勾股定理学案

合集下载

勾股定理优秀教案

勾股定理优秀教案

勾股定理优秀教案【篇一:探索勾股定理优秀教案】—1——2——3—1.1探索勾股定理1.小明用火柴棒摆直角三角形,已知他摆两条直角边分别用了6根和8根火柴棒,他摆完这个直角三角形共用火柴棒()根a.20 b. 14 c. 24 d. 30 2.在rt△abc中,斜边ab=1,则ab2+bc2+ac2=()a.2 b. 4 c. 6d. 8 3.如图,阴影部分是一个正方形,则此正方形的面积为()a.8 b. 64 c. 16 d. 324.直角三角形的两条直角边的比为3:4,斜边长25cm,则斜边上的高为()a.10cm b. 12cm c. 15cmd. 20cm15 第3题—4—【篇二:勾股定理教学设计与反思】教学设计【篇三:《勾股定理》教学设计】《勾股定理》教学设计创新整合点本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。

教材分析这节课是苏科版《义务教育课程标准实验教科书》八年级(下)教材《勾股定理》第一节的内容。

勾股定理的内容是全章内容的重点、难点,它的地位作用体现在以下三个方面:1、勾股定理是学习锐角三角函数与解直角三角形的基础,学生只有正确掌握了勾股定理的内容,才能熟练地运用它去解决生活中的测量问题。

2、本章“勾股定理”的内容在本册书中占有十分重要的地位,它是学习斜三角形、三角函数的基础,在知识结构上它起到了承上启下的作用,为学生的终生学习奠定良好的基础。

3、解直角三角形内容在航空、航海、工程建筑、机械制造、工农业生产等各个方面都有着广泛的应用,并与生活息息相关。

学情分析学生对几何图形的观察,几何图形的分析能力已初步形成。

部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。

现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和展示自己才华的机会;更希望教师满足他们的创造愿望。

第十七章 勾股定理学案

第十七章 勾股定理学案

- 1 -18.1 勾股定理(一) (一)课前预习 1.直角△ABC 的主要性质是:∠C=90°(用几何语言表示) (1)两锐角之间的关系: (2)若∠B=30°,则∠B 的对边和斜边:命题1:如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么 。

(二)、勾股定理的证明勾股定理的证明方法很多,你能否利用右图:赵爽弦图证明呢?1.已知:在△ABC 中,∠C=90°,∠A、∠B、∠C的对边为a 、b 、c 。

求证: 222a b c +=勾股定理的内容是: 。

(三)学以致用 在Rt△ABC 中,已知两边求第三边-------简称“知二求一” 1.在Rt△ABC 中,90C ∠=︒ , ⑴如果a =6,b =8,求c 的值; ⑵如果a =5,b =12,求c 的值; ⑶如果a =9,c =41,求b 的值; 练习 1.若一个直角三角形的两直角边分别为9和12,则第三边的长为( ) A.13 B. 13 C. 5 D.15 2.若一个直角三角形的斜边长为26,一条直角边长为24,则另一直角边长为( ) A.8 B.10 C.50 D.36 3.在Rt △ABC 中,∠C=90°,若a ︰b =3︰4,c=10,求a ,b 的值。

注意:⑴只有在直角三角形中,才能用勾股定理;⑵在用勾股定理求第三边时,要分清直角三角形的斜边和直角边; (四)当堂检测:1.如图,三个正方形中的两个的面积S 1=25,S 2=144,则另一个的面积S 3为________.2.在Rt△ABC,∠C=90°;⑴ 已知a =b =5,求c ;⑵已知c =17,b =8,求a ;⑶ 已知a ∶b =1∶2,c=5,求a ; ⑷已知b=15,∠A=30°,求a ,c 。

3.一直角三角形的一直角边长为6,斜边长比另一直角边长大2,求斜边的长?4.一个直角三角形的两边长分别为3cm 和4cm ,求第三边的长?5.已知,如图在正ΔABC 中,AB=BC=CA=2cm .求ΔABC 的面积.BDbaD C C A- 2 -EFDCBA18.1 勾股定理(二)(一)回顾复习:1.勾股定理:如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么 。

勾股定理学案

勾股定理学案

18.1 《勾股定理》学案(第一课时)学习目标1. 了解历史 勾股定理最早来源于我国公元前一世纪的《周髀算经》,其智慧之华光璀灿夺目。

如今我们学习勾股定理,应该从它的来龙去脉,具体运用做起。

2. 经历多种拼图方法验证勾股定理的过程,发展合力推理能力,体会数形结合思想。

3. 了解用面积法证明直角三角形勾股定理。

4. 在探索勾股定理的过程中,掌握直角三角形三边之间的数量关系。

(阅读课本63—65页) 探索勾股定理1.等腰直角三角形:(1)观察图1-1,正方形A 中含有_______个小方格,即A 的面积是________个单位面积。

正方形B 的面积是_______个单位面积。

正方形C 的面积是________个单位面积。

(2)在图1-2中,正方形A ,B ,C 中各含有多少个小方格?它们的面积各是多少?S A =________,S B =________,S C =________。

(3)结合计算结果你能发现图中S A ,S B ,S C 之间有什么关系吗?关系:_____________________________结论:______________________________________2.一般直角三角形:在左图中,任选一图,求正方形A ,B ,C 的面积各是多少?S A ,S B ,S C 还有上述关系吗?S A =________,S B =________,S C =________。

关系:______________________结论:___________________________________________(图中每个小方格代表一个单位面积)思考:(1)在上述两组图中你是如何用直角三角形的边长表示正方形的面积的? (2)你发现直角三角形三边长度之间存在什么关系?归纳猜想1. 观察所得到的各组数据,你有什么发现?S P ,S Q,与S R 的关系? ___________________________________图1-1 A BC AB C (图中每个小方格代表一个单位面积) 图1-2AB C图2-1AB C 图2-22.猜想:两直角边a 、b 与斜边c 之间的关系?b ca———————————————得出勾股定理: 3.赵爽弦图证明勾股定理阅读课本65、66页 结合图形完成以下过程:证明:S 正方形EFGH = c 2=________________________=________________________=________________________=_________________________学习勾股定理不仅要会用222c b a =+,还要清楚以下变形的作用:22222222,,b a c a c b b c a +=-=-=,2222,ac b b c a -=-=.巩固练习填空题 在Rt △ABC ,∠C=90°, ⑴如果a=7,c=25,则b= 。

勾股定理的应用教学设计5篇

勾股定理的应用教学设计5篇

勾股定理的应用教学设计5篇第一篇:《勾股定理的应用》教学设计《勾股定理的应用》教学设计——解决立体图形外表上最短路线的问题__县第_中学李政法一、内容及内容解析1、内容勾股定理的应用——解决立体图形外表上最短路线的问题。

2、内容解析本节课是勾股定理在立体图形中的一个拓展,在初中阶段,勾股定理在求两点间的距离时,沟通了几何图形和数量关系,发挥了重要的作用,在中考中有席之地。

启发学生对空间的认知,为将来学习空间几何奠定根底。

二、教学目标1、能把立体图形依据需要局部展开成平面图形,再建立直角三角形,利用两点间线段最短勾股定理求最短路径径问题。

2、学会观看图形,勇于探究图形间的关系,培养学生的空间观念;在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。

3、通过有趣的问题提高学习数学的兴趣;在解决实际问题的过程中,培养学生的合作交流能力,体验数学学习的有用性,增强自信心,呈现成功感。

三、教学重难点【重点】:探究、发觉立体图形展开成平面图形,利用两点间线段最短勾股定理求最短路径径问题。

【难点】:查找长方体中最短路线。

四、教学方法本课采纳学生自主探究归纳教学法。

教学中,学生充分运用多媒体资源及大量的实物教具和学具,通过观看、思考、操作,归纳。

五、教学过程【复习回忆】右图是湿地公园长方形草坪一角,有人避开拐角在草坪内走出了一条小路,问这么走的理论依据是什么?若两步为1m,他们仅仅少走了几步?目的:1、复习两点之间线段最短及勾股定理,为新课做预备;2、激起学生爱护环境意识和对核心价值观“文明、友善”的践行。

思考:如图,立体图形中从点A到点B处,怎样找到最短路线呢?目的:引出课题。

【台阶中的最值问题】三级台阶示意图如图,每级台阶的长、宽、高分别为5dm、3dm和1dm,请你想一想,一只蚂蚁从点A动身,沿着台阶面爬行到点B,爬行的最短路线是多少?老师活动:假如A、B两点在同一个平面上,直接连接两点即可求出最短路。

第18单元《勾股定理》学案

第18单元《勾股定理》学案

第十八章 勾股定理勾股定理 第1课时一、温故知新1.在△ABC 中,∠C =90°,∠A=35°,则∠B = .2.在△ABC 中,∠C =90°,∠A =2∠B ,则∠A = ,∠B = .3.一个角比它的余角的2倍大30°,求这个角的大小.设这个角为x ,则可列方程为 . 4.在一个等腰三角形中,已知其中一个内角为80°,则另外两个内角的度数分别是 .二、自主学习1.动手在纸上作出几个直角三角形,分别测量它们的三条边,填写好下表.观察三条边的平方有什么关系?(其中a 、b 是两直角边长,c 是斜边长)2.完成书本第2页的做一做(2),说说自己发现了什么?3.我们古代把直角三角形中较短的直角边称为 ,较长的直角边称为 ,斜边称为 .从而得到著名的勾股定理: .如果用a 、b 和c 分别表示直角三角形的两直角边和斜边,那么 .三、课堂同步基础训练1.一个直角三角形,两直角边长分别为3和4,下列说法正确的是 ( )A .斜边长为25B .三角形的周长为25C .斜边长为5D .三角形面积为20 2.将直角三角形三边长的长度都扩大相同的倍数后,得到的三角形 ( ) A .仍是直角三角形 B .不可能是直角三角形 C .可能是锐角三角形 D .可能是钝角三角形3.一直角三角形的斜边长比一条直角边长多2,另一直角边长为6,则斜边长为( ) A .4 B .8 C .10 D .124.直角三角形的两直角边的长分别是5和12,则其斜边上的高的长为( ) A .6 B .8 C .1380 D .13605.在Rt △ABC 中,∠C =90°,若a =9,b =12则 c .6.已知甲往东走了4km ,乙往南走了3km ,这时甲、乙俩人相距 .7.如图1-1-1所示,Rt △ABC 和以AB 为边的正方形ABEF ,∠ACB =90°,AC =12,BC =5,则正方形的面积是______.阶梯一8.如图1-1-2,为了测量一湖泊的宽度,小明在点A ,B ,C 分别设桩,使AB ⊥BC ,并量得AC =50m ,BC =40m ,请你算出湖泊的宽度应为多少米?9.如图1-1-3,一个工人拿一个2.5米长的梯子,一头放在离墙1.5米处,另一头靠墙,以便去修理墙上的有线电视分线盒,试求这个分线盒离地面的高度.能力应用10.如图1-1-4,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积之和是多少?拓展练习11.已知,如图1-1-5,折叠长方形(四个角都是直角,对边相等)的一边AD 使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,求EC 的长.图1-1-2图1-1-3图1-1-4图1-1-5阶梯二阶梯三勾股定理 第2课时1.若 a 、b 、c 分别是△ABC 的∠A 、∠B 、∠C 所对的边,则下列说法正确的是( )A .一定有a 2+b 2=c 2成立 B .若△ABC 是直角三角形,则a 2+b 2=c 2C .若 90=∠A ,则a 2+b 2=c 2D .若 90=∠C ,则a 2+b 2=c 22.在Rt △ABC 中, 90=∠C ,(1)如果a =3,b =4,则c = ;(2)如果a =6,b =8,则c = ; (3)如果a =5,b =12,则c = ; (4)如果a =15,b =20,则c = .3.如图1-2-1,三个正方形中的两个的面积S 1=25,S 2=144,则第三个正方形的面积S 3=________.二、自主学习1.阅读课文第8页和第9页前三段,请用两个不同的代数式表示图1-5中大正方形的面积.你发现了什么?2.模仿例1,完成下面的问题:飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米?3.阅读课本第12页至14页,自己动手制作一副五巧板,动手拼图验证勾股定理,并与同学交流.三、课堂同步基础训练1.若线段a 、b 、c 组成直角三角形,则它们的比可能是( )A .2:3:4B .3:4:6C .5:12:13D .4:6:72.Rt △ABC 斜边AB =10,AC :BC = 3:4,则这个直角三角形的面积为( )A .6B .8C .12 D.243.直角三角形中,斜边长为5米,周长为12米,则它的面积为( )A .12米2B .6米2C .8米2D .9米24.一个矩形的抽屉长为24cm ,宽为7cm ,在里面放一根铁条,那么铁条最长可以是 . 5.在Rt △ABC 中,∠C =90°,BC =12cm ,S △ABC =30cm 2,则AB = .6.等腰△ABC 的腰长AB =10cm ,底BC 为16cm ,则底边上的高为 ,面积为 . 7.一个直角三角形的三边为三个连续偶数,则它的三边长分别为 .8.如图1-2-2,从电线杆离地面6m 处向地面拉一条长10m 的缆绳,这条缆绳在地面的固定点距离电线杆底部有多远?阶梯一 图1-2-29.如图1-2-3,有一只小鸟在一棵高4m 的小树梢上捉虫子,它的伙伴在离该树12m 远,高20m 的一棵大树的树梢上发出友好的叫声,它立刻以4m/s 的速度飞向大树树梢,那么这只小鸟至少几秒才可能到达大树和伙伴在一起?10.如图1-2-4,新中源陶瓷厂某车间的人字形屋架为等腰△ABC ,AC =BC =13米,AB =24米.求AB 边上的高CD 的长度?能力应用11.如图1-2-5,一个梯子AB 长2.5米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.5米,求梯子顶端A 下落了多少米?拓展练习12.古代趣题:今有竹高一丈,末折抵地,去本三尺.问折者高几何?(见图1-2-6)意思是:一根竹子,原来高一丈(一丈等于十尺),虫伤之后,一阵风将竹子折断,其竹梢恰好抵地,抵地处离与原竹子底部距离3尺,问原处还有多高的竹子?图1-2-3图1-2-4图1-2-5ECDBA 阶梯三 阶梯二勾股定理逆定理 第1课时一、温故知新1.如图1-3-1,直角三角形中未知边的长度x = .2.如果梯子底端离建筑物9m ,那么15m 长的梯子可达到建筑物的高度是 m . 3.一个三角形的三边的比为5:12:13,它的周长为60cm ,则它的面积是 cm 2.4.若一个直角三角形的一条直角边长是7cm ,另一条直角边比斜边短1cm ,则斜边长为 ( )A .18cmB .20cmC .24cmD .25cm二、自主学习1.分别以下列每组数为边长作出三角形,观察一下所画三角形的形状以及各组数据之间有什么关系.(1)3,4,5 (2)6,8,10 (3)5,12,132.得出结论:(1)如果三角形的三边长a ,b ,c 满足 ,那么这个三角形是 . (2)满足 的三个正整数称为勾股数. 3.自学书本例1,完成下面题目:如图1-3-2,在四边形ABCD 中,AC ⊥DC ,△ADC 的面积为30cm 2,DC =12cm ,AB =3cm ,BC =4cm , 求△ABC 的面积.三、课堂同步基础训练 1.下列各组数中,以a ,b ,c 为边长的三角形不是直角三角形的是 ( )A .a =1.5,b =2,c =3 B .a =7,b =24,c =25 C .a =6,b =8,c =10 D .a =3,b =4,c =5 2.下列各组数中不能作为直角三角形的三边长的是 ( )A .8,15,17B .7,24,25C .6,8,10D .9,12,133.分别以下列每组数为一个三角形的三边的长:①6,8,10;②5,12,13;③8,15,17;④7,8,9,其中能构成直角三角形的有( ).A .4组B .3组C .2组D .1组4.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的 ( )A .1倍B .2倍C .3倍D .4倍 5.满足222c ba =+的三个正整数,称为 .6.若三角形的两边长为4和5,要使其成为直角三角形,则第三边的长为 (此数为正整数). 7.若三角形三条边的长分别为7,24,25,则这个三角形的最大内角是 度.8.如图1-3-3,三个村庄A 、B 、C 之间的距离分别为AB =5km ,BC =12km ,AC =13km .要从B 修一条公路BD 直达AC .已知公路的造价为26000元/km ,求修这条公路最低造价是多少?阶梯一图1-3-1图1-3-29.如图1-3-4,在四边形ABCD 中,∠B =90°,AB =4,BC =3,CD =12,AD =13,求四边形ABCD 的面积.10.如图1-3-5所示的一块地,已知AD =4m ,CD =3m ,AD ⊥DC ,AB =13m ,BC =12m ,求这块地的面积.能力应用11.如图1-3-6,AB 为一棵大树,在树上距地面10m 的D 处有两只猴子,它们同时发现地面上的C 处有一筐水果,一只猴子从D 处上爬到树顶A 处,利用拉在A 处的滑绳AC ,滑到C 处,另一只猴子从D 处滑到地面B ,再由B 跑到C ,已知两猴子所经路程都是15m ,求树高AB .拓展练习12.初春时分,两组同学到郊外平坦的田野中采集植物标本,分手后,他们向不同的方向前进,第一组的速度是30米/分,第二组的速度是40米/分,半小时后两组同学同时停下来,而此时两组同学相距1500米. (1)两组同学行走的方向是否成直角?(2)如果接下来两组同学以原来的速度相向而行,多长时间后能相遇?ABCD图1-3-4ADCB图1-3-5A 图1-3-6阶梯三 阶梯二勾股定理逆定理 第2课时一、温故知新1.若下列各组数是三角形的三边,则不能组成直角三角形的一组是 ( )A .2,3,4B .3,4,5C .6,8,10D .5,12,132.把直角三角形的两直角边同时扩大到原来4倍,则斜边扩大到原来 ( )A .1倍B .2倍C .3倍D .4倍 3.满足下列条件的△ABC ,不是直角三角形的是 ( )A .b 2=c 2-a 2B .a ∶b ∶c =3∶4∶5C .∠C =∠A -∠BD .∠A ∶∠B ∶∠C =12∶13∶15 4.在下列长度的各组线段中,能组成直角三角形的是 ( )A .5,6,7B .1,4,9C .5,12,13D .5,11,12 二、自主学习1.用一张矩形的纸卷成一个圆柱,按照书本的位置在圆柱上标出A ,B 两点,自己尝试画几条路线,观察一下哪条路线最短?2.展开圆柱,结合书本图形再思考,把第3问的计算过程和结果写在下面.三、课堂同步基础训练 1.有六根细木棒,它们的长度分别为2,4,6,8,10,12(单位:cm ),从中取出三根首尾顺次连接搭成一个直角三角形,则这三根木棒的长度分别为( )A .2,4,8B .4,8,10C .6,8,10D .8,10,12 2.若等腰三角形腰长为10cm ,底边长为12cm ,那么它的面积为 ( )A .48cm 2B .36cm 2C .24cm 2D .12cm 23.底边为16cm ,底边上的高为6cm 的等腰三角形的腰长为 ( )A .8cmB .9cmC .10cmD .13cm4.如图1-4-1,一个圆桶儿,底面半径为3cm ,高为8cm ,则桶内能容下的最长的木棒为( )A .10cmB .20cmC .40cmD .45cm 5.如图1-4-2,一圆柱高8cm ,底面半径为6cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程是________cm .6.放学后,小丽和小红从学校分别沿东南方向和西南方向回家,若小丽和小红行走的速度都是40米/分,小丽用15分钟到家,小红用20分钟到家,求小丽和小红家的距离.阶梯一8cm 图1-4-1 图1-4-27.如图1-4-3,长方体的长为15cm ,宽为10cm ,高为20cm ,点B 离点C 5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是多少?8.如图1-4-4是一个长方体,求图中阴影部分的面积.能力应用9.如图1-4-5,一块砖宽AN =5cm ,长ND =10cm ,CD 上的点B 距地面的高BD =8cm ,地面上A 处的一只蚂蚁到B 处吃食,要爬行的最短路线是多少?拓展练习 10.葛藤是一种刁钻的植物,它自己腰杆不硬,为了争夺雨露阳光,常常绕着树干盘旋而上,它绕树盘升的路线总是沿着短路线螺旋前进.如果一棵树的周长为6厘米,葛藤绕树一圈升高8厘米,那么它爬行一圈的路程是多少厘米?A图1-4-3图1-4-4A图1-4-5阶梯三阶梯二勾股定理单元测试A 卷一、选择题:(每题3分,共30分)1.若线段a ,b ,c 组成直角三角形,则它们的比可能是( )A .2∶3∶4B .3∶4∶6C .5∶12∶13D .4∶6∶7 2.以下列三个数为边长的三角形能组成直角三角形的个数是( )① 6,7,8;②8,15,17;③7,24,25;④12,35,37. A .1 B .2 C .3 D .43.如果把直角三角形的两条直角边同时扩大到原来的3倍,那么斜边扩大到原来的( ) A .1倍 B .2倍 C .3倍 D .4倍4.一个直角三角形其斜边的长是13,一条直角边长为12,则这个直角三角形的面积是( )A .30B .40C .50D .60 5.如图,字母B 所代表的正方形的面积是( )A .12B .13C .144D .1946.两只小鼹鼠在地下从同一处开始打洞,一只朝北面挖,每分钟挖8cm ,另一只朝东面挖,每分钟挖6cm ,10分钟之后两只小鼹鼠相距( ) A .100cm B .50cm C .140cm D .80cm7.如图,一圆柱高8cm ,底面半径2cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π取3)是( )A .20cmB .10cmC .14cmD .无法确定8.三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A .等边三角形B .钝角三角形C .直角三角形D .锐角三角形9.如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( ) A .25海里 B .30海里 C .35海里 D .40海里10.如图,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A .2cm B .3cm C .4cm D .5cm二、填空题:(每空3分,共15分)11.在直角三角形ABC 中,∠A =90º,a =25,b =7,则c =_____.12.现有一长5米的梯子,架靠在建筑物的墙上,它们的底部在地面的水平距离 是3米,则梯子可以到达建筑物的高度是_____米.13.等腰三角形的面积为48cm 2,底边上的高为6cm ,腰长为______.14.木工做一个长方形桌面,量得桌面的长为60cm ,宽为32cm ,对角线长为68cm , 这个桌面______.(填“合格”或“不合格”)15.如图,在Rt △ABC 中,∠B =90°,BC =15,AC =17,以AB 为直径作半圆, 则此半圆的的面积为______.(π取3)三、解答题16.受台风影响,一千年古樟在离地面6米处断裂,大树顶部落在离大树底部8米处,损失惨重,问:大树折断之前有多高?(7分)15题图AB169255题图A7题图北南A 东9题图10题图16题图17.一直角梯形,∠B =90°,AD ∥BC ,AB =BC =8,CD =10,求梯形的面积.(7分)18.如图,在边长为c 的正方形中,有四个斜边为c 的全等直角三角形,已知其直角边长为a ,b .利用这个图试说明勾股定理?(其中a >b )(8分)19.如图,四边形ABCD 中,AB =3cm ,AD =4cm ,BC =13cm ,CD =12cm ,且∠A =90°,求△BCD 的面积.(8分)20.如图,一个梯子AB 长10米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为6米,梯子滑动后停在DE 的位置上,测得BD 长为2米,求梯子顶端A 下落了多少米?(8分)21.如图,长方体的长BE =20cm ,宽AB =20cm ,高AD =40cm ,点M 在CH 上,且CM =10cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点M ,需要爬行的最短距离是多少? (8分)22.小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度.(9分)A BCD17题图CA BCD19题图ECDBA 20题图ABD21题图11勾股定理单元测试B 卷一、选择题(每题3分,共30分)1.等腰三角形的腰长为5,底长为6,则其底边上的高为( )A .4B .11C .15D .无法确定2.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是( )A .钝角三角形B .锐角三角形C .直角三角形D .等腰三角形3.小明的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法中正确的是( )A .小明认为指的是屏幕的长度B .小明的妈妈认为指的是屏幕的宽度C .小明的爸爸认为指的是屏幕的周长D .售货员认为指的是屏幕对角线的长度4.小刚准备测量一段河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( ) A .2m B .2.5m C .2.25m D .3m5.如果直角三角形的两直角边长分别为n 2-1,2n (n >1),那么它的斜边长是( )A .2nB .n +1C .n 2-1 D .n 2+16.如图,一个圆桶儿,底面半径为4cm ,高为8cm ,则桶内能容下的最长的木棒为( )A..20cm C .40cm D .45cm7.直角三角形中,一条边长3,另一条边长4,则第三条边的平方为( )A .5B .7C .25D .25或78.若△ABC 中,AB =13,AC =15,高AD =12,则BC 的长是( )A .14B .4C .14或4D .以上都不对9.已知Rt △ABC 中,∠C =90°,若a +b =14cm ,c =10cm ,则Rt △ABC 的面积是( )A .24cm 2B .36cm 2C .48cm 2D .60cm 210.一架25分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7分米.如果梯子的顶端沿墙下滑4分米,那么梯足将滑动( )A .9分米B .15分米C .5分米D .8分米二、填空题(每题3分,共15分)11.直角三角形ABC 中的斜边c =10,直角边a =6,则斜边上的高的长是______.12.如右图,由四个全等的直角三角形拼成的“弦图”中,直角边分别是4,3,则大正方形的面积为_______,小正方形的面积为_______.13.一根直立的桅杆原长25m ,折断后,桅杆的顶部落在离底部的5m 处,则桅杆的直立部分为______m .14.直角三角形的三边长为三个连续偶数,则三角形的面积为_______.15.如果△ABC 的三边长a 、b 、c 满足关系式()226018a b b +-+-300c +-=,则以a 、b 、c 为三边的三角形是________三角形三、解答题16.如图,每个小方格都是边长为1的正方形,求图中格点四边形ABCD 的面积.(7分)7)6题图12题图16题图1217.如图,为修通铁路需凿通隧道AC ,测得∠A =50°,∠B =40°,AB =5km ,BC =4km ,若每天开凿隧道0.3km ,试计算需要几天才能把隧道AC 凿通?(7分)18.铁路上A 、B 两点相距25km .C 、D 为两村庄.DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA =10km ,CB =15km ,现要在AB 上建一个中转站E ,使得C 、D 两村到E8分)19.小明的叔叔家承包了一个矩形鱼池.已知其面积为48m 2,其对角线长为10m ,为建栅栏,要计算这个矩形鱼池的周长,你能帮助小明算一算吗?(8分)20.印度数学家什迦逻(1141年-1225年)曾提出过“荷花”问题:“平平湖水清可鉴,面上半尺生红莲,出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远,能算诸君请解题,湖水如何知深浅?”你能读懂这些话的意思吗?请用学过的数学知识回答这个问题.(8分)21.如图,一长方体,底面长3cm ,宽4cm ,高12cm ,求上下两底面的对角线MN 的长.(8分)22.在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CD CF 41,试判断△AEF 是否是直角三角形?说明理由.(9分)FEDC AB22题图20题图21题图NM。

初中数学勾股定理教案 初中数学勾股定理教案优秀3篇

初中数学勾股定理教案 初中数学勾股定理教案优秀3篇

初中数学勾股定理教案初中数学勾股定理教案优秀3篇初中数学勾股定理教案优秀3篇由作者为您收集整理,希望可以在初中数学勾股定理教案方面对您有所帮助。

初中数学勾股定理教案篇一一、教案背景概述:教材分析:勾股定理是直角三角形的重要性质,它把三角形有一个直角的形的特点,转化为三边之间的数的关系,它是数形结合的榜样。

它可以解决许多直角三角形中的计算问题,它是直角三角形特有的性质,是初中数学教学内容重点之一。

本节课的重点是发现勾股定理,难点是说明勾股定理的正确性。

学生分析:1、考虑到三角尺学生天天在用,较为熟悉,但真正能仔细研究过三角尺的同学并不多,通过这样的情景设计,能非常简单地将学生的注意力引向本节课的本质。

2、以与勾股定理有关的人文历史知识为背景展开对直角三角形三边关系的讨论,能激发学生的学习兴趣。

设计理念:本教案以学生手中舞动的三角尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终,让学生对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富文化内涵,体验勾股定理的探索和运用过程,激发学生学习数学的兴趣,特别是通过向学生介绍我国古代在勾股定理研究和运用方面的成就,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养他们的民族自豪感和探究创新的精神。

教学目标:1、经历用面积割、补法探索勾股定理的过程,培养学生主动探究意识,发展合理推理能力,体现数形结合思想。

2、经历用多种割、补图形的方法验证勾股定理的过程,发展用数学的眼光观察现实世界和有条理地思考能力以及语言表达能力等,感受勾股定理的文化价值。

3、培养学生学习数学的兴趣和爱国热情。

4、欣赏设计图形美。

二、教案运行描述:教学准备阶段:学生准备:正方形网格纸若干,全等的直角三角形纸片若干,彩笔、直角三角尺、铅笔等。

老师准备:毕达哥拉斯、赵爽、刘徽等证明勾股定理的图片以及其它有关人物历史资料等投影图片。

三、教学流程:(一)引入同学们,当你每天手握三角尺绘制自己的宏伟蓝图时,你是否想过:他们的边有什么关系呢?今天我们来探索这一小秘密。

勾股定理的教学设计(热门14篇)

勾股定理的教学设计(热门14篇)

勾股定理的教学设计(热门14篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的教学设计(热门14篇)勾股定理的教学设计(1)1、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史。

勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。

2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。

3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。

重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。

2.已知直角三角形的两边长为3、4,则另一条边长是______________。

3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。

4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。

求点F和点E坐标。

6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:18.1勾股定理(第1课时)
一、学习目标
1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

2.培养在实际生活中发现问题总结规律的意识和能力。

3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。

二、重点:勾股定理的内容及证明。

难点:勾股定理的证明。

三、学习准备: 预习课本P22———24页
四、课堂阅读
1. 目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地 球上人类的语言、音乐、各种图形等。

我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。

这个事实可以说明勾股定理的重大意义。

尤其是在两千年前,是非常了不起的成就。

2.让学生画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。

以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。

”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。

再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。

你是否发现32+42与52的关系,52+122和132的关系,即_______________,那么就有 ________________
对于任意的直角三角形也有这个性质吗?
五、例习题分析
例1(补充)已知:在△ABC 中,∠C=90°,
∠A 、∠B 、∠C 的对边为a 、b 、c 。

求证:a 2+b 2=c 2。

分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。

⑵拼成如图所示,其等量关系为:4S △+S 小正=S 大正
________________________
______________
⑶发挥学生的想象能力拼出不同的图形,进行证明。

⑷ 勾股定理的证明方法,达300余种。

这个古老的精彩的证法,出自我国古代无名数学家之手。

激发学生的民族自豪感,和爱国情怀。

例2已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。

求证:a 2+b 2=c 2。

分析:左右两边的正方形边长相等,则两个正方形的面积相等。

A B
b
b
六、课堂练习
1.勾股定理的内容是: 。

2.如图,直角△ABC 的主要性质是:∠C=90°,(用几何语言表示)
⑴两锐角之间的关系: ;
⑵若D 为斜边中点,则斜边中线 ;
⑶若∠B=30°,则∠B 的对边和斜边: ;
⑷三边之间的关系: 。

3.△ABC 的三边a 、b 、c ,若满足b 2= a 2+c 2,则 =90°; 若满足b 2>c 2+a 2,则∠B 是 角; 若满足b 2<c 2+a 2,则∠B 是 角。

4.根据如图所示,利用面积法证明勾股定理。

七、课后练习
1.已知在Rt △ABC 中,∠B=90°,a 、b 、c 是△ABC 的三边,则
⑴c= 。

(已知a 、b ,求c )
⑵a= 。

(已知b 、c ,求a )
⑶b= 。

(已知a 、c ,求b )
2.如下表,表中所给的每行的三个数a 、b 、c ,有a <b <c ,试根据表中已有数的规律,写出当a=19时,b ,c 的值,并把b 、c 用含a 的代数式表示出来。

3.在△ABC 中,∠BAC=120°,AB=AC=310cm ,一动点P 从B 向C 以每秒2cm 的速度移动,问当P 点移动多少秒时,PA 与腰垂直。

学习反思:
1.本节课你有哪些收获?
2.你还有哪些疑惑?
课后作业:p 28 1、2、题。

课题:18.1勾股定理(第2课时)
B
b E B
__年__月__日 执教:
一、学习目标
1.会用勾股定理进行简单的计算。

2.树立数形结合的思想、分类
讨论思想。

二、重点:勾股定理的简单计算。

难点:勾股定理的灵活运用。

三、课堂引入
复习勾股定理的文字叙述;勾股定理的符号语言及变形。

学习勾股定理重在应用。

四、例习题分析
例1(补充)在Rt △ABC ,∠C=90°
⑴已知a=b=5,求c 。

⑵已知a=1,c=2, 求b 。

⑶已知c=17,b=8, 求a 。

⑷已知a :b=1:2,c=5, 求a 。

⑸已知b=15,∠A=30°,求a ,c 。

分析:刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。

例2(补充)已知直角三角形的两边长分别为5和12,求第三边。

分析:让学生知道考虑问题要全面,体会分类讨论思想。

例3(补充)已知:如图,等边△ABC 的边长是6cm 。

⑴求等边△ABC 的高。

⑵求S △ABC 。

五、课堂练习
1.填空题
⑴在Rt △ABC ,∠C=90°,a=8,b=15,则c= 。

⑵在Rt △ABC ,∠B=90°,a=3,b=4,则c= 。

⑶在Rt △ABC ,∠C=90°,c=10,a :b=3:4,则a= ,b= 。

⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为 。

⑸已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 。

⑹已知等边三角形的边长为2cm ,则它的高为 ,面积为 。

2.已知:如图,在△ABC 中,∠C=60°,AB=34,AC=4, D B A A
B。

相关文档
最新文档