调剖堵水
我国油水井调剖堵水的意义及发展

我国油水井调剖堵水的意义及发展油水井调剖堵水的意义主要体现在以下几个方面:油水井调剖堵水可以提高油气采收率。
在传统的油水开采过程中,随着油气的逐渐开采,常常会伴随着水的涌入,在原油中含水量增多,造成采收率降低。
而采用调剖堵水技术可以有效地减少水的涌入,提高原油的品质和采收率。
油水井调剖堵水可以延长井的生产寿命。
在油水开采过程中,常常会出现油水混产的情况,导致井的堵塞和生产能力下降。
而利用调剖堵水技术可以解决这一问题,延长井的生产寿命,提高采油效率。
油水井调剖堵水可以保护地下水资源。
在油气开采过程中,常常会存在含有有毒物质的废水排放,造成地下水资源的污染和浪费。
而采用调剖堵水技术可以有效地减少废水排放,保护地下水资源。
油水井调剖堵水对于我国能源产业的可持续发展具有重要意义。
随着石油和天然气资源的日益枯竭,开采成本不断上升,而调剖堵水技术可以提高采收率,延长井的生产寿命,保护地下水资源,从而推动能源产业的可持续发展。
近年来,我国油水井调剖堵水技术得到了快速发展。
在技术上,我国石油行业不断引进学习先进的调剖堵水技术,不断提升技术水平。
在应用上,我国石油企业纷纷开展了调剖堵水工程,取得了一系列的成功经验。
在政策上,我国相关部门也出台了一系列支持调剖堵水技术应用的政策文件,为调剖堵水技术的发展提供了有力支持。
我国油水井调剖堵水技术已经步入了快速发展的阶段。
未来,我国油水井调剖堵水技术仍有很大的发展空间。
一方面,我国石油和天然气资源丰富,需求量大,对于提高采收率和延长井的生产寿命的需求依然存在。
随着科技的不断进步,新的调剖堵水技术将不断涌现,为我国油水井调剖堵水技术的发展提供更多的选择。
我国油水井调剖堵水技术的意义和发展是不言而喻的。
通过不断的技术革新和工程应用,我国油水井调剖堵水技术将会为我国石油和天然气产业的可持续发展做出更大的贡献。
希望在未来的发展中,我国的调剖堵水技术能够不断突破自我,为我国的能源产业注入新的活力。
调剖堵水(ERO)

3、钙土-水泥体系(固化体系)
在w(钙土)为0.ຫໍສະໝຸດ 8的悬浮体中加入水泥,直至w (水泥)为0.08配成。 4、水玻璃-氯化钙双液法堵剂(沉淀体系)
交替注入w (Na2O.m SiO2)为0.10的溶液和w (CaCl2)为0.08溶液,中以隔离液(如水)隔开。
5、水玻璃-盐酸双液法堵剂(增注调剖体系) 交替注入w (Na2O.m SiO2)为0.1 0溶液和w (HCl)为0.0 5的溶液,中以隔离液(如水)隔开。
第一节 调剖堵水的基本概念
地层的不均质性是注入水沿高渗透层突入油井。 为了提高波及系数,从而提高采收率,必须封 堵这些高渗透层。
第一节 调剖堵水的基本概念
从注水井封堵这些高渗透层时,可调整注 水层段的吸水剖面叫调剖。L 从油井封堵这些高渗透层时,可减少油 井产水叫堵水。 L 二次采油(即注水或注气)的地层需要 调剖堵水,三次采油(即注特殊流体)的地 层更需要调剖堵水。
二、堵剂的分类
若按使用条件,可分为高渗透层堵剂(如粘土-水 泥固化体系)、低渗透层堵剂(如硫酸亚铁),高 温高矿化度地层堵剂(如各种无机堵剂)。 若按配堵剂时所用的溶剂或分散介质,可分为水 基堵剂(如铬冻胶)、油基堵剂(如油基水泥)和 醇基堵剂(如松香二聚物醇溶液)。 若按对油和水或出油层和出水层的选择性,可分 为选择性堵剂(如泡沫)和非选择性堵剂(如粘土 水泥固化体系)。但是由于地层中的高含水层是高 渗透层,因而是低注入阻力层,所以注入的非选择 性堵剂,主要进入高含水层,起选择性封堵作用。
化学堵水
第二节 调剖堵水提高采收率的原理
注入堵剂 12500方, 增产11900 吨原油
图3-1 胜坨油田胜二区沙二3层系的生产曲线
据曲线可计算调剖后水驱采收 率可提高3.64%。
调剖、堵水选井原则方法 -

15
图1.2 选剂流程图
13
3.多参数对比法
将化学剂对地层温度、地层水矿化度和注 水井的PI值的适用范围分类列出。编成数据库 进入筛选软件系统。堵剂筛选的第一步是根据 以上三项指标筛选出一种或数种可用的化学剂 。第二步是对初选的化学剂进行成本对比,选 择优质廉价的化学剂。
14
五、区块整体调剖筛选
根据效果预测得出的投入产出比,对照中国 石油天然气集团公司统一制定的筛选标准,若投 入产出比大于 1:4,则该区块为适合整体调剖区 块;若投入产出比小于 1:4,则为不适合整体调 剖区块,不宜进行区块整体调剖。
2
筛选决策的主要内容
目前国内研制和开发了3 套筛选方法和软件系 统。即由中国石油天然气总公司石油勘探开发科学 研究院研制的 RS(油藏模拟) 筛选方法和软件系统 ,石油大学( 华东 )研制的PI决策技术和RE( 油藏 工程) 优化决策技术等三套筛选决策技术。筛选方 法是在进行 5个单项筛选结果的基础上,进行综合 评价,作出一个油田区块的整体筛选评价结果。
10
1. PI值筛选方法
参照油井含水状况和生产动态及油井产液剖面选择 低 PI 值区的有潜力层段的油井作为油片堵水的处理 目标。 2.生产动态参数综合评定法 (1) 产液剖面法:多层产液剖面中有明显的高产水 层段的油井,单层生产产液剖面明显差异的高含水井 ,封堵目标是高含水层或高含水层段。 (2) 存在多条裂缝或水平缝较发育的高含水井,封 堵高压高含水裂缝段。
6
图1.1
选井过程流程图
选井
视 吸 水 指 数
指 示 曲 线
压 降 曲 线 分 析
渗 透 率 非 均 质 性 垂 向 非 均 质 性
吸 水 剖 面
平 面 非 均 质 性
储层改造技术--调剖堵水

等条件选择堵剂。
RE决策技术:通过专家系统的产生式推理方式选择堵剂。本决策系统将 常用的堵剂建成堵剂库,堵剂库中包含堵剂名称、堵剂粒径、堵剂对地 层矿化度的适应范围、堵剂对地层温度的适应范围、堵剂对地层pH值的 适应范围等堵剂的性能参数。堵剂类型选择时,系统将地层参数与堵剂
库匹配,寻求最佳的堵剂类型。
同层水
4. 其
他
原
因
窜层(槽)水 6
油 井 出 水 的 危 害 性
1.消
耗
地
层
能
量
2.油井大量出水,造成油井出砂更为严重
3.危 4.加 5.增
害 重 加
采 脱 污
油 水 水
设 泵 处
备 站 理 负 量
7
担
油井化学堵水的基本原理
将化学剂(堵剂)从 油井注入到高渗透出
使用选择性堵剂 选择性封堵同层水。 打隔板控制底水 锥进,封堵底水 。 封堵水层和高含 水层(准确确定水层和 高含水层) 。
非选择性堵剂主要分为冻胶类、颗粒类、凝胶类、树脂类和沉淀类
等五大类。该类堵剂无选择性,对油层和水层具有同样的封堵能力,应 用的先决条件是找准出水层段,并采取一定措施将油层和水层分隔开。
17
四、堵水井的选择
依据油藏及开发资料选择堵水井 1、 油பைடு நூலகம்单层厚度较大(一般要求大于5m)。
砂 岩 油 田 选 井 条 件
适用于40 ℃ ~80℃(添加 临苯二胺:80 ℃ ~ 130℃) 、矿化度 ∠5000mg/L、渗透率∠ 0.3μm2的砂岩或碳酸盐岩 油藏堵水。
适用于40 ℃ ~90℃、空气 渗透率∠ 0.3μm2的砂岩油 层堵水。
14
名称 F-HPAM堵 剂
调剖堵水技术在高含水油井中应用

调剖堵水技术在高含水油井中应用随着石油勘探领域的不断发展,石油开采领域也在不断拓展,高含水油井的开发已成为石油勘探开发领域关注的热点问题。
在高含水油井的开发过程中,堵水技术的应用成为了一种重要的手段,通过调剖堵水技术可以有效地增加油井的产量,并延长油田的生产寿命。
本文将从调剖堵水技术及其在高含水油井中的应用方面进行探讨,以期进一步提高我国高含水油井的开采效率。
一、调剖堵水技术概述调剖堵水技术是一种利用调剖剂改变地层渗透率的方法,从而达到调整油水分布,提高油井产能的技术手段。
该技术的原理是通过注入调剖剂,将调剖剂与地层中的水相挤出,从而改变地层渗透率分布,减小水相渗透,提高油相渗透,减小水驱升高效地采出地层残余油。
常用的调剖剂有聚合物、环烷醇类、表面活性物质等。
调剖堵水技术的优点在于其可以有效地提高油井的产量,延长油田的生产寿命,减少油田开发成本,并且对地下水资源不会造成污染。
目前,调剖堵水技术在石油开采领域得到了广泛应用,尤其是在高含水油井的开发中发挥了重要作用。
二、高含水油井的特点高含水油井通常指含水层在产出口中含水含量超过70%,即水含量占总产出的百分比超过70%的油井。
高含水油井的产生给油田开发带来了很大的困难,因为高含水会导致油井产出的油含量低,产油效率低,降低油井的产量,而且还会造成地层压力的不稳定,产生油轮效应。
高含水油井的特点主要有以下几点:一是油井产出的油含量低,二是油井产量不稳定,三是易引起地层压力不稳定。
由于这些特点,高含水油井的开发一直是石油行业领域的难题。
对高含水油井的开发技术不断进行改进和创新就显得极为重要。
1. 改进调剖剂的配方针对高含水油井的特点,可以针对调剖堵水技术进行改进和创新。
要改进调剖剂的配方,选择适合高含水油井地层条件的调剖剂,以提高调剖剂的适用性和效果。
在高含水油井中,通常选择相对水溶解度低的调剖剂,以避免与地层水相溶解,减少对地层渗透率的影响。
2. 提高调剖剂的渗透性要通过改进调剖剂的配方,提高调剖剂的渗透性,以加强调剖剂对地层的渗透能力,从而改变地层的渗透率分布。
我国油水井调剖堵水的意义及发展

我国油水井调剖堵水的意义及发展
油水井调剖堵水是指通过注入适量的调剖剂和堵水剂,改善油水井的渗透性,减少水
井的注水量和提高油井的采油效率的一种工艺。
它对于我国油田的开发和生产具有重要的
意义,并已经取得了显著的发展。
油水井调剖堵水可以提高油田的采油效率。
在油井开发中,水井常常会进入油井,导
致油井产量下降,甚至达不到预期的采油效果。
调剖剂和堵水剂可以改善油井的渗透性,
减少水井的注水量,提高油井产能。
通过调剖堵水还可以改善油井的整体采油效率,延缓
油井的产量衰减,提高油田的整体经济效益。
油水井调剖堵水可以降低油田的开发成本。
在油井开发过程中,一些油井由于深层渗
透性差,常常需要进行二次开发,投入更多的人力和物力资源。
而通过调剖堵水,可以改
善油井的渗透性,减少油井的开发难度和成本。
油水井调剖堵水可以实现油田的更为有效
和经济的开发。
油水井调剖堵水可以提高油井的生产周期。
在传统的油井开发中,由于油井一旦进入
水层就很难再次开采。
而通过调剖堵水技术,可以有效地避免油井进水导致的封堵情况,
延长油井的产油周期。
这对于长期的油井开发和油田的持续生产具有重要意义。
油水井调剖堵水技术在我国的发展具有重要的意义。
它不仅可以提高油田的采油效率,降低开发成本,延长生产周期,还可以推动我国油田工艺的升级和提高。
加强油水井调剖
堵水技术的研究和应用,对于我国油田的开发和生产具有重要的战略意义。
第三篇 第八章 调剖与堵水

第八章调剖与堵水海上油气田的开发特征决定了海上油井必须以较高的采油速度进行生产。
目前,早期注水及超前注水成为提高采油速度的主要方式,而稳油控水是延长海上油井经济开采寿命、提高油田采收率的重要途径,调剖堵水技术是实现稳油控水的主要手段和措施之一。
第一节调剖工艺与技术注水井调整吸水剖面的技术简称注水井调剖。
注水井调剖有两种途径:一种是机械调剖方法,另一种是化学调剖方法。
目前,海上油田基本上采用的是分层注水的机械调剖方法。
然而,机械调剖方法存在一定的局限性,在同一储层非均质性很严重的情况下,用机械调剖方法很难取得好的效果。
机械调剖方法也无法进行地层深部调剖,不能进一步提高水驱扫油面积;而对水平井更是难以实施。
随着海上油田含水率的上升和进一步提高采收率的要求,化学调剖是实现区块调剖的重要手段。
化学调剖是在注水井中用注入化学剂的方法,来降低高吸水层段的吸水量,从而相应提高注水压力,达到提高中低渗透层吸水量,改善注水井吸水剖面,提高注入水体积波及系数,改善水驱状况。
一、注水井调剖原理注水开发的油田,由于油藏纵向和平面上的非均质性及油、水粘度的差异,造成注入水沿注入井和生产井间阻力较小的图8-1高渗透层或裂缝突进或指进而绕过低渗透高阻力区(见图8-1),从而降低了水的波及体积和水驱效果,甚至在注入流体波及不到的区域形成死油区,这不仅会使中低渗透层的原油采出程度降低,而且会使油井过多过早产水,影响油田的稳产、高产,降低油田注水效率,增加原油生产成本。
注水井调剖就是通过向注水井注入化学调剖剂,让调剖剂在井下封堵注水井的高渗透层,改变水流方向,迫使注入水进入原来的中低渗透层,从而扩大注入水的波及体积,提高注入水的利用率。
注入水进入中、低渗透层后使原来未驱动到的原油被驱替了出来,提高了油井的产油量和阶段采出程度。
二、调剖剂及其分类用于注水井调剖的化学调剖剂按其封堵作用的差异可分为冻胶型调剖剂、沉淀型调剖剂和颗粒膨胀型调剖剂等几大类型。
第八章 调剖与堵水简介

第八章调剖与堵水海上油气田的开发特征决定了海上油井必须以较高的采油速度进行生产。
目前,早期注水及超前注水成为提高采油速度的主要方式,而稳油控水是延长海上油井经济开采寿命、提高油田采收率的重要途径,调剖堵水技术是实现稳油控水的主要手段和措施之一。
第一节调剖工艺与技术注水井调整吸水剖面的技术简称注水井调剖。
注水井调剖有两种途径:一种是机械调剖方法,另一种是化学调剖方法。
目前,海上油田基本上采用的是分层注水的机械调剖方法。
然而,机械调剖方法存在一定的局限性,在同一储层非均质性很严重的情况下,用机械调剖方法很难取得好的效果。
机械调剖方法也无法进行地层深部调剖,不能进一步提高水驱扫油面积;而对水平井更是难以实施。
随着海上油田含水率的上升和进一步提高采收率的要求,化学调剖是实现区块调剖的重要手段。
化学调剖是在注水井中用注入化学剂的方法,来降低高吸水层段的吸水量,从而相应提高注水压力,达到提高中低渗透层吸水量,改善注水井吸水剖面,提高注入水体积波及系数,改善水驱状况。
一、注水井调剖原理注水开发的油田,由于油藏纵向和平面上的非均质性及油、水粘度的差异,造成注入水沿注入井和生产井间阻力较小的图8-1高渗透层或裂缝突进或指进而绕过低渗透高阻力区(见图8-1),从而降低了水的波及体积和水驱效果,甚至在注入流体波及不到的区域形成死油区,这不仅会使中低渗透层的原油采出程度降低,而且会使油井过多过早产水,影响油田的稳产、高产,降低油田注水效率,增加原油生产成本。
注水井调剖就是通过向注水井注入化学调剖剂,让调剖剂在井下封堵注水井的高渗透层,改变水流方向,迫使注入水进入原来的中低渗透层,从而扩大注入水的波及体积,提高注入水的利用率。
注入水进入中、低渗透层后使原来未驱动到的原油被驱替了出来,提高了油井183的产油量和阶段采出程度。
二、调剖剂及其分类用于注水井调剖的化学调剖剂按其封堵作用的差异可分为冻胶型调剖剂、沉淀型调剖剂和颗粒膨胀型调剖剂等几大类型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水膨体型调剖剂
颗粒分散型调剖剂 颗粒固结型调剖剂
双液法调剖 剂
3、按封堵半径分类 渗滤面调剖剂 近距离地层调剖剂 远距离地层调剖剂
二、主要调剖剂的反应机理
1、铬(锆)冻胶调剖剂 铬(锆)冻胶调剖剂是以 Cr3+ ( Zr4+ )离子为交联 剂的单液法调剖剂,通过生成铬(锆)的多核羟桥络离 子,再与部分水解聚丙烯酰胺中的 -COO- 基发生交联反 应,生成具有网状结构的铬(锆)冻胶。 2、硅酸凝胶调剖剂
大于5 MP 所以该区块需要调剖,且1、2和3号井为 a 调剖井;4和5号井不需要处理,6号井为增注井。
2、调剖剂的选择
注水井的调剖剂按3个标准选择: 1)地层温度; 2)地层水矿化度;
3)注水井的PI改正值。
调剖剂的选择
× ° µ ã Î Â ¶ È ò º Ð Å 1 2 3 4 5 6 7 8 9 10 ôÆ µ Ê ¼ Á ¨¡ £ æ £ © ± Í Õ Á Ð ü · ¡ Ì å Æ Í · Á /Ë ® Ä Ð ü · ¡ Ò º ® Å Ë ò Ì å Ð ü · ¡ Ì å õ ¶ · ± ½ º õ ¶ · ± ½ º Ë « Ò º « ¨ ® ° Ë £ Á § -Ñ Î Ë ® ® ° Ë £ Á § -Á ò Ë ® Ñ Ç Ì ú ® ° Ë £ Á § -È Â » ¯ · Æ ± Í Õ Á -¾ Û ª û Ï © õ £ © « ± Í Õ Á -· õ ¶ ± ½ º 30« ¡ 360 30« ¡ 120 30« ¡ 90 30« ¡ 90 30« ¡ 90 30« ¡ 150 30« ¡ 360 30« ¡ 360 30« ¡ 90 30« ¡ 90 × µ ° ã Ë ® ¿ ó » ¯ ¶ È ¨Á £ ¡ 104mg.L-1© £ 0« ¡ 30 0« ¡ 30 0« ¡ 6 0« ¡ 6 0« ¡ 6 0« ¡ 30 0« ¡ 30 0« ¡ 30 0« ¡ 30 0« ¡ 6 ¢ Ë ¬ ® ¾ ® PI µ Ö ¨ £ MPa© £ 0« ¡ 8 0« ¡ 6 0« ¡ 8 1« ¡ 18 3« ¡ 20 8« ¡ 20 3« ¡ 16 2« ¡ 14 0« ¡ 8 0« ¡ 4
第二节 注水井调剖
注水井调剖的目的是提高原油采收率。 水驱采收率 = 波及系数×洗油效率; 波及系数—驱油剂波及到的油层容积与整个 含油容积的比值; 洗油效率—驱油剂波及到的地层所采出的油 量与波及到的地层储量的比值。 调剖是通过封堵高渗透层,提高注入水的波 及系数,达到提高采收率的目的。
一、调剖剂的分类
5、双液法调剖剂
水玻璃 - 氯化钙体系是最早应用于油田的双 液 法 调 剖 剂 。 例 如 将 1% ~ 25% 质 量 分 数 的 Na2O· mSiO2 溶液和 1%~ 10% 质量分数的 CaCl2 溶液 交替注入地层,在二者之间用清水隔开。二者 在地层中扩散后互相接触,快速生成 CaO· mSiO2 沉淀: Na2O· mSiO2 + CaCl2 =CaO· mSiO2 + 2NaCl 同样可以用 5% ~ 20% 质量分数的碳酸钠溶液 和5%~30%质量分数的三氯化铁溶液作为双液法 调剖剂: 3Na2CO3+2FeCl3=Fe2(CO3)3 + 6NaCl Fe2(CO3)3 +3H2O =2Fe(OH)3 + 3CO2
堵水施工:
暂时堵
1、机械堵水:
采用机械方法或纯物理作用封堵水层。
即用封隔器将出水层段
在井筒内卡开,从而阻止水
流入井内。
2、化学堵水:
利用化学方法和化学药剂,用化学反应产物封 堵水层(或油层)的方法。 1)、选择性堵水: 在油井地层中的化学堵水,能明显地降低出水 量,而不严重影响出油量。
注意:不能理解为选择性堵水就是绝对的堵水不堵油。
三、调剖剂实验室研究方法
1、调剖剂反应时间测定方法 在模拟地层温度下,调剖剂经过物理、化学变 化,表征其封堵性能的参数达到最大所经历的时间 称为调剖剂反应时间。
对于冻胶型、凝胶型、树脂型调剖剂,表征其 封堵性能的参数是粘度,可以用粘度随时间的变化 曲线来表达其反应速度。
对于沉淀型调剖剂,表征其封堵性能的参数是 沉淀量,可以用累积沉淀量随时间的变化曲线来表 达其反应速度。
式中:
Q——注水井日注量(m3· d-1); ——流体动力粘度(mPa· s); k——地层渗透率(m2); h——地层厚度(m);
Φ——孔隙度(%); c——综合压缩系数(Pa-1); re ——注水井控制半径(m); t——关井测试时间(s)。
注水井的 PI值与地层渗 透率k反相关, 与流体粘度μ 正相关,与地 层厚度h成反比, 与日注入量Q成 正比。
PI 值 PI 改正值 区块 Q 平均值的归整值 h (Q / h)
5)、区块调剖必要性的判断
利用PI决策技术可以判断高含水油田整体调剖 的必要性;确定需要调剖的具体井号;选择适当的 调剖剂类型;计算调剖剂用量;评价调剖施工效果 以及确定需重复施工的时机。
按两个标准判断: a、区块的平均PI改正值:区块平均PI改正值越 小越需要调剖。从统计得,区块平均PI改正值低于 10MPa的区块均需要调剖。 b、区块注水井的PI改正值极差:PI改正值极差 是指区块注水井PI改正值的最大值与最小值之差, 其值越大越需要调剖。从统计得到,PI改正值极差 超过5MPa的区块就需要调剖。
提高原油采收率原理
第三章 堵水和调剖
第一节 调剖堵水概述
油井出水是目前油田开发中存在的一个普遍 问题。减少油井出水有两种不同的处理办法: 1)调剖(Profilt control):从注水井 进行的封堵高渗透层的作业,可以调整注水层 段的吸水剖面,称为调剖。 2)堵水(water shut-off 、 Water plugging):从油井进行的封堵高渗透层的作 业,可减少油井的产水,称为堵水。
的模数,一般水玻璃的模数为1~4。水玻璃的性质随模数而变,模数越小,
水玻璃碱性越强,水溶性也越强)。硅酸凝胶由水玻璃与活化剂
水玻璃(硅酸钠)的分子式为Na2O· mSiO2(式中m为水玻璃
反应生成。活化剂是指可以使水玻璃变成溶胶,随后再变 成凝胶的物质。活化剂有无机活化剂和有机活化剂。
3、水膨体型调剖剂 水膨体是一类交联度较高的聚合物凝胶。目前最常 使用的水膨体型调剖剂是由丙烯酰胺单体和较高质量分 数的N,N’-甲叉基二丙烯酰胺发生共聚,生成的具有网 状分子结构的共聚物,经过造粒、干燥、粉碎、筛分制 成的固体颗粒。 这种水膨体在水中有较高的溶胀速度。充分溶胀后, 其体积可以达到自身体积的数十倍。 在矿场调剖施工中,可以将水膨体分散在携带介质 中注入地层。
t 0
p (t ) d t t
式中:
PI ——注水井的压力指数
(MPa); p(t) ——注水井关井时间 t后井口的油管压力(MPa);
t ——关井时间(min)。
由注水井井口压降曲线计算
3)、PI与地层及流体物性参数有如下关系
Q 12.5 r c PI ln 15kh kt
2 e
一、产水原因及危害 1、原因:
油层的非均质性和水油流度比不同以 及油层开采后压力降低造成边水内侵、底 水上锥,注采失调等是注水效率低、油井 见水早、含水率上升快、油层水淹、油井 产量大幅度下降的根源。
2、危害:
油井出水严重影响油井生产的经济效果,使经济效果 好的井降为无工业价值的井。 油井出水后:
4)、PI值的改正值
为使注水井的PI值可与区块中其它注水井的PI 值相比较,应将各注水井的PI值改正至相同的条件。 由式可以看到, 2
Q 12.5 re c PI ln 15kh kt
若将PI值改正至相同的Q/h(可选区块注水井的 Q/h平均值的归整值)下,PI值就直接与地层渗透率 反相关,因此可将PI值的改正值(简称PI改正值) 作为调剖的决策参数。
2)、非选择性堵水: 在油井地层中能同时封堵油水层的化学堵水。
三、调剖堵水机理
调剖堵水封堵高渗透层后,在相同配注条件下, 注入压力将提高,迫使注入流体进入高含油饱和度的 中、低渗透层,提高了注入流体的波及系数,从而提 高了原油的采收率。 调剖堵水是不会将大量的油堵在油层内而采不出 来的。这是因为堵剂进入的地层,已是强水洗和含油 饱和度低的高渗透层,而且堵剂的流度远远低于水的 流度,对残余油有更有利的流度比,高渗透层即使有 油,也会被堵剂驱出,很少留在封堵区域内。
调剖井的选定
按区块平均PI改正值和注水井的PI改正值选定。
通常是: 低于区块平均PI改正值的注水井为调剖井,
高于区块平均PI改正值的注水井为增注井,
在区块平均 PI 值附近,略高或略低于平均 PI 值
的注水井为不处理井。
例: 下表给出了某区块各注水井的注水厚度、 日注水量和PI值。分析该区块的调剖情况。 序号
为了抑制水膨体的过快膨胀,使其能够进入高渗透 或裂缝性地层,可选用非极性液体(如煤油),半极性 液体(如乙醇、异丙醇),电解质溶液(如NaCl水溶液) 作携带介质。
4、粘土/水泥调剖剂 粘土 - 水泥分散体调剖剂由粘土与水泥悬浮 于水中配制而成。 这种分散体进入地层后,可在孔隙的喉道部 位形成堆积物(滤饼),水泥的水化反应使堆积 物固结,用于封堵特高渗透或裂缝性地层。 在粘土-水泥分散体中,粘土和水泥的质量 分数一般在6%~20%范围。 此外,也可用碳酸钙-水泥分散体或粉煤灰 -水泥分散体作调剖剂。
327.0 430.0 276.0 274.0 292.5
0.78
1.89 6.80 1.23 6.81 2.99
37.95