变形受到阻碍,故压缩后试件呈鼓形。摩擦力的存在会

影响试件的抗压能力甚至破坏形式。为了尽量减少摩擦力的影响,实验时试件两端必须保证平行,并与轴线垂直,使试件受轴向压力。另外。端面加工应有较高的光洁度。 低碳钢压缩时也会发生屈服,但并不象拉伸那样有明显的屈服阶段。因此,在测定Ps 时要特别注意观察。在缓慢均匀加载下,测力指针等速转动,当材料发生屈服时,测力指针转动将减慢,甚至倒退。这时对应的载荷即为屈服载荷Ps。屈服之后加载到试件产生明显变形即停止加载。这是因为低碳钢受压时变形较大而不破裂,因此愈压愈扁。横截面增 ,因此也得不到强度极大时,其实际应力不随外载荷增加而增加,故不可能得到最大载荷P b ,所以在实验中是以变形来控制加载的。 限 b 前出现较明显的变形然后破裂,此时试验机测力铸铁试件压缩时,在达到最大载荷P b 指针迅速倒退,从动针读取最大载荷P 值,铸铁试件最后略呈故形,断裂面与试件轴线大 b 约呈450。 图2—2 低碳钢压缩图铸铁压缩图 五、实验步骤 (1)试验机准备。根据估算的最大载荷,选择合适的示力度盘(量程)按相应的操作规程进行操作。 (2)测量试件的直径和高度。测量试件两端及中部三处的截面直径,取三处中最小一处的平均直径计算横截面面积。 (3)将试件放在试验机活动台球形支撑板中心处。 (4)开动试验机,使活动台上升,对试件进行缓慢均匀加载,加载速度为0.5mm/min。对于低碳钢,要及时记录其屈服载荷,超过屈服载荷后,继续加载,将试件压成鼓形即可停

铁的极化曲线物化实验报告

铁的极化曲线 实验结果的记录与处理: 1、Fe在0.1mol/L的硫酸溶液中铁的极化钝化曲线 联立两直线方程得:log Icorr= ?4.25A , Icorr=5.58×10?5A ;Ecorr= ?0.56V。 因为实验所用电极直径为2mm,面积为Πmm2, 故自腐蚀电流密度=自腐蚀电流/电极面积=5.58×10?5 /(Π×0.0012)=17.8(A/ m2)由图知,钝化电流Ip=1.14×10?2A, 钝化电流密度=1.14×10?2/(Π×0.0012)=3.63×103(A/ m2) 钝化电位范围:1.318?1.602V 2、Fe在1.0mol/L的硫酸溶液中铁的极化钝化曲线

联立两直线方程得:log Icorr= ?4.25A , Icorr=5.58×10?5A ;Ecorr= ?0.56V。 因为实验所用电极直径为2mm,面积为Πmm2, 故自腐蚀电流密度=自腐蚀电流/电极面积=5.58×10?5 /(Π×0.0012)=17.8(A/ m2)由图知,钝化电流Ip=1.14×10?2A, 钝化电流密度=1.14×10?2/(Π×0.0012)=3.63×103(A/ m2) 钝化电位范围:1.318?1.602V 3、Fe在1.0mol/L的HCl溶液中铁的极化钝化曲线

联立两直线方程得:log Icorr= ?4.25A , Icorr=5.58×10?5A ;Ecorr= ?0.56V。 因为实验所用电极直径为2mm,面积为Πmm2, 故自腐蚀电流密度=自腐蚀电流/电极面积=5.58×10?5 /(Π×0.0012)=17.8(A/ m2)由图知,钝化电流Ip=1.14×10?2A, 钝化电流密度=1.14×10?2/(Π×0.0012)=3.63×103(A/ m2) 钝化电位范围:1.318?1.602V 4、Fe在含1%的乌洛托品的1.0mol/L的HCl溶液中铁的极化钝化曲线

实验报告-极化曲线测量金属的腐蚀速度

课程 实 验 者 名 称 页数( ) 专业 年级、班 同组者姓名 级别 姓 名 实验 日 期 年 月 日 一、目的和要求 1、 掌握恒电位法测定电极极化曲线的原理和实验技术。通过测定Fe 在NaCl 溶液中的极化曲线,求算Fe 的自腐蚀电位,自腐蚀电流 2、论极化曲线在金属腐蚀与防护中的应用 二、基本原理 当金属浸于腐蚀介质时,如果金属的平衡电极电位低于介质中去极化剂(如H +或氧分子)的平衡电极电位,则金属和介质构成一个腐蚀体系,称为共轭体系。此时,金属发生阳极溶解,去极化剂发生还原。在本实验中,镁合金和钢分别与0.5mol/L 的NaCl 溶液构成腐蚀体系。 镁合金与NaCl 溶液构成腐蚀体系的电化学反应式为: 阳极: Mg= Mg 2++2e 阴极: 2H 2O+2e=H 2+2OH - 钢与NaCl 溶液构成腐蚀体系的电化学反应式为: 阳极: Fe= Fe 2++2e 阴极: 2H 2O+2e=H 2+2OH - 腐蚀体系进行电化学反应时的阳极反应的电流密度以 i a 表示, 阴极反应的速度以 i k 表示, 当体系达到稳定时,即金属处于自腐蚀状态时,i a =i k =i corr (i corr 为腐蚀电流),体系不会有净的电流积累,体系处于一稳定电位c ?。根据法拉第定律,即在电解过程中,阴极上还原物质析出的量与所通过的电流强度和通电时间成正比,故可阴阳极反应的电流密度代表阴阳极反应的腐蚀速度。金属自腐蚀状态的腐蚀电流密度即代表了金属的腐蚀速度。因此求得金属腐蚀电流即代表了金属的腐蚀速度。金属处于自腐蚀状态时,外测电流为零。 极化电位与极化电流或极化电流密度之间的关系曲线称为极化曲线。测量腐蚀体系的阴阳极极化曲线可以揭示腐蚀的控制因素及缓蚀剂的作用机理。在腐蚀点位附近积弱极化区的举行集会测量可以可以快速求得腐蚀速度。在活化极化控制下,金属腐蚀速度的一般方程式为: 其中 I 为外测电流密度,i a 为金属阳极溶解的速度,i k 为去极化剂还原的速度,βa 、βk 分别 为金属阳极溶解的自然对数塔菲尔斜率和去极化剂还原的自然对数塔菲尔斜率。 令?E 称为腐蚀金属电极的极化值,?E =0时,I =0;?E>0时,是阳极极化,I>0,体系通过阳极电流。?E<0时,I<0, 体系通过的是阴极电流,此时是对腐蚀金属电极进行阴极极化。因此外测电流密度也称为极化电流密度 测定腐蚀速度的塔菲尔直线外推法:当对电极进行阳极极化,在强极化区,阴极分支电流i k =0, )]ex p()[ex p(k c a c corr k a i i i I β??β??---=-=c E ??-=?)]ex p()[ex p(k a corr E E i I ββ?--?=)ex p(a corr a E i i I β?==

Zn电极阳极极化曲线实验报告

一、实验目的 1.掌握阳极极化曲线测试的基本原理和方法; 溶液中的阳极极化曲线; 2.测定Zn电极在1M KOH溶液和1M ZnCl 2 3. 通过实验理解金属电极钝化与活化过程。 二、实验原理 线性电位扫描法是指控制电极电位在一定的电位范围内,以一定的速度均匀连续的变化,同时记录下各电位下反应的电流密度,从而得到电位-电流密度曲线,即稳态电流密度与电位之间的函数关系:i= f(ψ)。 特别适用于测量电极表面状态有特殊变化的极化曲线。如下:如阳极钝化行为的阳极极化曲线。 阳极极化:金属作为阳极时在一定的外电势下发生的阳极溶解过程叫做阳极极化,如下式所示:M = Mn+ + ne 【金属的钝化现象:阳极的溶解速度随电位变正而逐渐增大。这是正常的阳极溶出。但当阳极电位正到某一数值时,其溶解速度达到一最大值。此后阳极溶解速度随着电位变正,反而大幅度的降低,这种现象称为金属的钝化现象。】线性电位扫描法不但可以测定阴极极化曲线,也可以测定阳极极化曲线,特别适用于测定电极表面状态有特殊变化的极化曲线,如测定具有阳极钝化行为的阳极极化曲线,用线性电位扫描法测得的阳极极化曲线,如下图所示 ?AB段-----称为活性溶解区;此时金属进行正常的阳极溶解,阳极电流随电位改变服从Tafel公式的半对数关系。 ?BC段-----称为钝化过渡区;此时是由于金属开始发生钝化,随着电极电位的正移,金

属的溶解速度反而减小了。 ?CD段-----称为钝化稳定区;在该区域中金属的溶解速度基本上不随电位二改变; ?DE段-----称为过度钝化区;此时金属溶解速度重新随电位的正移而增大,为氧的析出 或者高价金属离子的生成。 从阳极极化曲线上可以得到下列参数:c点对应的电位---临界钝化电位;c点对应的电 流—临界钝化电流密度;而这些参数恒电流法是测不出来的。 影响金属钝化的因素很多,包括溶液的组成、金属的组成和结构以及外界条件。 金属Zn是中性锌锰电池、碱性锌锰电池和锌-空气电池等的负极材料,其电化学行为受 到广泛的研究。本实验应用线性电位扫描法测量金属Zn电极在1M KOH和1M ZnCl2 中阳极 极化曲线。实验中控制电极电位以较慢的速度连续地改变(扫描),并测量对应电位下的瞬 时电流值,并以瞬时电流与对应的电极电位作图,获得整个的极化曲线,故称为动电位法。 三、实验器材 CHI电化学工作站、锌电极、Hg/HgO电极、甘汞电极、铂电极、三口电解槽、1M KOH 溶液250ml、1M ZnCl2溶液250ml。 左:仪器施加的电压信号; 右:测量到的电流-电压关系曲线(极化曲线)

实验二 低碳钢、铸铁压缩试验

实验二 低碳钢、铸铁压缩试验 一、试验目的 了解塑性材料和脆性材料在压缩时的破坏现象,测定其机械性能,并与它们在简单拉伸时的机械性能作比较。 二、实验原理 压缩试验是在万能试验机或压力机上进行。试验机附有球形承垫图2-1,球形承垫位于试件下端。当试件端面略有不平行时,球形承垫可以自动调节,使压力趋于均匀分布。为了减少试件两端面与支承座之间的摩擦力,可在试件端面涂上石墨、润滑油等。但仍不可避免地存在摩擦力而阻止试件的横向变形,以 致试件被压成鼓形 图2-2。具体要求可参阅《金属压缩试验方法》GB7314-84。 图2-1压缩球形承垫 图2-2 低碳钢压缩后试件的形状图 低碳钢试件压缩时,在屈服前F-ΔL 关系曲线与拉伸时相似,由自动绘图仪可得到压缩图2-3。图中OA 为弹性阶段,B 点为屈服点,无明显的屈服阶段,F s 需仔细观察。在缓慢均匀加载时,测力指针作等速转动,当指针转动暂停或稍有退回时的载荷即为屈服载荷。由于这些现象不明显,常需要借助压缩图来判断F s 。此后,由于塑性变形试件面积随载荷增加而逐渐增大,最后试件被压成饼状而不破裂,故无法求得最大载荷及强度极限,只要测取屈服点R eL 即可: ;eL eL F R S 式中:F s ——屈服时的载荷; S 0----试件原来的横截面面积。 L 图2-3 低碳钢压缩图 图2-4铸铁压缩图 铸铁受压时,在很小的塑性变形下发生了破坏,图2-4,因此只能测出它的破坏抗力F m 由R m =F m /S 0。可得铸铁的强度极限。铸铁受压呈微鼓形破坏,试件表面将出现与试件横截面成45°~ 50°的倾斜裂纹,这是因为铸铁受压时,实际上是先达到剪力极限而破坏。 FeL 承垫 试件 球形承垫

极化曲线数据处理方法

极化曲线测定数据处理方法 鼠标击Excel图标、“打开”,从“查找范围”里将c盘的electro中的date打开,击“文件类型(T)”中“所有文件”,即可出现实验数据文件图标。 打开数据文件,出现“文本导入向导-3步骤之1”,击“分隔符号(D)”、“下一步”、“空格(S)”、“下一步”、“完成”,出现数据表。 将三列数据都上下对齐,然后删除第三列。第一列即A列,数据是负的电势-E/V(需变换数据的正负号);第二列即B列,数据是电流I /mA。 击C1格,在编辑栏里写入“=-A1”,回车。再击C1格,用鼠标点住C1格围框下角的黑点(鼠标指针变为实心十字)向下拖拽至最后一格,得到C列数据即电势E/V。 击D1格,在编辑栏里写入“=B1/××”(“××”是电极面积数值),回车。再击D1格,点住D1格围框下角的黑点拖拽至最后一格,得到D列数据即电流密度i/(mA·cm-2)。 击四列的列号,然后击“减少小数位数”图标,将数据保留小数点后三位。 击C、D两列的列号,击图表向导图标,出现图表向导-4步骤之1”,击“XY散点图”、“光滑曲线”、“下一步”、“下一步”,出现“图表向导-4步骤之3”,填写图表标题、XY轴的物理量名称、单位。击“下一步”、“完成”,出现绘图。 (为了图的清晰,可用鼠标右键击图中的网格线、左键击“清除”,去掉网格线;击图中的“系列1”,去掉“系列1”;击绘图区围框,去掉围框;双击绘图区,击区域的“无”,去掉底色等。) 若极化曲线过长,应适当删去一段。对于钝化曲线,用鼠标指在转折点处取得数据,然后将数据表中的该数据做上标记(如做围框)。 击数据表第一行行号,击“插入”、“行”,在插入行里填写各列的物理量名称和单位。(可将A列数据隐去) 最后保存文件,将文件名中的“DA T”去掉,以Excel工作簿格式保存至软盘或U盘。

相关文档
最新文档