1602lcd显示的秒表(1)
1602lcd显示的秒表

目录1 概述 01.1 1602LCD研究的历史背景和意义 01.2 1602LCD研究的发展和现状 02 课题方案设计 02.1系统设计目的 02.2系统结构模块论证 (1)2.2.1 显示部分 (1)3 系统硬件设计 (1)3.1 总体设计 (1)3.2 单片机运行的最小系统 (2)3.2.1 电源电路 (2)3.2.2晶振电路 (2)3.2.3复位电路 (3)3.3 显示电路 (4)3.3.1引脚说明: (4)3.4 单片机STC89C52 (5)3.4.1主要特性 (5)3.4.2功能特性概述 (6)3.4.3主要引脚及芯片基本工作条件说明 (6)4 系统软件设计 (7)4.1 总流程图 (7)4.2 最小系统检测电路程序 (8)4.3 编程调试界面 (9)4.4 Proteus仿真结果 (9)5软硬件联调及调试结果 (10)5.1 实物图 (10)5.2 调试结果 (11)结束语 (12)参考文献 (12)附录2 1602LCD设计的秒表PCB图 (14)附录3 1602LCD设计的秒表Proteus仿真图 (15)附录4 1602LCD设计的秒表C语言程序清单 (15)附录5 基于单片机的1602LCD设计的秒表元器件目录表 (21)1 概述1.1 1602LCD研究的历史背景和意义LCD1602是16字乘以2行的字符型液晶模板。
其特点是:(1)位数多,可显示32位。
(2)显示内容丰富,可显示所有数字、字母、符号等192种ASCII码对应的字符。
(3)程序简单1.2 1602LCD研究的发展和现状液晶显示模块具有体积小、功耗低、显示内容丰富、超薄轻巧等优点,在袖珍式仪表和低功耗应用系统中得到广泛的应用。
目前字符型液晶显示模块已经是单片机应用设计中最常用的信息显示器件。
LCD1602液晶显示模块,它可以显示两行,每行16个字符,采用单+SV电源供电,外围电路配置简单,价格便宜,具有很高的性价比。
1602LCD显示的秒表 C语言程序

源程序代码://名称:用1602LCD设计的秒表//说明:首先按下K1键时开始计时,自此按下时暂停,第三次按下时继续累积计时,再次按下时停止计时,K2键用于清零秒表。
//#include <reg51.h>#include <intrins.h>#define uchar unsigned char#define uint unsigned int#define delayNOP ( ) ﹛_nop_( ); _nop_( ); _nop_( ); _nop_( );﹜//LCD控制函数void LCD_Initialize( );void LCD_Set_POS(uchar);void LCD_Write_Date(uchar);void Display_String(uchar﹡,uchar);sbit K1 = P1^0;sbit K2 = P1^1;sbit BEEP = P3^0;sbit LCD_RS = P2^0;sbit LCD_RW = P2^1;sbit LCD_EN = P2^2;uchar KeyCount = 0;uchar code msg1[] = ﹛〞Second Watch 0 〞﹜;uchar code msg2[] = ﹛〞>>>> 0 〞﹜;uchar code Prompts[] [16] ={﹛〞:: 1- - - - > 〞﹜,﹛〞:: 1- - - - > ::2 〞﹜,﹛〞:: 1 - >2 ::3- - > 〞﹜,﹛〞:: 1 - >2 ::3- - >4 〞﹜};// 计时缓冲与显示缓冲uchar Time_Buffer[] ={0,0,0,0};uchar LCD_Display_Buffer[]={〞00: 00: 00:00〞}; //// 蜂鸣器//void Beep ()﹛uchar i,j = 70;for (i = 0;i< 180;i++ )﹛while(--j);BEEP = ~BEEP;﹜BEEP = 0;﹜//// 延时//void DelayX(uint ms){uchar i;while(ms--) for (i= 0;i< 120;i++);﹜//// 显示计时//void Show_Second( ){uchar i;LCD_Set_POS(0x45); //设置LCD显示起点for(i = 3;i != 0xff ;i--);{//将两位整数的1/100s,秒,分,时转换为8位数字字符LCD_Display_Buffer[2﹡i+1] = Time_Buffer[i] / 10 + ˊ0 ˊ;LCD_Display_Buffer[2﹡i] = Time_Buffer[i] % 10 + ˊ0 ˊ;//在 = 3,2,1,0时分别显示时,分,秒,1/100sLCD_Writer_Date(LCD_Display_Buffer[2﹡i+1])LCD_Writer_Date(LCD_Display_Buffer[2﹡i])LCD_Writer_Date(ˊ: ˊ)}}//// Time0中断//Void Time0( ) interrupt 1 using 0{THO = -10000 / 256;TLO = -10000 % 256;Time_Buffer[0] ++if(Time_Buffer[0] == 100){Time_Buffer[0] = 0; Time_Buffer[1]++;}if(Time_Buffer[1] == 60) //秒{Time_Buffer[1] = 0; Time_Buffer[2]++;}if(Time_Buffer[2] == 60) //分{Time_Buffer[2] = 0; Time_Buffer[3]++;}if(Time_Buffer[3] == 24) //时Time_Buffer[3] = 0;}////主函数//void main( ){uchar i;IE = 0x82;TMOD = 0x01;THO = -10000 / 256;TLO = -10000 % 256;LCD_Initialize( );Display_String(msg1,0x00);Display_String(msg2,0x40);While(1){if(k1 == 0){DelayX(100);i = ++KeyCount;switch (i){case 1:case 3: TRO = 1;Display_String(Prompts[i-1],0);Break;case 2:case 4: TRO = 0;Display_String(Prompts[i-1],0);break;default:TRO = 0;break;}While (K1 == 0); // 等待释放K1键Beep( );}elseif(K2 == 0){TRO = 0;KeyCount = 0;for(i = 0;i < 4; i++)Time_Buffer [i] = 0; // 清零计数缓冲Display_String(msg1,0);Beep( );DelayX(100);while (K2 == 0); // 等待释放K2键}Show_Second( );}}//// 1602LCD显示驱动函数//#include 〈reg51.h〉#include 〈intrins.h〉#define uchar unsigned char#define uint unsigned int#define DellayNOP( )﹛_nop_( ); _nop_( ); _nop_( ); _nop_( );﹜sbit LCD_RS = P2^0;sbit LCD_RW = P2^1;sbit LCD_EN = P2^2;bit LCD_Busy_Check( );void LCD_Initialize( );void LCD_Set_POS(uchar);void LCD_Write_Command(uchar);void LCD_Write_ Date(uchar);//// 延时//void DelayMS(uint ms){uchar t;while(ms--) for (t =0;t < 120;t++);}//// LCD忙检查//bit LCD_Busy_Check( );{bit Rsult;LCD_RS = 0; LCD_RW = 1; LCD_EN = 1;DelayNOP( );Result = (bit)(p0 ﹠ 0x80);LCD_EN = 0return Result;}//// 向LCD写指令//void LCD_Write_Command(uchar cmd);{while(LCD_Busy_Check() );LCD_RS = 0; LCD_RW = 0; LCD_EN = 0;_nop_( ); _nop_( );pO = cmd; DelayNOP( );LCD_EN = 1;DelayNOP( );LCD_EN = 0;}//// 向LCD写数据//void LCD_Write_Date(uchar str);{while(LCD_Busy_Check() );LCD_RS = 1; LCD_RW = 0; LCD_EN = 0;pO = str; DelayNOP( ); LCD_EN = 1;DelayNOP( );LCD_EN = 0;}//// 初始化LCD//void LCD_Initialize( );{DelayMS(5); LCD_Write_Command(0x38);DelayMS(5); LCD_Write_Command(0x0c);DelayMS(5); LCD_Write_Command(0x06);DelayMS(5); LCD_Write_Command(0x01);DelayMS(5);}//// 设置显示位置//void LCD_Set_POS(uchar Poition){LCD_Write_Command(Position ︱ 0x80);}////显示函数,在LCD指定行上显示字符串//void Display_String(uchar﹡str,uchar LineNO) {uchar k;LCD_Set_POS(LineNO);for (k = 0;k < 16;k++) LCD_Write_Date(str[k]) }。
单片机LCD1602A秒表程序

ORG 0030H
MAIN:
ACALL SET_LCD
;LCD 初始化设置子程序
TOOP:
ACALL WR_THL ACALL RESET_18B20
;将报警上下线写入暂存寄存器 ;18B20 复位子程序
JNB FLAG,TOOP1
;18B20 不存在
ACALL MEU_OK
;显示"OK"菜单
ACALL RE_THL
6
嵌入式应用软件园,版权所有,请勿转载/销售。
第 2 章 程序功能
1.1 程序功能 程序中包含 LCM 用到的所有函数:初始化、写指令、写数据、判
忙碌、清屏幕。 在单片机的 P1 端口上接有 LCD 模块,用来显示计时时间。P3.3、
P3.4 端口分别接有按键 K1、K2,做秒表的计时控制按钮。 K1:暂停和起动秒表。只能暂停和起动二次。 K2:重新开始计时,计时值从 0 开始。
1.2 操作方法 1. 按一下 K2 键,准备计时。 2. 按一下 K1 键,计时开始。 3. 按一下 K1 键,暂停计时。 4. 按一下 K1 键,计时开始,在第 2 步的基础上累计时。 5. 按一下 K1 键,暂停计时。 6. 重复第 1~5 步,循环使用秒表。
7
1.3 原理图
嵌入式应用软件园,版权所有,请勿转载/销售。
MOV A,#0CCH
;跳过 ROM 匹配
ACALL WRITE_18B20
;调写入子程序
MOV A,#44H
;发出温度转换命令
ACALL WRITE_18B20
;调写入子程序
ACALL RESET_18B20
;调复位子程序
MOV A,#0CCH
;跳过 ROM 匹配
用1602LCD设计的可调式电子钟

单片机应用课程设计说明书用1602LCD设计的可调式电子钟专业自动化学生姓名班级自动化142学号 14100指导教师蒋完成日期 20年1 月23 日目录1 概述 (3)2 课题研究背景与意义 (3)2.1 课题研究背景 (3)2.2 课题研究意义 (3)3 系统方案设计与主要设计工作 (3)3.1 设计任务 (3)3.2 功能要求说明 (4)4设计课题总体方案 (4)4.1硬件设计方案 (5)4.2系统软件设计 (7)5. 软件仿真及实物设计调试 (9)5.1PROTUES仿真软件介绍 (9)5.2仿真运行结果说明 (10)5.3实物设计结果与调试 (11)6课程设计实验总结 (11)参考文献 (13)附录 (14)附录1:程序清单 (14)附录2:系统电路原理图 (21)附录3:元器件清单 (22)用1602LCD设计电子钟1 概述数字钟是采用数字电路实现对“时”、“分”、“秒”数字显示的计时装置。
数字钟的精度、稳定度远远超过老式机械钟。
在这次设计中,我们采用LED数码管显示时、分、秒,以24小时计时方式,根据数码管动态显示原理来进行显示,用12MHz的晶振产生振荡脉冲,定时器计数。
在此次设计中,电路具有显示时间的其本功能,还可以实现对时间的调整。
数字钟是其小巧,价格低廉,走时精度高,使用方便,功能多,便于集成化而受广大消费的喜爱,因此得到了广泛的使用。
2 课题研究背景与意义2.1 课题研究背景20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。
目前,单片机正朝着高性能和多品种方向发展趋势将是进一步向着CMOS化、低功耗、小体积、大容量、高性能、低价格和外围电路内装化等几个方面发展。
下面是单片机的主要发展趋势。
单片机应用的重要意义还在于,它从根本上改变了传统的控制系统设计思想和设计方法。
功能完整的1602LCD时钟实验

功能完整的1602LCD时钟实验摘要本设计基于单⽚机技术原理,以单⽚机芯⽚STC89C52作为核⼼控制器,通过硬件电路的制作以及软件程序的编制,设计制作出⼀个多功能数字时钟系统。
单⽚机扩展的LCD显⽰器⽤来显⽰年、⽉、⽇、时、分、秒计数单元中的值。
整个设计包括两⼤部分: 硬件部分和软件部分,以单⽚机为核⼼, 配以⼀定的外围电路和软件。
硬件是整个系统的基础, 软件部分则要合理、充分地⽀持和使⽤系统的硬件, 从⽽完成系统所要完成的任务。
本设计采⽤LCD液晶显⽰,电路简单使⽤⼴泛。
该时钟系统主要由时钟模块、闹钟模块、液晶显⽰模块、键盘控制模块以及信号提⽰模块组成。
能够准确显⽰时间(显⽰格式为年:⽉:⽇:时时:分分:秒秒,24⼩时制),可随时进⾏时间调整,具有闹钟时间设置、闹钟开/关、⽌闹功能。
设计以硬件软件化为指导思想,充分发挥单⽚机功能,⼤部分功能通过软件编程来实现,电路简单明了,系统稳定性⾼。
单⽚机在这种情况下诞⽣了基于单⽚机电⼦时钟。
关键词:单⽚机 LCD1602 数字钟This design based on the single chip microcomputer principle, taking single-chip chip STC89C52 as core controller, through the hardware circuit and software production procedure formulation, designed and produced a multi-function digital clock system. SCM extended LCD display used to display date and time, minutes and seconds counting unit of values. The whole design includes two parts, hardware and software of, based on singlechip, match with certain peripheral circuit and software. Hardware is based in the whole system, the software part then be reasonable and fully support and use the system hardware, thus completing system to complete the task. This design USES the LCD, simple circuit is widely used. This clock system mainly by the clock module, alarm module, LCD module, keyboard control module and signal hint module. To accurately display the time (display format for years: month: day: always: component: seconds seconds, 24-hour system), available for time to adjust, with alarm time setting, alarm clock on/off, stop joking function. Design with hardware and software into guiding ideology, give full play to the SCM functions, most functions through software programming realize, circuit straightforward, stability of the system is high. SCM in this case was born based on single-chip electronic clock. Keywords: SCM LCD1602 digital clock前⾔数字钟是采⽤数字电路实现对时,分,秒数字显⽰的计时装置,⼴泛⽤于个⼈家庭,车站, 码头办公室等公共场所,成为⼈们⽇常⽣活中不可少的必需品,由于数字集成电路的发展和⽯英晶体振荡器的⼴泛应⽤,使得数字钟的精度,远远超过⽼式钟表, 钟表的数字化给⼈们⽣产⽣活带来了极⼤的⽅便,⽽且⼤⼤地扩展了钟表原先的报时功能。
1602LCD显示的秒表单片机课程设计

单片机课程设计题目:1602LCD显示的秒表目录1 单片机原理 (3)2 课程设计的任务与要求 (3)3 课程设计目的 (4)4 芯片资料 (5)4.1 AT89C51 (5)4.2 1602LCD (8)5 电路分析 (16)6 代码分析 (21)7 设计分析 (29)8 调试成功与否 (31)9 参考文献 (36)10 附录1602LCD秒表的显示源代码 (37)1602LCD秒表的显示原理图 (43)一、单片机原理单片机控制秒表是集于单片机技术、模拟电子技术、数字技术为一体的机电一体化高科技产品,具有功耗低,安全性高,使用方便等优点。
它是一种在线式实时控制计算机,需要有较强的抗干扰能力,较低的成本。
本次设计内容为以8051单片机为核心的秒表,采用数码管显示,单片机技术控制。
利用单片机的定时器/计数器定时和技术的原理,用集成电路芯片、LCD数码管以及按键来设计计时器。
将软、硬件有机地结合起来,使它拥有正确的计时、暂停、清零、并同时可以用数码管显示,在现实生活中应用广泛。
二、课程设计的任务与要求设计任务:利用AT89C51单片机结合1602LCD显示器设计一个秒表设计要求:1.本设计实现一个1602LCD显示秒表2. 利用AT89C51控制整个电路来实现秒表的显示。
大体上可以讲1602LCD秒表的显示主要包括硬件和软件两部分。
重点就是各部分硬件的连接设计以及程序的编写。
本章讲述的就是系统硬件的设计,其中包括各模块的器件选择和电路设计。
三、课程设计目的《MCS-51单片机原理及应用》课的课程设计是四个学生一组完成一个老师给的一个题目,叫1602LCD显示的秒表。
为了让我们能够综合运用自己学的课程的基本知识,能够进行单片机的应用,掌握单片机程序设计调试和应用电路设计、分析及调试检测。
通过这个实验:1.、使我们增进对单片机知识的进一步认识,也同时加深对单片机理论知识的理解。
2、使我们掌握单片机的内部功能模块的应用,3、使我们了解和掌握单片机应用系统的软硬件设计过程,方法即实现,为了以后设计和实现单片机应用系统打下基础。
LCD1602液晶秒表C51程序

LCD1602液晶秒表C51程序此程序是基于51hei单片机开发板上面写的,如需要移植到自己的电路上,修改相应的端口即可,开发板完整的电路图下载: 点这里(注意:只需要看1602部分即可,其他部分可以忽略)/*************************************************** *********************** @file main.c* @author xr* @date 2014年5月8日22:11:33 -- 2014年5月9日12:03:49* @version V1.2.3* @brief LCD1602液晶跑表单片机STC89C52RC MCU 晶振 11.0592MHZ************************************************* ***********************/#include ;/* 系统时钟 */#define SYS_XTAL (11059200UL/12)/* 定时器T0重载值 */unsigned char thr0, tlr0;unsigned char thr1, tlr1;/* 跑表计数 */unsigned char timer[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0}; //分别表示跑表的各个位上的数字bit flag10ms = 0;extern bit stopflag;//跑表走停标志位extern void InitalLCD1602();extern void LcdShowStr(unsigned char x, unsigned char y, unsigned char * str);extern void KeyDriver();extern void KeyScan();void DisplayTimer();void ConfigTimer0(unsigned int xms);void ConfigTimer1(unsigned int xms);/* 主函数main() */void main(void){ConfigTimer0(10); //定时10msConfigTimer1(1);InitalLCD1602();LcdShowStr(0, 0, "stopwatch");LcdShowStr(2, 1, "0000000.00s"); //液晶初始化显示LcdShowStr(10, 0, "stop!");while (1){KeyDriver();DisplayTimer();if ((flag10ms == 1) && (stopflag == 1)){flag10ms = 0;timer[0]++;if (timer[0] >; 9){timer[0] = 0;timer[1]++;if (timer[1] >; 9){timer[1] = 0;timer[2]++;if (timer[2] >; 9) {timer[2] = 0;timer[3]++;if (timer[3] >; 9) {timer[3] = 0;timer[4]++;if (timer[4] >; 9) {timer[4] = 0;timer[5]++;if (timer[5] >; 9) {timer[5] = 0;timer[6]++;if (timer[6] >; 9) {timer[6] = 0;timer[7]++;if (timer[7] >; 9){timer[7] = 0;timer[8]++;if (timer[8] >; 9){timer[8] = 0;}}}}}}}}}}}}/* 将跑表时间显示到液晶上 */ void DisplayTimer(){unsigned char str[20];/* 分解timer */str[0] = timer[8] + '0';str[1] = timer[7] + '0';str[2] = timer[6] + '0';str[3] = timer[5] + '0';str[4] = timer[4] + '0';str[5] = timer[3] + '0';str[6] = timer[2] + '0';str[7] = '.';str[8] = timer[1] + '0';str[9] = timer[0] + '0';str[10] = '\0';LcdShowStr(2, 1, str);}/* 定时器T0配置 */void ConfigTimer0(unsigned int xms) {unsigned long tmp;tmp = (SYS_XTAL * xms) / 1000;tmp = 65536-tmp + 18;thr0 = (unsigned char)(tmp >;>; 8) ; tlr0 = (unsigned char)tmp;TMOD &= 0xF0; //清零T0控制位TMOD |= 0x01; //定时器方式1TH0 = thr0;TL0 = tlr0;TR0 = 1; //开启timer0ET0 = 1; //开启T0中断EA = 1; //开启总中断}/* 配置定时器T1 */void ConfigTimer1(unsigned int xms) {unsigned long tmp;tmp = (SYS_XTAL * xms) / 1000;tmp = 65536 - tmp + 18;thr1 = (unsigned char)(tmp >;>; 8); tlr1 = (unsigned char)tmp;TMOD &= 0x0F;TMOD |= 0x10;TH1 = thr1;TL1 = tlr1;TR1 = 1;ET1 = 1;EA = 1;}/* 定时器T0中断服务 */void Timer0_ISP() interrupt 1{TH0 = thr0;TL0 = tlr0;flag10ms = 1; //定时10ms}/* 定时器T1中断服务 */void Timer1_ISP() interrupt 3{TH1 = thr1;TL1 = tlr1; //定时1msKeyScan();}/*************************************************** *********************** @file Lcd1602.c* @author xr* @date 2014年5月7日13:33:17* @version V1.2.3* @brief LCD1602液晶底层驱动************************************************* ***********************/#include ;//LCD1602_IOsbit LCD1602_RS = P1^0;sbit LCD1602_RW = P1^1;sbit LCD1602_EN = P1^5;#define LCD1602_DB P0/* 液晶忙碌等待 */void LCD1602Wait(){unsigned char sta;LCD1602_DB = 0xFF;//总线拉高,检测液晶状态字LCD1602_RS = 0;LCD1602_RW = 1;do{LCD1602_EN = 1;sta = LCD1602_DB;LCD1602_EN = 0;//避免液晶输出数据} while (sta & 0x80);//状态字最高位STA7 == 0空闲,1忙碌}/* 液晶写命令 */void LCD1602WriteCmd(unsigned char cmd){LCD1602Wait();LCD1602_RS = 0;LCD1602_RW = 0;LCD1602_EN = 0;LCD1602_DB = cmd;LCD1602_EN = 1;LCD1602_EN = 0;}/* 液晶写数据 */void LCD1602WriteData(unsigned char dat){LCD1602Wait();LCD1602_RS = 1;LCD1602_RW = 0;LCD1602_EN = 0;LCD1602_DB = dat;LCD1602_EN = 1;LCD1602_EN = 0;}/* 液晶初始化 */void InitalLCD1602(){LCD1602WriteCmd(0x38);LCD1602WriteCmd(0x0C);LCD1602WriteCmd(0x06);LCD1602WriteCmd(0x01);//清屏}/* 写数据到液晶上,字符串str,坐标(x, y),地址addr */void LcdShowStr(unsigned char x, unsigned char y, unsigned char * str){unsigned char addr;if (y == 0){addr = 0x00 + x;}else{addr = 0x40 + x;}LCD1602WriteCmd(addr | 0x80);while (*str != '\0'){LCD1602WriteData(*str++);}}/*************************************************** *********************** @file keyboard.c* @author xr* @date 2014年5月8日22:11:33 -- 2014年5月9日12:03:49* @version V1.2.3* @brief 按键驱动单片机STC89C52RC MCU 晶振11.0592MHZ************************************************* ***********************/#include ;/* 按键输出输入端口定义 */sbit KEY_IN1 = P2^4;sbit KEY_IN2 = P2^5;sbit KEY_IN3 = P2^6;sbit KEY_IN4 = P2^7;sbit KEY_OUT1 = P2^3;sbit KEY_OUT2 = P2^2;sbit KEY_OUT3 = P2^1;sbit KEY_OUT4 = P2^0;extern unsigned char timer[9]; //分别表示跑表的各个位上的数字/* 按键当前状态 */unsigned char volatile keySta[4][4] = {{1, 1, 1, 1},{1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}};/* 按键对应标准PC键盘编码 */const unsigned char code keyCodeMap[4][4] = {{'1', '2', '3', 0x26}, /* 数字键 1, 2, 3 和向上键 */{'4', '5', '6', 0x25}, /* 数字键 4, 5, 6 和向左键 */{'7', '8', '9', 0x28}, /* 数字键 7, 8, 9 和向下键 */{'0', 0x1B, 0x0D, 0x27} /* 数字键 0 和向右键*/};bit stopflag = 0;//跑表走停标志位 0 停止,1运行void KeyAction(unsigned char keycode);void LcdShowStr(unsigned char x, unsigned char y, unsigned char * str);/* 按键驱动函数 */void KeyDriver(){/* 上一次按键的备份值 */static unsigned char keybackup[4][4] = {{1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}};for (i = 0; i < 4; i++){for (j = 0; j < 4; j++){if (keySta[i][j] != keybackup[i][j]) //当前按键状态和上一次的按键状态不同{ //按键有动作if (keybackup[i][j] != 0) //上一次按键是弹起 {KeyAction(keyCodeMap[i][j]); //当前按键是想、按下}keybackup[i][j] = keySta[i][j]; //备份当前按键值}}}}/* 按键扫描函数 */void KeyScan(){static unsigned char keyout = 0;//按键行索引static unsigned char keybuf[4][4] = {{0xFF, 0xFF, 0xFF, 0xFF}, {0xFF, 0xFF, 0xFF, 0xFF},{0xFF, 0xFF, 0xFF, 0xFF}, {0xFF, 0xFF, 0xFF, 0xFF}};/* 按键消抖 */keybuf[keyout][0] = (keybuf[keyout][0] << 1) | KEY_IN1;keybuf[keyout][1] = (keybuf[keyout][1] << 1) | KEY_IN2;keybuf[keyout][2] = (keybuf[keyout][2] << 1) | KEY_IN3;keybuf[keyout][3] = (keybuf[keyout][3] << 1) | KEY_IN4;/* 更新按键的值 */for (i = 0; i < 4; i++){if ((keybuf[keyout][i] & 0x1F) == 0x1F){//五次检测按键的值都是1keySta[keyout][i] = 1;}else if ((keybuf[keyout][i] & 0x1F) == 0x00) {//五次检测的按键值都是0keySta[keyout][i] = 0;}}/* 按键行索引++ */keyout++;keyout &= 0x03;//到4归零/* 根据按键索引选择行按键进行扫描 */switch (keyout){case 0: KEY_OUT1 = 0; KEY_OUT4 = 1;//选择第一行按键case 1: KEY_OUT2 = 0; KEY_OUT1 = 1;case 2: KEY_OUT3 = 0; KEY_OUT2 = 1;case 3: KEY_OUT4 = 0; KEY_OUT3 = 1;default: break;}}/* 按键动作函数 */void KeyAction(unsigned char keycode){unsigned char i = 0;if (keycode == 0x1B) //ESC{/* 跑表复位 */stopflag = 0;for (i = 0; i < 9; i++){timer[i] = 0;}LcdShowStr(2, 1, "0000000.00s"); LcdShowStr(10, 0, "reset!");}else if (keycode == 0x0D) //回车键跑表走停{if (stopflag == 0){stopflag = 1;LcdShowStr(10, 0, "start!");}else{stopflag = 0;LcdShowStr(10, 0, "stop! "); //多写入一个空格}}}。
1602LCD的指令说明及时序

1602LCD的指令说明及时序
1602液晶模块的读写操作、屏幕和光标的操作都是通过指令编程来实现的。
指令1:清显示,指令码01H,光标复位到地址00H位置
指令2:光标复位,光标返回到地址00H
指令3:光标和显示模式设置
I/D:光标移动方向,高电平右移,低电平左移
S:屏幕上所有文字是否左移或者右移,高电平表示有效,低电平则无效。
时序如表所示
指令4:显示开关控制
D:控制整体显示的开与关,高电平表示开显示,低电平表示关显示
C:控制光标的开与关,高电平表示有光标,低电平表示无光标
B:控制光标是否闪烁,高电平闪烁,低电平不闪烁
指令5:光标或显示移位
S/C:高电平时移动显示的文字,低电平时移动光标
指令6:功能设置命令
DL:高电平时为位总线,低电平时为8位总线;N:低电平时为单行显示,高电平时双行显示;F:低电平时显示5X7的点阵字符,高电平时显示5X10的点阵字符
指令7:字符发生器RAM地址设置
指令8:DDRAM地址设置
指令9:读忙信号和光标地址
BF:忙标志位,高电平表示忙,此时模块不能接收命令或者数据低电平表示不忙
指令10:写数据
指令11:读数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1概述 (1)1.1课题的研究意义和目的 (1)2方案论证 (1)2.1 STC89C52主要功能特性 (1)2.2系统分析 (3)3硬件系统的设计 (3)3.1硬件介绍 (3)3.2部分硬件原理图 (4)3.3最小单片机系统 (5)4系统的软件设计 (5)5软硬件联调 (7)5.1正面图 (7)5.2反面接线 (8)5.3测试结果 (8)结束语 (9)参考文献 (9)附录 (10)附录1 protel原理图 (10)附录2 PCB图 (11)附录3 protues仿真图 (12)附录4 程序清单 (12)附录5元器件清单 (17)1概述1.1课题的研究意义和目的1、通过本实验的设计初步了解单片机工作原理和各功能端口的相关设置;2、掌握PROTEUS软件的安装和配置过程;3、学会绘制电路原理图;4、了解装载程序和调试;5、PROTEUS VSM 与uVision3的联调;6、用单片机仿真软件,并进行调试;7、掌握单片机相应的编程步骤,了解秒表相关的工作流程;8、熟悉KEIL\PROTEUS等相关软件的使用。
2方案论证2.1 STC89C52主要功能特性1、兼容MCS51指令系统2、8k可反复擦写(大于1000次)Flash ROM;3、32个双向I/O口;4、256x8bit部RAM;5、3个16位可编程定时/计数器中断;6、时钟频率0-24MHz;7、2个串行中断,可编程UART串行通道;8、2个外部中断源,共8个中断源;9、2个读写中断口线,3级加密位;10、低功耗空闲和掉电模式,软件设置睡眠和唤醒功能;11、有PDIP、PQFP、TQFP及PLCC等几种封装形式,以适应不同产品的需求。
STC89C52为8 位通用微处理器,采用工业标准的C51核,在部功能及管脚排布上与通用的8xc52 相同,其主要用于会聚调整时的功能控制。
功能包括对会聚主IC 部寄存器、数据RAM及外部接口等功能部件的初始化,会聚调整控制,会聚测试图控制,红外遥控信号IR的接收解码及与主板CPU通信等。
主要管脚有:XTAL1(19 脚)和XTAL2(18 脚)为振荡器输入输出端口,外接12MHz 晶振。
RST/Vpd(9 脚)为复位输入端口,外接电阻电容组成的复位电路。
VCC(40 脚)和VSS(20 脚)为供电端口,分别接+5V电源的正负端。
P0~P3 为可编程通用I/O 脚,其功能用途由软件定义,在本设计中,P0 端口(32~39 脚)被定义为N1 功能控制端口,分别与N1的相应功能管脚相连接,13 脚定义为IR输入端,10 脚和11脚定义为I2C总线控制端口,分别连接N1的SDAS(18脚)和SCLS(19脚)端口,12 脚、27 脚及28 脚定义为握手信号功能端口,连接主板CPU 的相应功能端,用于当前制式的检测及会聚调整状态进入的控制功能。
P0 口:P0 口是一组8 位漏极开路型双向I/O 口,也即地址/数据总Flash 存储器编程期间,该引脚还用于输入编程脉冲(PROG)。
如有必要,可通过对特殊功能寄存器(SFR)区中的8EH 单元的D0 位置位,可禁止ALE 操作。
该位置位后,只有一条MOVX 和MOVC指令才能将ALE 激活。
此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE 禁止位无效。
PSEN:程序储存允许(PSEN)输出是外部程序存储器的读选通信号,当AT89C52 由外部程序存储器取指令(或数据)时,每个机器周期两次PSEN 有效,即输出两个脉冲。
在此期间,当访问外部数据存储器,将跳过两次PSEN信号。
EA/VPP:外部访问允许。
欲使CPU 仅访问外部程序存储器(地址为0000H—FFFFH),EA 端必须保持低电平(接地)。
需注意的是:如果加密位LB1 被编程,复位时部会锁存EA端状态。
如EA端为高电平(接Vcc 端),CPU 则执行部程序存储器中的指令。
Flash 存储器编程时,该引脚加上+12V 的编程允许电源Vpp,当然这必须是该器件是使用12V 编程电压Vpp。
XTAL1:振荡器反相放大器的及部时钟发生器的输入端。
XTAL2:振荡器反相放大器的输出端。
2.2系统分析设计的电路主要是能多次记时和查询时间,记时的多少通过显示电路显示出来,每一次计时可以通过控制电路查询出来。
设计框图如图2-1所示;图2-13硬件系统的设计3.1硬件介绍根据设计要求和设计思路,硬件电路有两部分组成,即单片机按键电路,LCD 显示器电路。
图2-2 为硬件电路设计框图。
按键电路STC89C52LCD显示电路图2-2系统硬件电路根据课题设计要求,它由以下几个部件组成:单片机89C52RC、电源、时分秒显示模块。
时分秒显示采用动态扫描,以降低对单片机端口数的要求,同时也降低系统的功耗。
显示模块中时分秒显示驱动、校时模块都通过89C52RC的I/O口控制。
显示模块中的复位电路由89C52RC的RESET端控制。
电源部分:电源部分有二部分组成。
一部分是由220V的市电通过变压、整流稳压来得到+5V电压,维持系统的正常工作;另一部分是由5V的电池供电,以保证停电时正常走时。
正常情况下电池是不提供电能的,以保证电池的寿命。
3.2部分硬件原理图3.2.1STC89C52管脚图如图3-1所示:图3-13.2.2 1602LCD液晶硬件图如图3-2所示:图3-23.3最小单片机系统如图3-3所示:C130pFC230pFC310uFX111.0592MR110k图3-34系统的软件设计此部分主要介绍显示模块,显示模块是实现数字钟的重要部分,在显示时,首先将时间十进制数据转化为显示段码,然后送往液晶显示。
显示段码采用动态扫描的方式。
在要求改变显示数据的类别时,只须改变R1(指向数据缓冲区的指针)指向的十进制数据缓冲区即可。
如图4-1所示:图4-1结束语通过这次实验,我学会了熟练运用protues,keil,protel等软件,在做本次课程设计的过程中,我感触最深的当属查阅大量的设计资料了。
为了让自己的设计更加完善,查阅这方面的设计资料是十分必要的,同时也是必不可少的。
其次,在这次课程设计中,我们运用到了以前所学的专业课知识。
虽然过去从未独立应用过它们,但在学习的过程中带着问题去学我发现效率很高,这是我做这次课程设计的又一收获后,要做好一个课程设计,就必须做到:在设计程序之前,对所用单片机的部结构有一个系统的了解,知道该单片机有哪些资源;要有一个清晰的思路和一个完整的的软件流程图;在设计程序时,不能妄想一次就将整个程序设计好,反复修改、不断改进是程序设计的必经之路;在设计课程过程中遇到问题是很正,但我们应该将每次遇到的问题记录下来,并分析清楚,以免下次再碰到同样的问题的课程设计结束了,但是从中学到的知识会让我受益终身。
附录1 protel原理图附录2 PCB图附录3protues仿真图附录4 程序清单#include <reg51.h>#include <intrins.h>#define uchar unsigned char#define unit unsigned int#define delayNOP() {_nop_();_nop_();_nop_();_nop_();} //LCD 控制void LCD_Initialize();void LCD_Set_POS(uchar);void LCD_Write_Data(uchar);void Display_String(uchar *,uchar);sbit K1=P1^0;sbit K2=P1^1;sbit BEEP=P3^0;sbit LCD_RS=P2^0;sbit LCD_RW=P2^1;sbit LCD_EN=P2^2;uchar KeyCount=0;uchar code msg1[]={"Second Watch 0"};uchar code msg2[]={">>>>"};uchar code Prompts[][16]={{"::1---->"},{"::1----> ::2 "},{"::1->2 ::3-->"},{"::1->2 ::3-->4"}};//计时缓冲与显示缓冲uchar Time_Buffer[] ={0,0,0,0};uchar LCD_Display_Buffer[]={"00:00:00:00"};//蜂鸣器void Beep(){uchar i,j=70;for (i=0;i<180;i++){while(--j);BEEP=~BEEP;}BEEP=0;}//延时void DelayX(unit ms){uchar i;while(ms--) for(i=0;i< 120;i++) ;}//显示计时void Show_Second(){uchar i;LCD_Set_POS(0x45);//设置LCD显示起点for(i=3;i!=0xff;i--){//将两位整数的1/100s,秒,分,时转换为8位数字字符LCD_Display_Buffer[2*i+1]=Time_Buffer[i]/10+'0'; LCD_Display_Buffer[2*i ]=Time_Buffer[i]%10+'0';//在i=3,2,1,0时分别显示时,分,秒,1、100sLCD_Write_Data(LCD_Display_Buffer[2*i+1]);LCD_Write_Data(LCD_Display_Buffer[2*i]);LCD_Write_Data(':');}}//Time0中断void Time0() interrupt 1 using 0{TH0=-10000/256;TL0=-10000%256;Time_Buffer[0]++;if(Time_Buffer[0]==100){Time_Buffer[0]=0; Time_Buffer[1]++; }if(Time_Buffer[1]==60) //秒{Time_Buffer[1]=0;Time_Buffer[2]++;}if(Time_Buffer[2]==60) //分{Time_Buffer[2]=0;Time_Buffer[3]++;}if(Time_Buffer[3]==24) //时Time_Buffer[3]=0;}//主函数void main(){uchar i;IE=0x82;TMOD=0x01;TH0=-10000/256;TL0=-10000%256;LCD_Initialize();Display_String(msg1,0x00);Display_String(msg2,0x40);while(1){if(K1==0){DelayX(100);i=++KeyCount;switch(i){case 1:case 3:TR0 =1;Display_String(Prompts[i-1],0); break;case 2:case 4:TR0 =0;Display_String(Prompts[i-1],0);break;default:TR0=0;break;}while (K1==0) ; //等待释放K1键Beep();}elseif(K2==0){TR0=0;KeyCount=0;for(i=0;i<4;i++)Time_Buffer[i]=0; //清零计时缓冲Display_String(msg1,0);Beep();DelayX(100);while (K2==0) ; //等待释放K2键}Show_Second();}}//1602LCD显示驱动函数e#include<reg51.h>#include<intrins.h>#define uchar unsigned char#define uint unsigned int#define DelayNOP(){_nop_();_nop_();_nop_();_nop_();}bit LCD_Busy_Check();void LCD_Initialize();void LCD_Set_POS(uchar) ;void LCD_Write_Command(uchar);void LCD_Write_Data(uchar);//延时void DelayMS(uint ms){uchar t;while(ms--) for (t=0;t<120;t++);}//LCD忙检查bit LCD_Busy_Check(){bit Result;LCD_RS=0;LCD_RW=1;LCD_EN=1;DelayNOP(); Result=(bit)(P0&0x80);LCD_EN=0;return Result;}//向LCD写指令void LCD_Write_Command(uchar cmd){while (LCD_Busy_Check() );LCD_RS=0;LCD_RW=0;LCD_EN=0;_nop_(); _nop_();P0=cmd; DelayNOP();LCD_EN=1;DelayNOP();LCD_EN=0;}//向LCD写数据‘void LCD_Write_Data(uchar str){while (LCD_Busy_Check()) ;LCD_RS=1;LCD_RW=0;LCD_EN=0;P0=str;DelayNOP(); LCD_EN=1;DelayNOP();LCD_EN=0;}//初始化LCDvoid LCD_Initialize(){DelayMS(5);LCD_Write_Command(0x38);DelayMS(5);LCD_Write_Command(0x0c);DelayMS(5);LCD_Write_Command(0x06);DelayMS(5);LCD_Write_Command(0x01);DelayMS(5);}//设置显示位置void LCD_Set_POS(uchar Position){LCD_Write_Command(Position|0x80);}//显示函数,在LCD指令行上显示字符串void Display_String(uchar*str,uchar LineNo){uchar k;LCD_Set_POS(LineNo);for (k=0;k<16;k++) LCD_Write_Data (str[k]);}附录5元器件清单。