实际问题与一元二次方程()解决面积问题
21.3 实际问题与一元二次方程 教案 【新人教版九年级上册数学】

21.3 实际问题与一元二次方程教学内容21.3 实际问题与一元二次方程(1):由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.教学目标1. 掌握用“倍数关系”、“面积法”等建立数学模型,并利用它解决实际问题.2. 掌握建立数学模型以解决增长率与降低率问题.3. 经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型.教学重点根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.教学难点根据“倍数关系”、“面积法”等之间的等量关系建立一元二次方程的数学模型.课时安排3课时.1教案A第1课时教学内容21.3 实际问题与一元二次方程(1):由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.教学目标1.掌握用“倍数关系”建立数学模型,并利用它解决实际问题.2.经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型.教学重点用“倍数关系”建立数学模型.教学难点用“倍数关系”建立数学模型.教学过程一、导入新课师:同学们好,我们已经学过用一元一次方程来解决实际问题,你还记得列一元一次方程解决实际问题的步骤吗?生:审题、设未知数、找等量关系、列方程、解方程,最后答题.试:同一元一次方程、二元一次方程(组)等一样,一元二次方程也可以作为反映某些实际问题中数量关系的数学模型.这一节我们就讨论如何利用一元二次方程解决实际问题.二、新课教学探究1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?教师引导学生审题,让学生思考怎样设未知数,找等量关系列出方程.分析:设每轮传染中平均一个人传染了x个人.开始有一个人患了流感,第一轮的传染源就是这个人,他传染了x个人,用代数式表示,第一轮后共有个人患了流感;第二轮传染中,这些人中的每个人又传染了x个人,用代数式表示,第二轮后共有个人患了流感.列方程1+x+x(x+1)=121,整理,得x2+2x-120=0.解方程,得x1=10,x2=-12(不合题意,舍去)2答:每轮传染中平均一个人传染了10个人.思考:按照这样的传染速度,经过三轮传染后共有多少人患流感?121+121×10=1331(人)通过对这个问题的探究,你对类似的传播问题中的数量关系有新的认识吗?后一轮被传染的人数是前一轮患病人数的x倍.三、巩固练习某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支、主干,如果支干和小分支的总数是91,每个支干长出多少小分支?解:设每个支干长出x个小分支,则1+x+xx=91,即x2+x-90=0.解得x1=9,x2=-10(不合题意,舍去)答:每个支干长出9个小分支.四、课堂小结本节课应掌握:1.利用“倍数关系”建立关于一元二次方程的数学模型,并利用恰当方法解它.2.解一元二次方程的一般步骤:一审、二设、三列、四解、五验(检验方程的解是否符合题意,将不符合题意的解舍去)、六答.五、布置作业习题21.3 第6题.第2课时教学内容21.3实际问题与一元二次方程(2):建立一元二次方程的数学模型,解决增长率与降低率问题.教学目标掌握建立数学模型以解决增长率与降低率问题.教学重点如何解决增长率与降低率问题.教学难点解决增长率与降低率问题的公式a(1±x)n=b,其中a是原有量,x是增长(或降低)率,n为增长(或降低)的次数,b为增长(或降低)后的量.教学过程一、导入新课同学们好,我们上节课学习了探究1关于“倍数”的问题,知道了解一元二次方程的一般步骤.今天,我们就学习如何解决“增长率”与“降低率”的问题.二、新课教学探究2:两年前生产1 t甲种药品的成本是5 000元,生产1 t乙种药品的成本是6 0003元,随着生产技术的进步,现在生产1 t甲种药品的成本是3 000元,生产1 t乙种药品的成本是3 600元,哪种药品成本的年平均下降率较大?分析:根据题意,很容易知道甲种药品成本的年平均下降额为(5 000-3 000)÷2=1 000(元);乙种药品成本的年平均下降额为(6 000-3 600)÷2=1 200(元).显然,乙种药品成本的年平均下降额较大.但是,年平均下降额(元)不等同于年平均下降率(百分数).解:设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5 000(1-x)元,两年后甲种药品成本为5 000(1-x)2元,于是有5 000(1-x)2=3 000.解方程,得x1≈0.225,x2≈1.775.根据药品的实际意义,甲种药品成本的年平均下降率约为22.5%.答:甲种药品成本的年平均下降率约为22.5%.算一算:乙种药品成本的年平均下降率是多少?试比较这两种药品成本的年平均下降率.解:设乙种药品成本的年平均下降率为x,则一年后乙种药品成本为6 000(1-x)元,两年后甲种药品成本为6 000(1-x)2元,于是有6 000(1-x)2=3 600.解方程,得x1≈0.225,x2≈1.775.同理,乙种药品成本的年平均下降率约为22.5%.甲、乙两种药品成本的年平均下降率相同,均约为22.5%.思考:经过计算,你能得出什么结论?成本下降额较大的药品,它的成本下降率一定也较大吗?应怎样全面地比较对象的变化状况?经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.小结:类似地,这种增长率的问题有一定的模式.若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为a(1±x)n=b(增长取+,降低取-).三、巩固练习某人将2 000元人民币按一年定期存入银行,到期后支取1 000元用于购物,剩下的1 000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1 320元,求这种存款方式的年利率.分析:设这种存款方式的年利率为x,第一次存2 000元取1 000元,剩下的本金和利息是1 000+2 000x×80%;第二次存,本金就变为1 000+2000x×80%,其它依此类推.解:设这种存款方式的年利率为x,则1 000+2 000x×80%+(1 000+2 000x×8%)x×80%=1 320.整理,得1 280x2+800x+1 600x=320,即8x2+15x-2=0.解得4。
13实际问题与一元二次方程(3)

1、会用一元二次方程解决一些图形面积问题. 2、培养自己独立思考的能力.
课堂要求:多思考、多交流、积极发言、高
②
矩形的面积= 长×宽 ③
正方形的面积= 边长2 ④
20-3x
20m
解:设水渠应挖xm宽,则 (20-3x)(10-2x)=136
32 解得:x1=1,x2= 3 (舍去)
答:水渠应挖1m宽.
规则:同学们在草稿纸上完成题目,之后确定两名同学进行投影展示,一题5分!
第一轮
1、用22cm的铁丝,折成一个面积为30cm2的矩形,这个矩形的长 与宽分别是多少?
规则:同学们在草稿纸上完成题目,之后确定两名同学进行投影展示,满分5分!
第二轮
如图,一块矩形耕地,长20m,宽10m,在这块地上沿东西、南北 方向各挖一条等宽的水渠,要使余下的耕地面积是 171m2,水渠应挖多 宽?
规则:同学们在草稿纸上完成题目,之后确定两名同学进行投影展示,满分5分!
第三轮
如图所示:在一幅长为80cm,宽为50cm的矩形风景画的四周 镶一条相同宽度的金色纸边,制成一幅矩形挂图,如果要使整个 挂图的面积是5400cm2,求金色纸边的宽应为多少?
答:养殖场的长是15m,宽是10m.
1、如图,小明家要建一个面积为150m2的矩形养殖场,养殖场的一面 靠墙,另三面用竹篱笆围成,竹篱笆的总长度是35米,墙的长度 是18m,养殖场的长、宽各是多少?
18m
墙
设养殖场的宽是xm 思考 ①你能用含x的式子表示出长吗?
x
35-2x 竹篱笆
35-2x
②由此你能列出方程吗?
22.3实际问题与一元二次方程(面积问题)沈贵芬

分析:此题的相等关系是 矩形面积减去道路面积等 于540米2。 解法一、 如图, 设道路的宽为x米, 32x 米2 则横向的路面面积为 纵向的路面面积为 所列的方程是不是 20x 米2 。
(2)
,
32 20 (32 x 20 x ) 540
?
注意:这两个面积的重叠部分是 x2 米2 图中的道路面积不是
b 2 4 ac ( 10 ) 2 4 1 30 20 0
探究3
要设计一本书的封面,封面长27㎝,宽21㎝,正中 央是一个与整个封面长宽比例相同的矩形,如果 要使四周的边衬所占面积是封面面积的四分之 一,上、下边衬等宽,左、右边衬等宽,应如何设 计四周边衬的宽度?
小结
•列一元二次方程解应用题的步骤与 列一元一次方程解应用题的步骤类似, 即审、设、找、列、解、检、答.
• 这里要特别注意:在列一元二次方 程解应用题时,由于所得的根一 般有两个,所以要检验这两个根 是否符合实际问题的要求.
问题 (1)本题中有哪些等量关系? (2)如何理解“正中央是一个与整个封面 长宽比例相同的矩形”? (3)如何利用已知的数量关系选取未知 数并列出方程?
27
探究3
要设计一本书的封面,封面长27㎝,宽21㎝,正中 央是一个与整个封面长宽比例相同的矩形,如果 要使四周的边衬所占面积是封面面积的四分之 一,上、下边衬等宽,左、右边衬等宽,应如何设 计四周边衬的宽度? 分析:这本书的长宽之比是9:7,依题知正中 央的矩形两边之比也为9:7 解法一:设正中央的矩形两边分别为9xcm,7xcm
(1)
(2)
解:(1)如图,设道路的宽为 x米,则
( 32 2 x )( 20 2 x ) 540 化简得,
12.解一元二次方程的实际应用——面积问题

孙老师说,杨蕙心学习效率很高,认真执行老师 的复习要求,往往一个小时能完成别人两三个小 时的作业量,而且计划性强,善于自我调节。此 外,学校还有一群与她实力相当的同学,他们经 常在一起切磋、交流,形成一种良性的竞争氛围。 谈起自己的高考心得,杨蕙心说出了“听话” 两个字。她认为在高三冲刺阶段一定要跟随老师 的脚步。“老师介绍的都是多年积累的学习方法, 肯定是最有益的。”高三紧张的学习中,她常做 的事情就是告诫自己要坚持,不能因为一次考试
x
35-2x 当x=7.5时,35-2x=20>18,因此不合题意,舍去;
当x=10时,35-2x=15. 答:鸡场的长、宽分别为15米、10米.
例2 某校为了美化校园,准备在一块长32米,宽20米的长方形场地四周修
筑等宽的道路,中间的矩形部分作草坪, 若草坪的面积为540米2,求图中道路 的宽是多少? x x 32-2x 20-2x x x 解:设草坪四周道路的宽为x米, 则草坪的长为(32-2x)米,宽为(20-2x)米.
班主任: 我觉得何旋今天取得这样的成绩, 我觉得,很重要的是,何旋是土生土长的北京 二中的学生,二中的教育理念是综合培养学生 的素质和能力。我觉得何旋,她取得今天这么 好的成绩,一个来源于她的扎实的学习上的基 础,还有一个非常重要的,我觉得特别想提的, 何旋是一个特别充满自信,充满阳光的这样一 个女孩子。在我印象当中,何旋是一个最爱笑 的,而且她的笑特别感染人的。所以我觉得她
高考总分:711分 毕业学校:北京八中 语文139分 数学140分
英语141分 理综291分 报考高校: 北京大学光华管理学院
北京市理科状元杨蕙心
班主任 孙烨:杨蕙心是一个目标高远 的学生,而且具有很好的学习品质。学 习效率高是杨蕙心的一大特点,一般同 学两三个小时才能完成的作业,她一个 小时就能完成。杨蕙心分析问题的能力 很强,这一点在平常的考试中可以体现。 每当杨蕙心在某科考试中出现了问题, 她能很快找到问题的原因,并马上拿出
实际问题与一元二次方程(四)图形面积问题(课件)数学九年级上册(人教版)

A.(80+x)(50#43;2x)(50+x)=5400
C.(80+x)(50+2x)=5400
D.(80+2x)(50+2x)=5400
3.一个直角三角形的斜边长为 20,一直角边长是另一直角边长的2倍,则
这个直角三角的面积是( B )
A.3
B.4
C.5
D.6
4.用22cm长的铁丝,折成一个面积是30cm2的矩形,求这个矩形的长和宽.
1.掌握面积法建立一元二次方程的数学模型.(难点) 2.能运用一元二次方程解决与面积有关的实际问题.(重点)
1.矩形的长和宽分别为am和bm,则其面积为_a_b__m2,周长为_2_(_a_+_b_)_m. 2.梯形的上、下底分别为acm和bcm,高为hcm,则其面积为__12_(_a_+_b_)_h__cm2. 3.圆的半径为rcm,则其面积为π___r_2 cm2,周长为__2_π_r___cm.
备围建一个矩形花圃,其中一边靠墙(墙长20米),另外三边用篱笆围成
如图所示,所用的篱笆长为36米.
(2)当花圃的面积为144平方米时,求垂直于 墙的一边的长为多少米?
20米
解:由题意可列方程:
x(36-2x)=144 整理得,x2-18x+72=0 解得x1=6,x2=12 当x=6时,36-2x=24(米)>20米,不符合题意舍去; 当x=12时,36-2x=12(米)
解得:x1=1,x2=13.
∵6-x>0,∴x<6,∴x=1.
答:AE的长为1m.
几何图形与一元二次方程问题
课本封面问题 常见类型 彩条/小路宽度问题
一边靠墙围成的区域面积
列方程依据 常见几何图形面积是等量关系.
实际问题与一元二次方程(面积问题)教案

实际问题与一元二次方程-------面积问题七中刘英【教学目标】1.知识与技能掌握面积法建立一元二次方程的数学模型并运用它解决实际问题。
2.过程与方法经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
3、情感、态度和价值观:通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣。
【教学重点与难点】⒈重点:根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题。
2.难点:根据面积与面积之间的等量关系建立一元二次方程的数学模型.。
【教学方法】引导学习法【教具准备】PPT课件。
【课时安排】1课时【教学过程】一、列方程解应用题的基本步骤:①审(审题);读题目,找出题中的量,分清有哪些已知量、未知量,哪些是要求的未知量和所涉及的基本数量关系、相等关系。
②设(设元);包括设直接未知数或间接未知数,同时用含有未知数的式子表示其他的相关量.③列(列方程);以一二步骤为基础,用题中的等量关系列方程④解(解方程);⑤验(检验);检验根的准确性及是否符合实际意义和题目中的要求⑥答(总结);写出答语作总结二例题讲解例1.例1. 如图,某小区规划在一个长为40米,宽为26米的矩形场地ABCD上修建如下图所示的同样宽的小路,其余部分种草,若使草坪面积为864平方米,求小路的宽度?分析:这类问题的特点是修建小路所占的面积只与小路的条数、宽度有关,而与位置无关。
为了研究问题方便,可分别把纵横修建的小路移到一起(最好靠一边)解:设道路的宽为x米,则草坪长(40-2x)米,宽(26-x)米(40-2x)(26-x)=864化简得:x2-46x+88=0解得:x=2,x=44∵40-2x>0 26-x>0∴0<x<20当x=44时,道路的宽就超过了矩形场地的长和宽,因此不合题意舍去.答:道路的宽为2米.变式训练:上题中改变方式修小路,设小路的宽为x,用x表示草坪面积,并指出x的取值范围。
21.3 实际问题与一元二次方程 21.3.3 实际问题与一元二次方程(三)——面积问题

21.3 实际问题与一元二次方程
21.3.3 实际问题与一元二次方程(三)——面积问题
武汉专版·九年级上册
1.绿苑小区在规划设计时,准备在两幢楼房之间设置一块面积为900 m2的矩形绿地,并且长比宽多
10 m,设绿地的宽为x m,根据题意,可列方程为B( )
A.x(x-10)=900
A.x(x-10)=900
B.x(x+10)=9பைடு நூலகம்0
C.10(x+10)=900
D.2[x+(x+10)]=900
2.(兰州中考)公园有一块正方形的空地,后来从这块空地上划出局部区域栽种鲜花(如图中阴影局部),原空地一边减少了1 m,另一边减少了2 m,剩余空地的面积为18 m2,求原正 方形空地的边长.设原正方形空地的边长为x m,那么可列方程为( ) A.(x+1)(x+2)=18 B.x2-3x+16=0 C.(x-1)(x-2)=18 D.x2+3x+16=0 6.将外表积为550 cm2的包装盒剪开铺平,纸样如下图,包装盒的高为15 cm,求出包装盒底面的长与宽.
x2-6x+8=0,解得
x1
=2,x2=4,都符合题意,∴经过 2 s 或 4 s,△PBQ 的面积为 8 cm2
9.如图,在宽为20 m,长为32 m的矩形地面上修筑同样宽的道路(图中阴影局部),余下的局部种草 坪,要使草坪的面积为540 m2,那么道路的宽应为多少?
10.要在一块长52 m,宽48 m的矩形绿地上修建同样宽的两条互相垂直的甬路,下面分别是小亮和小 颖的设计方案.
小亮设计的方案如图①所示,甬路宽度均为x m,剩余的四块绿地面积共2 300 m2.
9.如图,在宽为20 m,长为32 m的矩形地面上修筑同样宽的道路(图中阴影局部),余下的局部种草坪,要使草坪的面积为540 m2,那么道路的宽应为多少?
《实际问题与一元二次方程》---(面积问题)教学设计

41203023422023302x x x x )411(2030)3220)(2230(x x 41203023422023302x x x x )411(2030)3220)(2230(x x 《实际问题与一元二次方程》---(面积问题)教学设计导入:我们知道议程是刻画实际问题中数学关系的有效数学模型,所以我们经常用议程来分析解决实际问题,在以前的学习中,我们已经了解并掌握了怎样用一元一次方程、二元一次方程组及分式方程等去解决实际问题,那么今天,我们就尝试着用一元二次方程去分析解决实际问题。
板书:实际问题与一元二次方程活动一:(你一言、我一语,道破天机)如图是某中学长30m 、宽20m 的矩形草坪活动场,因需要四周要铺成四条小路,使横、纵路的宽度之比是3:2,如果小路的面积是原矩形草坪面积的四分之一,那么小路宽应是多少?都有哪些已知量?表示等量关系的又是哪些?思考后说说。
解:设横路的宽是3Xm ,纵路的宽是2Xm ,据题意可列方程:用一元二次方程解决实际问题的基本步骤是什么?活动二:(独上高楼赏月)变式:为了美观和实用,学校计划重新铺筑小路,有些同学为学校设计了新的图案,如图所示:如果其它条件都不变,那么这时的小路应修多宽?独立完成后,组内交流。
板演。
通过这两个题,你有什么联想?解:设横路的宽是3Xm ,纵路的宽是2Xm ,据题意可列方程:这两个图形有什么区别和联系?你还能为学校设计别的图案吗?总结:我们可以利用“图形平移位置变,面积大小不改变”的道理,也可叫做“靠边站”,这样使所列方程更容易些,以便求出路宽,也就是把不规则的图形转化为规则的图形,是解决这类问题的关键所在。
活动三:(大显身手)独立完成,男女同学每题各找一名同学板演,方法补充(喜羊羊)如图,在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为2540m ,求道路的宽.解法(1):由题意转化为右图,设道路宽为x 米.根据题意,可列出方程为2032540x x. 整理得2521000xx . 解得150x (舍去),22x .答:道路宽为2米.解法(2):由题意转化为右图,设道路宽为x 米,根据题意列方程得:133x 2233x ()2舍去220322032540x x .整理得:2521000x x . 解得:12x ,250x (舍去).答:道路宽应是2米.(灰太狼)如图是宽为20米,长为32米的矩形耕地,要修筑同样宽的三条道路(两条纵向,一条横向,且互相垂直),把耕地分成六块大小相等的试验地,要使试验地的面积为570平方米,问:道路宽为多少米?活动四:(团结就是力量)先独立,再小组合作,充分发挥合作探索交流的优势,充分交流后,小组出代表发言(注意语言的总结)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四边形PBCQ的面积是33c㎡
AD
分析:四边形PBCQ的形状是梯形, 上下底,高各是多少?
P Q
(2)P、Q两点从出发开始几秒时,
B
C
点P点Q间的距离是10㎝
分析:PQ的长度如何求?如图过Q点作垂线,构造直角三角形
通过这节课的学习, 谈谈你掌握了什么?
【解析】(1)设宽AB为x米, 则BC为(24-3x)米,这时面积 S=x(24-3x)=-3x2+24x (2)由条件-3x2+24x=45 化为:x2-8x+15=0解得x1=5,x2=3 ∵0<24-3x≤10得14/3≤x<8 ∴x2不合题意,AB=5,即花圃的宽AB为5米
例4.某林场计划修一条长750m,断面为 等腰梯形的渠道,断面面积为1.6m2, 上 口宽比渠深多2m,渠底比渠深多0.4m.
1.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,
则每个小长方形的面积为【 】 A
练习: A.400cm2 B.500cm2 C.600cm2 D.4000cm2
2. 在一幅长80cm,宽50cm的矩形风景画的四周镶一条金
色纸边,制成一幅矩形挂图,如图所示,如果要使整个
挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x
满足的方程是【B】
A.x2+130x-1400=0
B.x2+65x-350=0
C.x2-130x-1400=0
D.x2-65x-350=0
3.如图,面积为30m2的正方形的四个角是面积为2m2的小
正方形,用计算器求得a的长为(保留3个有效数字)C【 】
A.2.70m B.2.66m C.2.65m D.2.60m
例题2:有一个面积为150m2的长方形鸡
场,鸡场的一边靠墙(墙长18m,)另三边用竹 篱笆围城,如果竹篱笆的长为35m,求鸡场 的长和宽各为多少?
18m
例3. (2003年,舟山)如图,有长为24米的篱笆,一面 利用墙(墙的最大可用长度a为10米),围成中间隔 有一道篱笆的长方形花圃。设花圃的宽AB为x米, 面积为S米2, (1)求S与x的函数关系式;(2)如果要围成面积为 45米2的花圃,AB的长是多少米?
x
80cm
x
50cm
x
x
a
练习:
4.如图,是长方形鸡场平面示意图,一边 靠墙,另外三面用竹篱笆围成,若竹篱笆总 长为35m,所围的面积为150m2,则此长方 形鸡场的长、宽分别为_______.
练习:
5、围绕长方形公园的栅栏 长280m.已知该公园的面积 为4800m2.求这个公园的长 与宽.
x 280 2x 4800 2
(1)渠道的上口宽与渠底宽各是多少? (2)如果计划每天挖土48m3,需要多 少天才能把这条渠道挖完?
分析:因为渠深最小,为了便于计算,不妨 设渠深为xm,则上口宽为x+2, 渠底为 x+0.4,那么,根据梯形的面积公式便可建 模.
解:(1)设渠深为xm 则渠底为(x+0.4)m,上口宽为(x+2)m
D
ห้องสมุดไป่ตู้
形的四个顶点,AB=16㎝,AD=6㎝,动
点P、Q分别从点A、C同时出发,点P
P
以3㎝/s的速度向点B移动,一直到点
Q
B为止,点Q以2㎝/s的速度向点D移动. B
C
问(1)P、Q两点从出发开始几秒时,四边形 PBCQ的面积是33c㎡
(2)P、Q两点从出发开始几秒时, 点P点Q间的距离是10㎝
问(1)P、Q两点从出发开始几秒时,
依题意,得: 1 (x 2 x 0.4)x 1.6 2
整理,得:5x2+6x-8=0
解得:x1=0.8m,x2=-2(不合题意,舍去) ∴上口宽为2.8m,渠底为1.2m.
(2)1.6 750 2(5 天) 48
答:渠道的上口宽与渠底深各是2.8m和1.2m; 需要25天才能挖完渠道.
例5 如图,已知A、B、C、D为矩 A
第4课时 解决面积问题
封丘县第一初级中学 王立霞
例题1:
1.如图,用长为18m的篱笆(虚线部分),两面靠 墙围成矩形的苗圃.要围成苗圃的面积为81m2,应该 怎么设计?
解:设苗圃的一边长为xm, 则
x(18 x) 81 化简得,x2 18x 81 0
(x9)2 0 x1 x2 9
答:应围成一个边长为9米的正方形.