化工原理课程设计

合集下载

化工原理课程设计

化工原理课程设计

化工原理课程设计一、教学目标本节课的教学目标是使学生掌握化工原理的基本概念、基本理论和基本方法,包括流体的物理性质、流体力学基本方程、流动和压力降、气液平衡、传质过程等,培养学生分析和解决化工问题的能力。

1.掌握流体的密度、粘度、热导率等物理性质。

2.理解流体力学的基本方程,包括连续方程、动量方程和能量方程。

3.掌握流体流动和压力降的基本理论,包括层流和湍流、管道流动和开放流动等。

4.理解气液平衡的基本原理,包括相图、相律和相变换等。

5.掌握传质过程的基本方法,包括扩散、对流传质和膜传质等。

6.能够运用流体力学基本方程分析流体流动问题。

7.能够计算流体流动和压力降的基本参数,如流速、压力降等。

8.能够分析气液平衡问题,确定相态和相组成。

9.能够运用传质过程的基本方法分析和解决化工问题。

情感态度价值观目标:1.培养学生对化工原理学科的兴趣和热情。

2.培养学生严谨的科学态度和良好的职业道德。

3.培养学生团队协作和自主学习的意识。

二、教学内容本节课的教学内容主要包括流体的物理性质、流体力学基本方程、流动和压力降、气液平衡、传质过程等。

1.流体的物理性质:包括密度、粘度、热导率等,通过实例讲解其测量方法和应用。

2.流体力学基本方程:讲解连续方程、动量方程和能量方程,并通过实例分析其应用。

3.流动和压力降:讲解层流和湍流的特性,分析管道流动和开放流动的压力降计算方法。

4.气液平衡:讲解相图、相律和相变换的基本原理,并通过实例分析气液平衡问题。

5.传质过程:讲解扩散、对流传质和膜传质的基本方法,并通过实例分析传质问题的解决方法。

三、教学方法本节课采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。

1.讲授法:用于讲解流体的物理性质、流体力学基本方程、流动和压力降、气液平衡、传质过程等基本概念和理论。

2.讨论法:通过小组讨论,引导学生主动思考和分析化工问题,提高学生的分析和解决问题的能力。

3.案例分析法:通过分析实际化工案例,使学生更好地理解和应用化工原理,培养学生的实际操作能力。

化工原理课程设计

化工原理课程设计
第一章 概述
1.1 课题背景 高径比很大的设备称为塔器。塔设备是化工、炼油生产中最重要的设备 之一,它可使气(或汽)液或液液两相之间进行紧密接触,达到相际传质及 传热的目的,常见的、可在塔设备中完成的单元操作有:精馏、吸收、解吸 和萃取等。此外,工业气体的冷却与回收,气体的湿法净制和干燥,以及兼装置的产品产量、质量、生 产能力和消耗定额,以及三废处理和环境保护等各个方面都有重大的影响。 据有关资料报道,塔设备的投资费用占整个工艺设备投资费用的较大比例。 因此,塔设备的设计和研究,受到化工、炼油等行业的高度重视。 1.2 问题描述 作为主要用于传质过程的塔设备, 首先必须使气 (汽) 液两相充分接触, 以获得较高的传质效率。此外,为了满足工业生产的需要,塔设备还得考虑 下列各项要求: (1)生产能力大。在较大的气(汽)液流速下,仍不致发生大量的雾 沫夹带、拦液或液泛等破坏正常操作的现象。 (2)操作稳定、弹性大。当塔设备的气(汽)液负荷量有较大的波动 时,仍能在较高的传质效率下进行稳定的操作,并且塔设备应保证能长期连 续操作。 (3)流体流动的阻力小。即流体通过塔设备的压力降小。这将大大节 省生产中的动力消耗,以及降低经常操作费用。对于减压蒸馏操作,较大的 压力降还使系统无法维持必要的真空度。 (4)结构简单、材料耗用量小、制造和安装容易。这可以减少基建过
2.1 操作条件的确定 2.1.1 操作方式(精馏方式) 本设计采用连续精馏方式。原料液连续加入精馏塔中,并连续收集产物 和排出残液。与间歇蒸馏相比具有生产能力大,集成度高,可控性好,产品 质量稳定等优点,工业生产中以连续精馏为主,而间歇精馏适合于小规模、 多品种或多组分物系的初步分离。由于所涉浓度范围内苯和氯苯的挥发度相 差较大,因而无须采用特殊精馏。 2.1.2 离心泵的选择 由于化工生产中被输送液体的性质、压强和流量等差异很大,为了适应 各种不同要求,离心泵的类型也是多种多样的。按输送液体的性质可分为清 水泵、耐腐蚀泵、油泵、液下泵、屏蔽泵、杂质泵、管道泵和低温用泵等。 清水泵是 应用最 广的离心泵,在化工生产中 用来输送 各种工业用水 以及物 理、化学性质类似于水的其他液体。故我们采用水泵。 2.1.3 冷凝器的选择 精馏塔顶出来的气相,一般需要用其它冷媒冷疑(如循环水、冷冻水或 冷物料) 。塔顶冷凝装置可采用全凝器、分凝器两种不同的设置。当被冷凝 的气相温度较高及组分较单一且常温下为液态时,一般采用全凝器冷凝,用 循环水做冷媒;当被冷凝的气相温度较高但组分较多且常温下有某组分为气 态或易气化时,一般采用分凝器冷凝,先用循环水做冷媒将气相中沸点较高 的组分冷凝下来,未冷凝气体再用低温冷冻水做冷媒冷凝,即所谓分凝器冷 凝。在这里采用全凝器,因为可以准确的控制回流比。 2.1.4 加热方式的选择

化工原理课程设计完整版

化工原理课程设计完整版

化工原理课程设计完整版一、教学目标本课程旨在让学生掌握化工原理的基本概念、理论和方法,了解化工生产的基本过程和设备,培养学生运用化工原理解决实际问题的能力。

具体目标如下:1.知识目标:(1)理解化工原理的基本概念和原理;(2)熟悉化工生产的基本过程和设备;(3)掌握化工计算方法和技能。

2.技能目标:(1)能够运用化工原理解决实际问题;(2)具备化工过程设计和优化能力;(3)学会使用化工设备和仪器进行实验和调试。

3.情感态度价值观目标:(1)培养学生的团队合作意识和沟通能力;(2)增强学生对化工行业的认识和兴趣;(3)培养学生对科学研究的热爱和责任感。

二、教学内容本课程的教学内容主要包括以下几个方面:1.化工原理基本概念和原理:包括溶液、蒸馏、吸收、萃取、离子交换等基本操作原理和方法。

2.化工生产过程和设备:包括反应器、换热器、蒸发器、膜分离设备等的基本结构和原理。

3.化工计算方法:包括物料平衡、热量平衡、质量平衡等计算方法。

具体教学大纲安排如下:第1-2周:化工原理基本概念和原理;第3-4周:化工生产过程和设备;第5-6周:化工计算方法。

三、教学方法本课程采用多种教学方法,以激发学生的学习兴趣和主动性:1.讲授法:讲解基本概念、原理和方法,引导学生理解和掌握;2.案例分析法:分析实际案例,让学生学会运用化工原理解决实际问题;3.实验法:进行实验操作,培养学生的实践能力和实验技能;4.小组讨论法:分组讨论,培养学生的团队合作意识和沟通能力。

四、教学资源本课程的教学资源包括:1.教材:《化工原理》;2.参考书:相关化工原理的教材和学术著作;3.多媒体资料:教学PPT、视频、动画等;4.实验设备:反应器、换热器、蒸发器、膜分离设备等。

以上教学资源将用于支持教学内容和教学方法的实施,丰富学生的学习体验。

五、教学评估本课程的评估方式包括平时表现、作业、考试等多个方面,以全面客观地评价学生的学习成果。

1.平时表现:通过课堂参与、提问、小组讨论等形式的评估,考察学生的学习态度和理解能力。

化工原理课程设计柴诚敬

化工原理课程设计柴诚敬

化工原理课程设计 柴诚敬一、课程目标知识目标:1. 理解并掌握化工原理的基本概念,如流体力学、热力学、传质与传热等;2. 学会运用化学工程的基本原理分析典型化工过程中的现象与问题;3. 掌握化工流程设计的基本方法和步骤,能结合实际案例进行流程分析与优化。

技能目标:1. 能够运用数学工具解决化工过程中的计算问题,如物料平衡、能量平衡等;2. 培养学生运用实验、图表、模拟等方法对化工过程进行研究和评价的能力;3. 培养学生团队协作、沟通表达及解决实际问题的能力。

情感态度价值观目标:1. 培养学生对化工原理学科的兴趣和热爱,激发学习积极性;2. 增强学生的环保意识,使其认识到化工过程对环境的影响及责任感;3. 培养学生严谨、求实的科学态度,提高其创新意识和实践能力。

本课程针对高年级学生,结合化工原理课程性质,注重理论与实践相结合,旨在培养学生运用基本原理解决实际问题的能力。

教学要求以学生为中心,注重启发式教学,激发学生的主动性和创造性。

课程目标分解为具体学习成果,以便于后续教学设计和评估。

通过本课程的学习,使学生能够全面掌握化工原理知识,为未来从事化工领域工作打下坚实基础。

二、教学内容本章节教学内容主要包括:1. 化工流体力学基础:流体静力学、流体动力学、流体阻力与流动形态等;参考教材第二章:流体力学基础。

2. 热力学原理及应用:热力学第一定律、第二定律,以及理想气体、实际气体的热力学性质;参考教材第三章:热力学原理及其在化工中的应用。

3. 传质与传热过程:质量传递、热量传递的基本原理,以及相应的传递速率计算;参考教材第四章:传质与传热。

4. 化工过程模拟与优化:介绍化工过程模拟的基本方法,如流程模拟、动态模拟等,以及优化策略;参考教材第五章:化工过程模拟与优化。

5. 典型化工单元操作:分析各类单元操作的基本原理及设备选型,如反应器、塔器、换热器等;参考教材第六章:典型化工单元操作。

教学大纲安排如下:第一周:化工流体力学基础;第二周:热力学原理及应用;第三周:传质与传热过程;第四周:化工过程模拟与优化;第五周:典型化工单元操作。

化工原理课程设计PPT课件

化工原理课程设计PPT课件
(2)溢流装置 采用单溢流 弓形降液管 平形受液盘及平形溢流堰 不设进口堰
ppt精选版
42
化工原理课程设计——筛板精馏塔的设计
hOW
hW
HT
Hd
hW
h0
h1
ppt精选版
43
化工原理课程设计——筛板精馏塔的设计 WC
lW A f
R
t
Aa
WD
x
WS
Dppt精选版
44
化工原理课程设计——筛板精馏塔的设计
进行设备选型,并提出保证过程正常、安全运行
所需要的检测和计量参数。
准确而迅速地进行过程计算及主要设备的工
艺设计计算。
用精练的语言、简洁的文字、清晰的图表来
表达自己的设计思想和计算结果。
ppt精选版
5
化工原理课程设计——筛板精馏塔的设计
二、化工原理课程设计的内容
(1)设计方案简介 (2)主要设备的工艺设计计算 (3)典型辅助设备的选型和计算 (4)工艺流程简图 (5)主体设备工艺条件图
H T h L 0 .4 0 .0 6 0 .3m 4
提馏段
1
LS VS
Lvmm((提提)) 2
史密斯关联图
C 20
D 4VS u
max C
L V V
C
C2
0
20
0.2
可取安全系数为(安全系数0.6—0.8)
u(0.6~0.8)umax
塔径圆整
ppt精选版
41
化工原理课程设计——筛板精馏塔的设计
ppt精选版
6
化工原理课程设计——筛板精馏塔的设计
化工原理课程设计需要准备的用具
ppt精选版
7

化工原理课程设计

化工原理课程设计

化工原理课程设计1. 引言化工原理课程设计是化学工程专业本科学生的一门重要课程。

该课程旨在通过实际案例的分析和解决,让学生掌握化工原理的基本知识和应用技能。

本文将介绍化工原理课程设计的目的、内容、方法和评价。

2. 目的化工原理课程设计的目的是培养学生的工程实践能力和解决问题的能力。

通过实际案例的分析和设计,使学生能够应用所学的化工原理知识解决实际问题,提高工程实践能力。

3. 内容化工原理课程设计的内容涵盖了化工过程的基本原理和工艺流程的设计。

以下是化工原理课程设计的主要内容:3.1 化工过程的基本原理在化工原理课程设计中,学生将学习化工过程的基本原理,包括物质的平衡、能量的平衡、动量的平衡等。

学生将掌握化工过程中的质量守恒定律、能量守恒定律和动量守恒定律等基本原理。

3.2 工艺流程的设计在化工原理课程设计的过程中,学生将学习如何设计化工工艺流程。

学生将通过分析化工原料的性质和工艺要求,选择适当的反应器类型、控制参数等,设计出满足工艺要求的化工工艺流程。

4. 方法化工原理课程设计采用项目驱动的教学方法。

以下是化工原理课程设计的方法:4.1 实践项目学生将参与实际的化工工程项目,通过实际操作和实验,了解化工工艺的实际应用和操作流程。

学生将在实践中学习化工原理知识,提高解决问题和分析能力。

4.2 课程讲解和案例分析教师将通过课堂讲解和案例分析,介绍化工原理的基本概念和原理。

学生将通过分析和讨论实际案例,掌握化工原理的实际应用方法。

5. 评价化工原理课程设计的评价主要包括学生项目报告的评分和学生的学术表现。

以下是化工原理课程设计的评价指标:5.1 项目报告评分学生将根据课程设计项目的要求,提交相应的设计报告。

教师将对学生的设计报告进行评分,评估学生的设计能力和分析能力。

5.2 学术表现除了项目报告的评分外,教师还将评估学生的学术表现。

学生的学术表现包括参与课堂讨论、提出问题和解答问题的能力等。

6. 总结化工原理课程设计是化学工程专业学生培养工程实践能力和解决问题能力的重要课程。

化工原理课程设计

化工原理课程设计

化工原理课程设计
化工原理课程设计是化工类专业学生进行的重要学科实践之一。

以下是化工原理课程设计的设计要点和步骤:
1. 设计目标
设计之前,需要先确定设计目标和要求。

设计目标是设计的核心,影响着整个课程设计过程。

设计目标通常包括实现的工艺流程、化学反应原理、环境保护、经济性等方面的要求。

2. 计算过程
计算过程是课程设计中的重要部分。

具体包括:物料平衡、能量平衡、流量计算、设备选择、操作模式等设计内容。

针对不同的化工过程,设计者需要确定其具体计算过程,包括物质计算、反应热计算、设备参数计算等。

3. 设备选型
设备选型必须充分考虑工艺、工情参数。

应包括其物理、化学性能、结构形式、操作特点和精度等因素。

4. 安全措施
化工原理课程设计中的安全措施是至关重要的设计要点。

设计者需要对可能发生的危险或任何异常情况进行充分的防范,并在设计过程中设定预防措施和应急方案。

5. 材料运输、存储条件及成本
材料的运输、存储也是重要的设计要点。

需要考虑材料的物理性质、化学性质以及材料运输和存储的安全措施,并充分考虑成本问题。

6. 结果展示
化工原理课程设计中的结果展示是对整个设计的汇总总结,需要对流程、操作、设备、工艺以及经济性进行全面展示。

展示形式可以包括实验报告、设计报告、模拟演示等。

化工原理课程设计旨在培养学生的综合实践能力,充分发挥学生的创新和实践能力。

在完成设计过程中,学生需要充分考虑工艺、安全、环保和经济等多方面的因素。

化工原理课程设计

化工原理课程设计

化工原理课程设计(一)——碳八分离工段原料预热器设计学生姓名:왕량学校:대련대학专业班级:화공101学号:10412041指导老师:왕위징时间:2012.07.08目录一、设计任务书 (3)二、概述及设计方案简介 (4)1.碳八芳烃分离工艺简介 (4)2.换热器简介 (4)三、设计条件及主要物性参数 (7)1.设计条件 (7)2.主要物性参数 (7)四、工艺设计计算 (9)1.估算传热面积 (9)2.选择管径和管内流速 (11)3.选取管长、确定管程数和总管数 (12)4.平均传热温差校正及壳程数 (13)5.传热管排列 (14)6.管心距 (15)7.管束的分程方法 (15)8.壳体内径 (16)9.折流板和支承板 (16)10.其它主要附件 (17)11.接管 (17)五、换热器核算 (17)1.热流量核算 (17)2. 传热管和壳体壁温核算 (24)3. 换热器内流体阻力计算 (26)六、设计自我评述 (31)七、参考文献 (32)八、主要符号表 (32)八、附录 (33)附录1 工艺尺寸图 (33)附录2工艺流程图 (34)一、设计任务书化工原理课程设计任务书姓名:王亮班级:化工101碳八分离工段原料预热器设计冷流体:液体(流量15Koml/h)组成摩尔分率乙苯对二甲苯间二甲苯邻二甲苯18% 18% 40% 24%加热水蒸气压力为122Kg cm/由20℃加热到162℃要求管程和壳程压差均小于50KPa,设计标准式列管换热器二、概述及设计方案简介1.碳八芳烃分离工艺简介碳八芳烃分离即C8芳烃分离,根据工业需要将碳八芳烃分离成单一组分或馏分的过程。

C8芳烃分离的主要目的是活的经济价值较高的对二甲苯和邻二甲苯。

因此,C8芳烃分离有常常与碳八芳烃异构化结合在一起,以获得更多的对、邻二甲苯。

在个别情况下,也要分离出高纯度的乙苯、苯乙烯。

各种C8芳烃间沸点很接近难以用一般的精馏方法分离,各种C8芳烃沸点如表所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《化工原理》课程设计水吸收氨气填料吸收塔设计学院河南城建学院专业化学工程与工艺指导教师王要令班级 1014112姓名喻宏兴学号 101411252 2013年 12月24日附:设计任务书(1) 设计题目年处理量为吨氨气吸收塔设计试设计一座填料吸收塔,用于脱除混于空气中的氨气。

混合气体的处理量为2600m3/h,其中含空气为94%,氨气为6%(体积分数,下同)。

要求塔顶排放气体中含氨低于0.02%,采用清水进行吸收,吸收塔的用量为最小用量的 1.5 倍【20℃氨在水中的溶解度系数为H=0.725kmol/(m3·kPa)】(2) 工艺操作条件①操作平均压力:常压;②操作温度:t=20℃;③每年生产时间:7200h;④填料类型选用:聚丙烯阶梯环填料;规格:DN50(3)设计任务1.填料吸收塔的物料衡算;2.填料吸收塔的工艺尺寸设计与计算;3.填料吸收塔有关附属设备的设计和选型;4.绘制吸收系统的工艺流程图;5.编写设计说明书;6.对设计过程的评述和有关问题的讨论。

目录0. 前言 (5)1. 设计方案简述 (5)1.1 设计任务的意义 (5)1.2 设计结果 (5)2. 工艺流程简图及说明 (7)3. 工艺计算及主体设备设计 (8)3.1 液相物性数据 (8)3.2 气相物性数据 (8)3.3 物料计算 (8)3.4 平衡曲线方程及吸收剂用量的选择 (9)3.5 塔径的计算 (10)3.6 填料层高度的计算 (11)3.7 填料层压降计算 (14)4. 附属设备计算及选型 (15)4.1 液体分布器简要设计 (15)4.2 填料支承装置 (15)4.3 填料压紧装置 (15)4.4 液体再分布装置 (16)4.5 塔顶除沫装置 (16)4.6 塔附属高度及塔总高的计算 (16)4.7 填料塔接管尺寸算 (17)4.8 基础物性数据 (17)5. 计算结果概要 (18)6.对本设计的评述 (19)7. 附图 (20)7.1 工艺流程图 (20)7.2 主体设备装配图 (20)8.参考文献 (21)0. 前言在炼油、石油化工、精细化工、食品、医药及环保等部门,塔设备属于使用量大应用面广的重要单元设备。

塔设备广泛用于蒸馏、吸收、萃取、洗涤、传热等单元操作中。

所以塔设备的研究一直是国内外学者普遍关注的重要课题。

在化学工业中,经常需要将气体混合物中的各个组分加以分离,其主要目的是回收气体混合物中的有用物质,以制取产品,或除去工艺气体中的有害成分,使气体净化,以便进一步加工处理,或除去工业放空尾气中的有害成分,以免污染空气。

吸收操作是气体混合物分离方法之一,它是根据混合物中各组分在某一种溶剂中溶解度不同而达到分离的目的。

塔设备按其结构形式基本上可分为两类;板式塔和填料塔。

以前在工业生产中,当处理量大时多用板式塔,处理量小时采用填料塔。

近年来由于填料塔结构的改进,新型的、高负荷填料的开发,既提高了塔的通过能力和分离效能又保持了压降小、性能稳定等特点。

因此,填料塔已经被推广到大型气、液操作中,在某些场合还代替了传统的板式塔。

如今,直径几米甚至几十米的大型填料塔在工业上已非罕见。

随着对填料塔的研究和开发,性能优良的填料塔必将大量用于工业生产中。

综合考察各分离吸收设备中以填料塔为代表,填料塔技术用于各类工业物系的分离,虽然设计的重点在塔体及塔内件等核心部分,但与之相配套的外部工艺和换热系统应视具体的工程特殊性作相应的改进。

例如在DMF回收装置的扩产改造项目中,要求利用原常压塔塔顶蒸汽,工艺上可以在常压塔及新增减压塔之间采用双效蒸馏技术,达到降低能耗、提高产量的双重效果,在硝基氯苯分离项目中;改原多塔精馏、两端结晶工艺为单塔精馏、端结晶流程,并对富间硝基氯苯母液进行精馏分离,获得99%以上的间硝基氯苯,既提高产品质量,又取得了降低能耗的技术效果。

过程的优缺点:分离技术就是指在没有化学反应的情况下分离出混合物中特定组分的操作。

这种操作包括蒸馏,吸收,解吸,萃取,结晶,吸附,过滤,蒸发,干燥,离子交换和膜分离等。

利用分离技术可为社会提供大量的能源,化工产品和环保设备,对国民经济起着重要的作用。

为了使5填料塔的设计获得满足分离要1求的最佳设计参数(如理论板数、热负荷等)和最优操作工况(如进料位置、回流比等),准确地计算出全塔各处的组分浓度分布(尤其是腐蚀性组分)、温度分布、汽液流率分布等,常采用高效填料塔成套分离技术。

而且,20世纪80年代以来,以高效填料及塔内件为主要技术代表的新型填料塔成套分离工程技术在国内受到普遍重视。

由于其具有高效、低阻、大通量等优点,广泛应用于化工、石化、炼油及其它工业部门的各类物系分离。

氨是化工生产中极为重要的生产原料,但是其强烈的刺激性气味对于人体健康和大气环境都会造成破坏和污染,氨对接触的皮肤组织都有腐蚀和刺激作用,可以吸收皮肤组织中的水分,使组织蛋白变性,并使组织脂肪皂化,破坏细胞膜结构。

氨的溶解度极高,所以主要对动物或人体的上呼吸道有刺激和腐蚀作用,常被吸附在皮肤粘膜和眼结膜上,从而产生刺激和炎症。

可麻痹呼吸道纤毛和损害粘膜上皮组织,使病原微生物易于侵入,减弱人体对疾病的抵抗力。

氨通常以气体形式吸入人体,氨被吸入肺后容易通过肺泡进入血液,与血红蛋白结合,破坏运氧功能。

进入肺泡内的氨,少部分为二氧化碳所中和,余下被吸收至血液,少量的氨可随汗液、尿液或呼吸排出体外。

短期内吸入大量氨气后会出现流泪、咽痛、咳嗽、胸闷、呼吸困难、头晕、呕吐、乏力等。

若吸入的氨气过多,导致血液中氨浓度过高,就会通过三叉神经末梢的反射作用而引起心脏的停搏和呼吸停止,危及生命。

长期接触氨气,部分人可能会出现皮肤色素沉积或手指溃疡等症状;氨气被呼入肺后容易通过肺泡进入血液,与血红蛋白结合,破坏运氧功能。

短期内吸入大量氨气后可出现流泪、咽痛、声音嘶哑、咳嗽、痰带血丝、胸闷、呼吸困难,可伴有头晕、头痛、恶心、呕吐、乏力等,严重者可发生肺水肿、成人呼吸窘迫综合症,同时可能生呼吸道刺激症状。

因此,吸收空气中的氨,防止氨超标具有重要意义。

因此,为了避免化学工业产生的大量的含有氨气的工业尾气直接排入大气而造成空气污染,需要采用一定方法对于工业尾气中的氨气进行吸收,本次课程设计的目的是根据设计要求采用填料吸收塔吸收的方法来净化含有氨气的工业尾气,使2其达到排放标准。

设计采填料塔进行吸收操作是因为填料可以提供巨大的气液传质面积而且填料表面具有良好的湍流状况,从而使吸收过程易于进行,而且,填料塔还具有结构简单、压降低、填料易用耐腐蚀材料制造等优点,从而可以使吸收操作过程节省大量人力和物力。

利用混合气体中各组分在同一种液体(溶剂)中溶解度差异而实现组分分离的过程称为气体吸收气体吸收是一种重要的分离操作,它在化工生产中主要用来达到以下几种目的。

(1)分离混合气体以获得一定的组分。

(2)除去有害组分以净化气体。

(3)制备某种气体的溶液。

一个完整的吸收分离过程,包括吸收和解吸两个部分。

典型过程有单塔和多塔、逆流和并流、加压和减压等。

1. 设计方案简述1.1 设计任务的意义填料塔是以塔内的填料作为气液两相间接触构件的传质设备,已有百余年的历史,也是化工类企业中最常用的气液传质设备之一。

吸收塔设备一般可分为级式接触和微分接触两类。

一般级式接触采用气相分散,设计采用理论板数及板效率;而微分接触设备常采用液相分散,设计采用传质单元高度及传质单元数,本设计采用后者[1] 。

在化学工业中,经常需要将气体混合物中的各个组分加以分离,其主要目的是回收气体混合物中的有用物质,以制取产品,或除去工艺气体中的有害成分,使气体净化,以便进一步加工处理,或除去工业放空尾气中的有害成分,以免污染空气。

吸收操作是气体混合物分离方法之一,它是根据混合物中各组分在某一种溶剂中溶解度不同而达到分离的目的。

氨是化工生产中极为重要的生产原料,但是其强烈的刺激性气味对于人体健康和大气环境都会造成破坏和污染,因此,为了避免化学工业产生的大量的含有氨气的工业尾气直接排入大气而造成空气污染,需要采用一定方法对于工业尾气中的氨气进行吸收,本次化工原理课程设计的目的是根据设计要求采用常压常温下填料吸收塔吸收的方法来净化含有氨气的工业尾气,使其达到排放标准。

设计采用填料塔进行吸收操作是因为填料可以提供巨大的气液传质面积而且填料表面具有良好的湍流状况,从而使吸收过程易于进行,而且,填料塔还具有结构简单、压降低、填料易用耐腐蚀材料制造等优点,从而可以使吸收操作过程节省大量人力和物力。

1.2 设计结果简述①、吸收剂的选择吸收剂对溶质的组分要有良好地吸收能力,而对混合气体中的其他组分不吸收,且挥发度要低。

根据本设计要求,选择用清水作吸收剂,且氨气不作为产品,故采用纯溶剂。

②、吸收流程地选择用水吸收NH3属高溶解度的吸收过程,为提高传质效率和分离效率,所以,本实验选用逆流吸收流程。

③、吸收塔设备及填料的选择塔填料(简称为填料)是填料塔的核心构件,它提供了气、液两相相接触传质与传热的表面,其性能优劣是决定填料塔操作性能的主要因素。

填料的比表面积越大,气液分布也就越均匀,传质效率也越高,它与塔内件一起决定了填料塔的性质。

因此,填料的选择是填料塔设计的重要环节。

塔填料的选择包括确定填料的种类、规格及材料。

填料的种类主要从传质效率、通量、填料层的压降来考虑,填料规格的选择常要符合填料的塔径与填料公称直径比值D/d。

散装填料是一个个具有一定几何形状和尺寸的颗粒体,一般以随机的方式堆积在塔内,又称为乱堆填料或颗粒填料。

散装填料根据结构特点不同,可分为环形填料、鞍形填料、环鞍形填料及球形填料等。

拉西环鲍尔环阶梯环弧鞍形填料矩鞍形填料塑料填料的材质主要包括聚丙烯、聚乙烯及聚氯乙烯等,国内一般多采用聚丙烯材质。

塑料填料的耐腐蚀性能较好,可耐一般的无机酸、碱和有机溶剂的腐蚀。

其耐温性良好,可长期在100℃以下使用。

设计选用填料塔,填料为散装聚丙烯DN50阶梯环填料。

国内阶梯环特性数据:材质外径d,mm外径×高×厚d×H×δ比表面积a t,m2/m3空隙率ε,m3/m3个数n,个/m3堆积密度ρp,kg/m3干填料因子a t/ε3,m-1填料因子Φ,m-1塑料2538507625×17.5×1.438×19×150×30×1.576×37×3228132.5114.289.950.900.910.9270.92981500272009980342097.857.576.868.4313175.6143.11122401208072④、吸收剂再生方法的选择含氨的吸收剂通过解析得到水,使得吸收剂再生。

相关文档
最新文档