高中物理备课参考 互感和自感
高二物理教案 互感和自感教案

高二物理教案互感和自感教案[要点导学]1.互感现象是一种常见的电磁感应现象,如图4-6-1只要A线圈的电路中可变电阻的阻值R周期性地变化,那么A和B两个线圈之间就会发生互感现象。
例如电阻R增大,A中电流变小,B线圈中磁通量减少产生感应电流,感应电流产生的磁场也会引起A线圈中磁通量的变化,所以A、B两个线圈的磁通量是互相影响的,象这样两个互相靠近的线圈中只要有一个线圈中的电流变化,就会出现互感现象。
2.自感现象是因为线圈自身的电流变化而引起线圈的磁通量变化,由此产生的电动势叫自感电动势。
所以自感现象就是一种电磁感应现象。
自感现象既遵循法拉第电磁感应定律又遵循楞次定律。
只是因为自感线圈内的磁通量的变化率与线圈内的电流的变化率成正比例,所以电流变化越快自感电动势越大。
也就是说自感电动势与电流的变化率成正比,比例常数就是自感系数L,单位是亨利,符号是H。
3.因为自感现象是以电流变化为主线展开讨论的,所以在研究自感问题时,应首先研究电流的变化情况。
因电流的变化引起磁场的变化,磁场的变化引起磁通量的变化,磁通量的变化产生自感电动势,自感电动势总是阻碍电流的变化。
但阻碍电流的变化不等于阻止电流的变化。
4.在具体分析自感支路对其他电路影响时,如果自感支路的电流在减少则应该把产生自感电动势的线圈看作新的电源,新电源阻碍电流的减少;如果自感支路中的电流在增大,自感线圈就相当于一个接反了的电源,这一电源阻碍电流的增加。
5.线圈的自感系数是由线圈自身的性质决定的,与线圈中的电流无关。
这一点就象导体的电阻与导体中的电流无关一样。
影响线圈自感系数的因素很多(空心线圈的自感系数与单位长度的匝数的平方成正比,与线圈的体积成正比),但插入铁芯线圈的自感系数明显增大(约为103-104倍)。
6.磁场与电场一样也具有能量,磁场是由电流产生的,所以线圈中电流变化时磁场的能量就在变化;电场是由电荷产生的,所以电容器中电荷量变化时电场的能量就在变化。
高中物理互感与自感的教案设计

高中物理互感与自感的教案设计一、教学目标1. 让学生理解互感和自感的概念,知道它们是电磁感应现象的特殊情况。
2. 让学生掌握互感和自感的大小计算公式,并能运用到实际问题中。
3. 培养学生运用物理知识解决实际问题的能力。
二、教学重点1. 互感和自感的概念。
2. 互感和自感的大小计算公式。
三、教学难点1. 互感和自感的大小计算公式的推导。
2. 如何在实际问题中运用互感和自感的大小计算公式。
四、教学方法1. 采用问题驱动的教学方法,引导学生通过观察、思考、讨论,探索互感和自感的现象和规律。
2. 运用多媒体辅助教学,通过动画、图片等形式,形象地展示互感和自感的过程。
3. 结合实际例子,让学生通过计算和分析,掌握互感和自感的大小计算公式。
五、教学内容1. 互感与自感的概念介绍。
2. 互感与自感的大小计算公式推导。
3. 互感与自感在实际问题中的应用实例。
教案内容:一、导入(5分钟)1. 通过复习电磁感应的基本概念,引导学生回顾法拉第电磁感应定律。
2. 提问:在电磁感应现象中,有没有特殊情况?二、互感与自感概念的引入(10分钟)1. 讲解互感的概念:当两个导体相互靠近时,其中一个导体的电流变化会在另一个导体中产生感应电动势。
2. 讲解自感的概念:导体自身的电流变化在自身产生的感应电动势。
三、互感与自感的大小计算公式(10分钟)1. 推导互感的大小计算公式:M = μ₀N₁N₂L / (2 π f l),其中M为互感系数,N₁和N₂为两个线圈的匝数,L为线圈的自感系数,f为交流电的频率,l为两个线圈之间的距离。
2. 推导自感的大小计算公式:L = μ₀N²/ l,其中L为自感系数,N为线圈的匝数,l为线圈的长度。
四、互感与自感在实际问题中的应用(10分钟)1. 举例说明互感在变压器中的应用。
2. 举例说明自感在电容器充电和放电过程中的作用。
五、课堂小结(5分钟)2. 强调互感与自感在实际生活中的应用。
高中物理自感和互感教案

高中物理自感和互感教案在高中物理的电磁学部分,自感和互感是两个重要的概念,它们不仅揭示了电磁感应的基本规律,而且在实际应用中也有着广泛的作用。
为了帮助学生更好地理解和掌握这两个概念,以下是一份精心设计的高中物理自感和互感教案范本。
一、教学目标1. 理解自感和互感的基本概念。
2. 掌握自感电动势和互感电动势的产生条件。
3. 了解自感和互感在实际应用中的例子。
4. 能够进行自感和互感相关的实验操作和分析。
二、教学内容1. 自感现象- 定义:当导体中的电流发生变化时,由于磁场的变化而在导体自身产生的电动势。
- 自感电动势的表达式:\( \varepsilon = -L \frac{dI}{dt} \),其中L为自感系数。
- 自感现象的应用:延迟开关、电磁铁等。
2. 互感现象- 定义:当两个电路相互靠近时,一个电路中的电流变化引起的磁场变化,会在另一个电路中产生电动势。
- 互感电动势的表达式:\( varepsilon = M \frac{dI}{dt} \),其中M为互感系数。
- 互感现象的应用:变压器、无线充电技术等。
三、教学方法1. 采用启发式教学,通过问题引导学生思考自感和互感的本质。
2. 结合实验演示,直观展示自感和互感现象。
3. 利用多媒体教学资源,如动画、视频等,增强学生的感性认识。
4. 鼓励学生进行小组讨论,共同解决实际问题。
四、教学过程1. 引入新课:通过日常生活中的例子(如手电筒的开关)引出自感现象。
2. 讲授新知:详细解释自感和互感的定义、表达式和应用。
3. 实验操作:指导学生完成自感和互感的实验,观察并记录实验现象。
4. 案例分析:讨论自感和互感在实际中的应用案例,深化理解。
5. 小结回顾:总结自感和互感的重点知识,回答学生的疑问。
五、作业与评价1. 布置相关习题,巩固自感和互感的理论知识。
2. 要求学生撰写实验报告,提高实验分析能力。
3. 通过小测验检验学生对自感和互感概念的掌握情况。
高二物理教案--互感和自感.doc

海头中学高二物理教案--互感和自感教学过程:(一)引入新课提问:在电磁感应现象中,产生感应电流的条件是什么?引起回路磁通量变化的原因有哪些?(1)在法拉第的实验中两个线圈并没有用导线连接,当一个线圈中的电流变化时,在另一个线圈中为什么会产生感应电动势呢?(2)当电路自身的电流发生变化时,会不会产生感应电动势呢?本节课我们学习这方面的知识。
(二)进行新课1、互感现象在法拉第的实验中两个线圈并没有用导线连接,当一个线圈中的电流变化时,在另一个线圈中为什么会产生感应电动势呢?请同学们用学过的知识加以分析说明。
当一个线圈中的电流变化时,它产生的磁场就发生变化,变化的磁场在周围空间产生感生电场,在感生电场的作用下,另一个线圈中的自由电荷定向运动,于是产生感应电动势。
当一个线圈中电流变化,在另一个线圈中产生感应电动势的现象,称为互感。
互感现象产生的感应电动势,称为互感电动势。
利用互感现象,可以把能量从一个线圈传递到另一个线圈。
因此,互感现象在电工技术和电子技术中有广泛的应用。
请大家举例说明。
变压器,收音机里的磁性天线。
2、自感现象教师:我们现在来思考第二个问题:当电路自身的电流发生变化时,会不会产生感应电动势呢?下面我们首先来观察演示实验。
[实验1]演示通电自感现象。
画出电路图(如图所示),A1、A2是规格完全一样的灯泡。
闭合电键S,调节变阻器R,使A1、A2亮度相同,再调节R1,使两灯正常发光,然后断开开关S。
重新闭合S,观察到什么现象?(实验反复几次)现象:跟变阻器串联的灯泡A2立刻正常发光,跟线圈L串联的灯泡A1逐渐亮起来。
提问:为什么A1比A2亮得晚一些?试用所学知识(楞次定律)加以分析说明。
电路接通时,电流由零开始增加,穿过线圈L的磁通量逐渐增加,L中产生的感应电动势的方向与原来的电流方向相反,阻碍L中电流增加,即推迟了电流达到正常值的时间。
[实验2]演示断电自感。
画出电路图(如图所示)接通电路,待灯泡A正常发光。
互感和自感

1、如磁场相对于导体转动,在导体中会产 生感应电流,感应电流使导体受到安培力的 作用,安培力使导体运动起来----电磁驱动。
2、交流感应电动机就是利用电Fra bibliotek驱动的 原理工作的。
电磁阻尼与电磁驱动的区别和联系
• 电磁阻尼是导体相对于磁场运动; 电磁驱动是磁场相对于导体运动. • 安培力的作用都是阻碍它们间的 相对运动。
b.用互相绝缘的硅钢片叠成的铁芯来代替整块硅 钢铁芯。
二.电磁阻尼
1.当导体在磁场中运动时,感应电流会使导体 受到安培力,安培力的方向总是阻碍导体的运 动-----电磁阻尼
V
2.思考与讨论:P27 (1)为什么用铝框做线圈骨架?
(2)、微安表的表头在运输时为何应该 把两个接线柱连在一起?
三.电磁驱动
B
E
涡流
2.应用
(1)利用 真空冶炼炉,高频焊接
线圈导线
焊 接 处
电源
待焊接元件
应用: 真空冶炼炉:
抽真空
电磁炉
探雷器
安检门
门框
报警电路
线圈
~ 交流电
(2)减少涡流
线圈中流过变化的电流,在铁芯中产生的涡流使 铁芯发热,浪费了能量,还可能损坏电器。 减少涡流的途径: a.增大铁芯材料的电阻率,常用的材料是硅钢。
自感电动势
1、定义:
在自感现象中产生的感应电动势叫自感电动势。
阻碍导体中原来电流的变化。
2、自感电动势的作用:
3、影响自感电动势大小的因素:
4.自感系数
I EL t
线圈大小、形状、线圈匝数、 线圈的横截面积、线圈中是否有铁芯。
自感系数的单位:亨利,简称亨,符号是H。
7.涡流、电磁阻尼和电磁驱动
互感和自感说课稿

互感和自感说课稿一、教材分析11 本节课在教材中的地位和作用“互感和自感”是高中物理电磁学部分的重要内容,它既是对电磁感应现象的进一步深入理解,也是后续学习交变电流、电磁波等知识的基础。
111 教学目标知识与技能目标:学生能够理解互感和自感现象的概念,掌握互感和自感电动势的计算方法,了解自感系数的影响因素。
过程与方法目标:通过实验观察和分析,培养学生的观察能力、逻辑推理能力和科学探究精神。
情感态度与价值观目标:激发学生对物理学科的兴趣,培养学生严谨的科学态度和团队合作精神。
112 教学重难点重点:互感和自感现象的概念及规律,自感电动势的计算。
难点:对自感现象的理解和分析,自感系数的影响因素。
二、学情分析21 学生已有的知识基础学生已经学习了电磁感应现象的基本规律,对法拉第电磁感应定律有了一定的理解和掌握。
211 学生的学习能力和特点高中生具备一定的逻辑思维能力和抽象思维能力,但对于较为抽象的物理概念和现象,仍需要通过实验和具体实例来加深理解。
三、教法与学法31 教法讲授法:讲解互感和自感的基本概念和规律。
实验法:通过演示实验,让学生直观地观察互感和自感现象。
讨论法:组织学生讨论实验现象,引导学生分析和总结规律。
311 学法自主学习:学生通过预习,初步了解互感和自感的概念。
合作学习:分组进行实验,共同探讨实验结果,培养合作能力。
探究学习:在教师的引导下,学生对实验现象进行深入探究,培养创新思维。
四、教学过程41 引入新课通过展示生活中常见的变压器、日光灯等实例,引入互感和自感现象,激发学生的学习兴趣。
411 讲解互感现象结合实验,讲解互感现象的定义、产生条件和应用。
412 探究自感现象进行自感现象的演示实验,让学生观察灯泡在电路接通和断开瞬间的亮度变化。
413 分析自感电动势引导学生根据电磁感应定律,分析自感电动势的产生原因和大小计算方法。
414 讨论自感系数组织学生讨论自感系数的影响因素,通过实验对比,加深学生的理解。
高中物理互感与自感的教案设计

高中物理互感与自感的教案设计一、教学目标1. 让学生理解互感和自感的概念,知道它们是电磁感应现象的两种特殊形式。
2. 让学生掌握互感和自感的大小计算公式,能够运用到实际问题中。
3. 培养学生运用物理知识解决实际问题的能力。
二、教学内容1. 互感现象的定义和计算公式2. 自感现象的定义和计算公式3. 互感与自感的区别和联系4. 互感与自感在生活中的应用实例三、教学重点与难点1. 教学重点:互感与自感的概念、大小计算公式及应用。
2. 教学难点:互感与自感现象的理解和应用。
四、教学方法1. 采用问题驱动的教学方法,引导学生通过观察、思考、讨论,主动探究互感与自感现象。
2. 利用多媒体课件,生动形象地展示互感与自感现象,增强学生的直观感受。
3. 结合实际生活中的实例,让学生感受互感与自感现象的实际应用。
五、教学过程1. 导入:通过一个简单的电磁感应实验,引导学生思考互感与自感现象。
2. 新课导入:讲解互感与自感的定义、大小计算公式。
3. 实例分析:分析生活中的一些互感与自感现象,让学生感受其应用。
4. 课堂讨论:分组讨论互感与自感现象的实质,引导学生思考两者之间的区别与联系。
5. 练习巩固:布置一些练习题,让学生运用所学知识解决实际问题。
6. 总结:对本节课的内容进行总结,强调互感与自感现象在生活中的重要性。
7. 作业布置:布置一些有关互感与自感的课后作业,让学生进一步巩固所学知识。
六、教学评估1. 课堂问答:通过提问方式检查学生对互感与自感概念的理解程度。
2. 练习题:布置课堂练习,评估学生对互感与自感计算公式的掌握情况。
3. 小组讨论:评估学生在小组讨论中的参与程度,以及对互感与自感现象的理解深度。
七、教学拓展1. 介绍互感与自感在现代科技领域的应用,如电力系统、变压器等。
2. 引导学生思考互感与自感在新能源开发中的潜在应用。
3. 鼓励学生进行互感与自感现象的课外探究,如自制简易变压器等。
八、教学反馈1. 收集学生对互感与自感教学内容的反馈意见,了解学生的学习需求。
高中物理互感自感教案

高中物理互感自感教案
教学目标:了解互感和自感的概念,掌握相关公式和计算方法,能够解决相关问题。
教学重点:1. 互感和自感的定义和公式
2. 互感和自感的计算方法
教学难点:如何理解互感和自感的物理概念,并能够运用相关知识解决实际问题。
教学准备:教材、PPT、实验器材、习题等
教学过程:
一、导入
通过展示一些实际应用场景,引出互感和自感的概念。
二、讲授
1. 互感和自感的定义
- 互感:两个或多个线圈之间存在变化的磁通量,由此而产生的感应电动势。
- 自感:线圈自身存在变化的磁通量,由此而产生的感应电动势。
2. 互感和自感的公式
- 互感系数M:M = k√(L1L2),其中k为系数,L1和L2分别为两个线圈的自感。
- 互感电动势:ε = -M(dI2/dt),其中I2为第二个线圈的电流变化率。
- 自感系数L:L = (μ0N^2A) / l,其中N为匝数,A为截面积,l为线圈长度。
- 自感电动势:ε = -L(dI/dt),其中I为线圈电流的变化率。
三、实验
通过实验观察互感和自感的现象,并通过计算得出相关结果。
四、练习
学生进行相关习题的训练,巩固所学知识。
五、总结
总结互感和自感的概念、公式和计算方法,并展示相关应用。
六、作业
布置作业,让学生进一步巩固所学知识。
教学反思:在教学过程中,要重点讲解互感和自感的物理概念,并通过实验和练习让学生加深理解和掌握相关知识。
同时,要引导学生运用所学知识解决实际问题,提升其物理学习能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解析】灯泡的亮度由它的实际功率 I2R 即流过灯泡中的电流来决定。因而必须从题设 条件出发讨论在各种情况下流过灯泡中的电流。
K 断开后,原来电源提供给小灯泡的电流立即消失,但 L 中因自感而产生逐渐减弱的电 流流过小灯泡,使小灯泡逐渐变暗到熄灭。
(1)因 R1>R2,即 I1<I2,所以小灯泡在 K 断开后先突然变到某一较暗状态,再逐渐变 暗到最后熄灭。
(2)因 R1<R2,即 I1>I2,小灯泡在 K 断开后电流从原来的 I2突变到 I1(方向相反), 然后再渐渐变小,最后为零,所以灯泡在 K 断开后先变得比原来更亮,再逐渐变暗到熄灭。
【点评】 (1)若是理想线圈,即直流电阻为零。 ① L 与灯泡串联时,通过灯泡的电流与 L 中电流始终同步,因而不能突变。 ② L 与灯泡并联时,通过灯泡的电流与 L 中的电流在电路接通时不同步,即灯丝中电 流突变到最大再渐渐变小到零,而 L 中电流从零逐渐增大到最大;断开电路时,L 因自感而 对灯丝供电,使灯丝中的电流从零突变到原来 L 中的电流值,再渐渐变为零。 (2)当 L 与灯丝并联且 L 的电阻不为零时,接通电源时灯丝中电流突变为最大,再慢 慢减小,而 L 中的电流由零开始逐渐增大到稳定;稳定后 L 和灯丝中都有电流,因而灯不会
【解析】因 R、L 阻值很小,在电路甲中,线圈 L 与灯泡 D 串联,L 中电流很小,断开 S 时自感电动势较小,自感作用使 D 与 L 中的电流值从 S 接通稳定后开始减小, D 将逐渐变暗, 而不是立即熄灭。在电路乙中,L 与 D、R 并联,稳定时 L 中电流比 D 中电流大,断开 S 的 瞬间,L 中电流从开始的稳定值逐渐减小,所以断开瞬间,通过灯泡 D 的电流变大,D 将变 得更亮,然后渐渐变暗。正确选项为 AD。
①
E
自感电动势
L
I t
② L 是自感系数: a. L 跟线圈的形状、长短、匝数等因素有关系.
线圈越粗,越长、匝数越密,它的自感系数越大,另外有铁芯的线圈自感系数比没有铁
芯时大得多。
b. 自感系数的单位是亨利,国际符号是 H,1 亨=103毫亨=106 微亨
(3)关于自感现象的说明
① 如图所示,当合上开关后又断开开关瞬间,电灯 L 为什么会更亮,当合上开关后,
由于线圈的电阻比灯泡的电阻小,因而过线圈的电流 I2较过灯泡的电流 I1大,当开关断开后, 过线圈的电流将由 I2变小,从而线圈会产生一个自感电动势,于是电流由 c→b→a→d 流动, 此电流虽然比 I2小但比 I1还要大。因而灯泡会更亮。假若线圈的电阻比灯泡的电阻大,则 I2 <I1,那么开关断开后瞬间灯泡是不会更亮的。
2. 自感现象
(1)自感现象:由于导体本身电流发生变化而产生的电磁感应现象。 自感现象的本质是:当通过导体中的电流发生变化时,导体本身就会产生感应电动势, 从而形成感应电流,这个感应电动势总是阻碍导体中原来电流的变化,即感应电流的方向总 是与原电流的变化方向相反。 (2)自感电动势:自感现象中产生的感应电动势叫自感电动势。
【点评】S 接通后电路稳定,比较 L 与 D 中电流大小,S 断开后,因自感作用 L、D、R 构成回路有电流,判断 D 变暗还是变亮,关键是看 S 断开后从 L 流到 D 中的电流比 D 中原 来(S 未断开时)的电流是大还是小。
【例 2】 如图所示,自感线圈的自感系数很大,电阻为零。电键 K 原ቤተ መጻሕፍቲ ባይዱ是合上的,在 K 断 开后,【解析】
量。当开关闭合时,线圈中的电流从无到有,其中的磁场也是从天到有,这可以看作电源把 能量输送到磁场,储存在磁场中。这里我们知识一个合理的假设,有关电磁场能量的直接式 样验证,要在我们认识了电磁波之后才有可能。
(5)自感现象的理解: 线圈中电流的变化不能在瞬间完成,即不能“突变” 。也可以说线圈能体现电的惯性 (6)自感的应用与防止: 应用:日光灯 防止:变压器、电动机
典型例题
【例 1】 如图所示,电路甲、乙中,电阻 R 和自感线圈 L 的电阻值都很小,接通 S,使电路 达到稳定,灯泡 D 发光,则( )
A. 在电路甲中,断开 S,D 将逐渐变暗 B. 在电路甲中,断开 S,D 将先变得更亮,然后渐渐变暗 C. 在电路乙中,断开 S,D 将渐渐变暗 D. 在电路乙中,断开 S,D 将变得更亮,然后渐渐变暗
熄灭。
断开电源时:要讨论 RL=R 灯、RL>R 灯、RL<R 灯时,电流变化情况。
第四章第 6 节 互感和自感
要点精讲
1. 互感现象
互感现象:当一个线圈中电流变化,在另一个线圈中产生感应电动势的现象,称为互感 现象。
互感电动势:在互感现象中产生的感应电动势,称为互感电动势。 说明: (1)任何两个相互靠近的电路之间都会存在互感现象。 (2)利用互感现象,可以把能量从一个线圈传递到另一个线圈。变压器就是利用互感 现象制成的。 (3)在电力工程和电子电路中,互感现象有时会影响电路的正常工作,这时就要设法 减小电路间的互感。
② 开关断开后线圈是电源,因而 c 点电势最高,d 点电势最低。 ③ 过线圈电流方向与开关闭合时一样,不过开关闭合时,d 点电势高于 c 点电势,当
断开开关后瞬间则相反,c 点电势高于 d 点电势。 ④ 过灯泡的电流方向与开关闭合时的电流方向相反,a、b 两点电势,开关闭合时 Ua>
Ub,开关断开后瞬间 Ua<Ub。 (4)磁场的能量 电源断开以后,线圈中电流不会立即消失,这时的电流仍然可以做功,说明线圈储存能