第十讲 非线性规划(一)(运筹学基础-清华大学,王永县)

合集下载

非线性规划高考知识点归纳总结

非线性规划高考知识点归纳总结

非线性规划高考知识点归纳总结非线性规划是运筹学中的一个重要分支,它主要研究在非线性目标函数和非线性约束条件下的优化问题。

在高考数学中,非线性规划通常不会作为主要考点,但了解其基本概念和简单应用对于提高数学素养和解决实际问题具有重要意义。

首先,非线性规划问题可以定义为:给定一个目标函数 \( f(x_1,x_2, ..., x_n) \) 和一组约束条件 \( g_i(x_1, x_2, ..., x_n) \leq 0 \)(对于 \( i = 1, 2, ..., m \)),以及 \( h_j(x_1,x_2, ..., x_n) = 0 \)(对于 \( j = 1, 2, ..., p \)),求 \( x \) 的值,使得目标函数 \( f \) 达到最大值或最小值。

在高考中,非线性规划的知识点通常包括以下几个方面:1. 目标函数与约束条件:理解目标函数和约束条件在非线性规划中的作用,以及它们如何影响问题的解。

2. 可行域:掌握如何根据约束条件确定可行域,这是求解非线性规划问题的基础。

3. 拉格朗日乘数法:了解拉格朗日乘数法的基本原理,以及如何利用它求解带有等式约束的非线性规划问题。

4. KKT条件:掌握KKT(Karush-Kuhn-Tucker)条件,这是求解非线性规划问题的必要条件。

5. 数值方法:了解一些基本的数值方法,如梯度下降法、牛顿法等,这些方法在实际求解非线性规划问题时非常有用。

6. 实际应用:能够将非线性规划的概念应用到实际问题中,如资源分配、成本最小化等。

在复习非线性规划时,建议从以下几个步骤进行:- 理解概念:首先,要理解非线性规划的基本概念,包括目标函数、约束条件、可行域等。

- 掌握方法:其次,要掌握求解非线性规划问题的基本方法,如拉格朗日乘数法和KKT条件。

- 练习题目:通过大量的练习题目来巩固知识点,提高解题能力。

- 实际应用:尝试将非线性规划的概念应用到实际问题中,提高解决实际问题的能力。

非线性规划

非线性规划

非线性规划非线性规划是一种涉及非线性目标函数和/或非线性约束条件的优化问题。

与线性规划不同,非线性规划可能存在多个局部最优解,而不是全局最优解。

非线性规划在许多领域都有广泛的应用,如经济学、工程学和管理学等。

非线性规划的一般形式可以表示为:最小化或最大化 f(x),其中 f(x) 是一个非线性函数,x 是决策变量向量。

满足一组约束条件g(x) ≤ 0 和 h(x) = 0,其中 g(x) 和 h(x) 是非线性函数。

为了求解非线性规划问题,可以使用不同的优化算法,如梯度下降法、牛顿法和拟牛顿法等。

这些算法的目标是找到目标函数的最小值或最大值,并满足约束条件。

非线性规划的难点在于寻找全局最优解。

由于非线性函数的复杂性,这些问题通常很难解析地求解。

因此,常常使用迭代算法来逼近最优解。

非线性规划的一个重要应用是在经济学中的生产计划问题。

生产活动通常受到多个因素的限制,如生产能力、原材料和劳动力等。

非线性规划可以帮助确定最佳的生产数量,以最大化利润或最小化成本。

另一个应用是在工程学中的优化设计问题。

例如,优化某个结构的形状、尺寸和材料以满足一组要求。

非线性规划可以帮助找到最佳设计方案,以最大程度地提高性能。

在管理学中,非线性规划可以用于资源分配和风险管理问题。

例如,优化一个公司的广告预算,以最大程度地提高销售额。

非线性规划可以考虑多种因素,如广告投入和市场需求,以找到最佳的广告投放策略。

总之,非线性规划是一种重要的优化方法,用于解决涉及非线性目标函数和约束条件的问题。

它在经济学、工程学和管理学等领域有广泛的应用。

尽管非线性规划的求解难度较大,但通过合适的优化算法,可以找到最佳的解决方案。

第十讲非线性规划一运筹学清华大学林谦

第十讲非线性规划一运筹学清华大学林谦

·凸函数:定义在凸集上的函数f(X)称为凸函数,条件是 对于每一对x1,x2及每一个a,0≤a≤1存在:
f(ax1+(1-a)x2)≤a f(x1)+1(1-a)f(x2)
上式中,若≤变为<,则称为严格凸函数。
page 12 3 August 2019
Prof. Wang School of Economics & Management
B) 对于所有d,则dT▽2 f(X*)·d≥0
ii)判断极小点的充分条件
命题(二阶充分条件——无约束):设f(X)C2 是定义在 以X*为内点的一个区域上的函数,若
A) ▽f(X*)=0 B) Hess阵H(X*)正定(或负定)
则X*是f(X)的严格极小点(或极大点)
page 11 3 August 2019
目标函数 约束条件
page 3 3 August 2019
max:f(X) =30x1+450x2
0.5x1+2x2+0.25x22≤800
x1≥0,x2≥0
Prof. Wang School of Economics & Management
Operations Research
第二十一讲
§2 非线性规划的数学模型及 特点 (1)
page 15 3 August 2019
Prof. Wang School of Economics & Management
Operations Research
第二十一讲
§4 非线性规划求解方法分类(1)
1.一维最优化 ①斐波那契(Fibonacci)法 ②黄金分割法(0.618法) ③牛顿法(切线法) ④抛物线逼近法 ⑤成功和失败法

清华大学_运筹学_教案

清华大学_运筹学_教案

一、课程概述课程名称:运筹学授课对象:清华大学经管学院管理科学与工程专业研究生授课时长:共16周,每周2学时教学目标:1. 理解运筹学的基本概念、原理和方法。

2. 掌握线性规划、整数规划、非线性规划等运筹学的基本模型和求解方法。

3. 培养学生运用运筹学解决实际问题的能力。

4. 提高学生的逻辑思维、分析问题和创新能力。

二、教学内容与安排第1-2周:运筹学的基本概念与数学基础1. 运筹学的基本概念、发展历程及应用领域。

2. 数学基础:线性代数、概率论与数理统计。

第3-4周:线性规划1. 线性规划的基本概念、数学模型与标准形式。

2. 线性规划的求解方法:单纯形法、对偶理论。

3. 线性规划的应用实例。

第5-6周:整数规划1. 整数规划的基本概念、数学模型与标准形式。

2. 整数规划的求解方法:分支定界法、割平面法。

3. 整数规划的应用实例。

第7-8周:非线性规划1. 非线性规划的基本概念、数学模型与标准形式。

2. 非线性规划的求解方法:梯度法、牛顿法、共轭梯度法。

3. 非线性规划的应用实例。

第9-10周:网络优化1. 网络优化的基本概念、数学模型与标准形式。

2. 网络优化的求解方法:最短路径法、最小生成树法、最大流问题。

3. 网络优化的应用实例。

第11-12周:动态规划1. 动态规划的基本概念、数学模型与标准形式。

2. 动态规划的求解方法:动态规划表、状态转移方程。

3. 动态规划的应用实例。

第13-14周:排队论1. 排队论的基本概念、数学模型与标准形式。

2. 排队论的求解方法:泊松过程、排队系统分析。

3. 排队论的应用实例。

第15-16周:案例分析1. 结合实际案例,分析运筹学在各个领域的应用。

2. 学生分组讨论,撰写案例分析报告。

三、教学方法与手段1. 讲授法:系统讲解运筹学的基本概念、原理和方法。

2. 案例分析法:通过实际案例,让学生理解运筹学的应用。

3. 讨论法:鼓励学生积极参与课堂讨论,提高学生的思考能力。

非线性规划知识点讲解总结

非线性规划知识点讲解总结

非线性规划知识点讲解总结1. 非线性规划的基本概念非线性规划是指目标函数和/或约束条件包含非线性项的优化问题。

一般来说,非线性规划问题可以表示为如下形式:\[\min f(x)\]\[s.t. \ g_i(x) \leq 0, \ i=1,2,...,m\]\[h_j(x)=0, \ j=1,2,...,p\]其中,\(x \in R^n\)是优化变量,\(f(x)\)是目标函数,\(g_i(x)\)和\(h_j(x)\)分别表示不等式约束和等式约束。

目标是找到使目标函数取得最小值的\(x\)。

2. 非线性规划的解决方法非线性规划问题的求解是一个复杂的过程,通常需要使用数值优化方法来解决。

目前,常用的非线性规划求解方法主要包括梯度方法、牛顿方法和拟牛顿方法。

(1)梯度方法梯度方法是一种基于目标函数梯度信息的优化方法。

该方法的基本思想是在迭代过程中不断沿着梯度下降的方向更新优化变量,以期望找到最小值点。

梯度方法的优点是简单易实现,但缺点是可能陷入局部最优解,收敛速度慢。

(2)牛顿方法牛顿方法是一种基于目标函数的二阶导数信息的优化方法。

该方法通过构造目标函数的泰勒展开式,并利用二阶导数信息来迭代更新优化变量,以期望找到最小值点。

牛顿方法的优点是收敛速度快,但缺点是计算复杂度高,需要计算目标函数的二阶导数。

(3)拟牛顿方法拟牛顿方法是一种通过近似求解目标函数的Hessian矩阵来更新优化变量的优化方法。

该方法能够克服牛顿方法的计算复杂度高的问题,同时又能保持相对快速的收敛速度。

拟牛顿方法的典型代表包括DFP方法和BFGS方法。

3. 非线性规划的应用非线性规划方法在实际生活和工程问题中都有着广泛的应用。

以下将介绍非线性规划在生产优化、资源分配和风险管理等领域的应用。

(1)生产优化在制造业中,生产线的优化调度问题通常是一个非线性规划问题。

通过对生产线的机器设备、生产工艺和生产速度等因素进行建模,并设置相应的目标函数和约束条件,可以使用非线性规划方法来求解最优的生产调度方案,以最大程度地提高生产效率和减少成本。

运筹学中的非线性规划问题-教案

运筹学中的非线性规划问题-教案

教案运筹学中的非线性规划问题-教案一、引言1.1非线性规划的基本概念1.1.1定义:非线性规划是运筹学的一个分支,研究在一组约束条件下,寻找某个非线性函数的最优解。

1.1.2应用领域:广泛应用于经济学、工程学、管理学等,如资源分配、生产计划、投资组合等。

1.1.3发展历程:从20世纪40年代开始发展,经历了从理论到应用的转变,现在已成为解决实际问题的有效工具。

1.1.4教学目标:使学生理解非线性规划的基本理论和方法,能够解决简单的非线性规划问题。

1.2非线性规划的重要性1.2.1解决实际问题:非线性规划能够处理现实中存在的非线性关系,更贴近实际问题的本质。

1.2.2提高决策效率:通过优化算法,非线性规划可以在较短的时间内找到最优解,提高决策效率。

1.2.3促进学科交叉:非线性规划涉及到数学、计算机科学、经济学等多个学科,促进了学科之间的交叉和融合。

1.2.4教学目标:使学生认识到非线性规划在实际应用中的重要性,激发学生的学习兴趣。

1.3教学方法和手段1.3.1理论教学:通过讲解非线性规划的基本理论和方法,使学生掌握非线性规划的基本概念和解题思路。

1.3.2实践教学:通过案例分析、上机实验等方式,让学生动手解决实际问题,提高学生的实践能力。

1.3.3讨论式教学:鼓励学生提问、发表观点,培养学生的批判性思维和创新能力。

1.3.4教学目标:通过多种教学方法和手段,使学生全面掌握非线性规划的理论和实践,提高学生的综合素质。

二、知识点讲解2.1非线性规划的基本理论2.1.1最优性条件:介绍非线性规划的最优性条件,如一阶必要条件、二阶必要条件等。

2.1.2凸函数和凸集:讲解凸函数和凸集的定义及其在非线性规划中的应用。

2.1.3拉格朗日乘子法:介绍拉格朗日乘子法的原理和步骤,以及其在解决约束非线性规划问题中的应用。

2.1.4教学目标:使学生掌握非线性规划的基本理论,为后续的学习打下坚实的基础。

2.2非线性规划的求解方法2.2.1梯度法:讲解梯度法的原理和步骤,以及其在求解无约束非线性规划问题中的应用。

非线性规划

非线性规划
新生研讨课
非线性规划
组长:马文海 成员:黄羽兰、吴春安、林志铖、汤嘉晨
非线性函数概述:
具有非线性约束条件或目标函数的数学规划,是 运筹学的一个重要分支。非线性规划研究一个n元实函 数在一组等式或不等式的约束条件下的极值问题,且 目标函数和约束条件至少有一个是未知量的非线性函 数。目标函数和约束条件都是线性函数的情形则属于 线性规划。
f ( x) f1 ( x) f 2 ( x)
2 2 2
数学模型: max f ( x) 20x1 16x2 [2 x1 x2 ( x1 x2 ) ]
max f ( x) 20x1 16x2 [2x x ( x1 x2 ) ]
2 1 2 2 2
x* a b
最优解:
最优值:
z * ab
例2 投资决策问题
某钢铁厂准备用 5000 万用于 A、 B 两个项目技术改造投资,设 x1,x2分别表示分配给项目 A、B的投资。据专家预估投资项目 A、B 的年收益分别为20%和16%,同时投资后的风险损失将随着总投资 2 和单项投资的增长而增加。已知总的风险损失为2x12 x2 ( x1 x2 )2 。问如何分配资金才能使期望的收益最大,同时风险损失为最小。 解 这个问题有两个指标函数: 收益函数和风险损失函数
非线性规划简史:
非线性规划是20世纪50年代才开始形成的一门新兴学 科。1951年H.W.库恩和A.W.塔克发表的关于最优性条件 (后来称为库恩-塔克条件)的论文是非线性规划正式诞 生的一个重要标志。在50年代还得出了可分离规划和二次 规划的n种解法,它们大都是以G.B.丹齐克提出的解线性规 划的单纯形法为基础的。50年代末到60年代末出现了许多 解非线性规划问题的有效的算法,70年代又得到进一步的 发展。非线性规划在工程、管理、经济、科研、军事等方 面都有广泛的应用,为最优设计提供了有力的工具。20世 纪80年代以来,随着计算机技术的快速发展,非线性规划 方法取得了长足进步,在信赖域法、稀疏拟牛顿法、并行 计算、内点法和有限存储法等领域取得了丰硕的成果。

非线性规划——精选推荐

非线性规划——精选推荐

⾮线性规划author: lunardate: Tue 01 Sep 2020 04:31:18 PM CST⾮线性规划如果⽬标函数中包含⾮线性函数, 就称这种规划问题为⾮线性规划问题.⽬前解决⾮线性规划还没有⼀种通⽤⽅法.线性规划和⾮线性规划的区别如果线性规划的最优解存在, 其最优解只能在其可⾏域的边界上达到(特别是可⾏域的顶点上达到); ⽽⾮线性规划的最优解可能在可⾏域的任意⼀点达到.⾮线性规划的MATLAB解法⾸先可以将⾮线性规划表⽰为如下形式:minC(x), Ceq(x)是⾮线性向量函数.MATLAB计算⾮线性规划的函数为x = fmincon(fun, x0, A, B, Aeq, Beq, LB, UB, NONLCON, OPTIONS)fun是⽤.m⽂件定义的⽬标函数; x0表⽰决策变量的初始值; NONLCON是⽤.m⽂件定义的⾮线性向量函数; OPTIONS定义了优化参数; 其余参数与线性规划⼀致.⽰例求解下列⾮线性规划问题\min f(x) = x_1^2 + x_2^2 + x_3^2 + 8\\ \begin{aligned} s.t.\quad &x_1^2 - x_2 + x_3^2 \ge 0\\&x_1 + x_2^2 + x_3^2 \le 20\\ &-x_1 - x_2^2 + 2 = 0\\ &x_2 + 2x_3^2 = 3\\ &x_1, x_2, x_3 \ge 0\end{aligned}⽤MATLAB代码求解为编写⽬标函数的.m⽂件target.mfunction f = target(x);f = sum(x.^2) + 8;编写⾮线性约束条件的.m⽂件nonlinear.mfunction [g,h] = nonlinear(x);g = [-x(1)^2 + x(2) - x(3)^2x(1) + x(2)^2 + x(3)^3 - 20]; %⾮线性不等式约束f = [-x(1) - x(2)^2 + 2x(2) + 2x(3)^2 - 3]; %⾮线性等式约束主程序⽂件main.moptions = optimset('largescale', 'off');[x, y] = fmincon('target', rand(3,1), [], [], [], [], zeros(3,1),[], 'nonlinear', options)求解⾮线性规划的基本迭代格式(难点)由于线性规划的⽬标函数为线性函数, 可⾏域为凸集, 所以求出的最优解就是整个可⾏域上的最优解. ⾮线性规划则不然, 有时求出的解虽然是⼀部分可⾏域上的极值点, 但不⼀定是整个可⾏域上的全局最优解.对于⾮线性规划模型(NP), 可以采⽤迭代⽅法求最优解. 基本思想为: 从⼀个选定的初始点出发, 按照⼀个特定的迭代规则产⽣⼀个点列{x k}; 使得当{x k}是有穷点列时, 其最后⼀个点是(NP)的最优解; 为⽆穷点列时, 它有极限点, 并且极限点是(NP)的最优解;设x^k\in R^n是某迭代⽅法的第k轮迭代点, x^{k+1}\in R^n是第n+1轮迭代点, 记x^{k+1} = x^k + t_kp^k\\ t_k\in R^1, p^k\in R^n, \lvert p^k\rvert = 1通常将基本迭代格式中的p^k称为第k轮搜索⽅向, t_k为沿p^k⽅向的步长. 有机器学习那味⼉了.对于向量p, 如果存在t\in (0, +\infty)使得f(\overline x + tp) < f(\overline x)\\ \overline x + tp \in KK即为可⾏域, 则称p为\overline x关于K的可⾏⽅向.凸函数, 凸规划凸函数的定义为: 若对区间(0,1)内的任何实数\alpha, 恒有f(\alpha x_1 + (1-\alpha)x_2) \le \alpha f(x_1) + (1-\alpha)f(x_2)的函数为定义在R上的严格凸函数.⽬标函数为凸函数, 约束函数也为凸函数的⾮线性规划为凸规划.可以证明, 凸规划的可⾏域为凸集, 其局部最优解即为全局最优解, ⽽且其最优解的集合形成⼀个凸集. 当凸规划的⽬标函数f(x)为严格凸函数时, 其最优解必定唯⼀.⽆约束问题⽆约束问题即没有约束条件的问题, 即求解函数极⼩值的问题⼀维搜索⽅法当⽤迭代法求函数的极⼩点时, 常常⽤到⼀维搜索, 即沿⼀已知⽅向求⽬标函数的极⼩点.⼀种⽐较⼀个区间上两端函数值的⽅法, 原理⾮常简单, 不讲了.但是这种⽅法⼀般只能⽤于单极值区间, 对于⼀个多极值的函数. 可以尝试先画出函数图, 然后找出所有只有单个极值的区间分别求解.斐波那契法上⾯那种⽅法本是随机选取区间的两个点, 斐波那契法能够保证区间按照按照斐波那契数进⾏缩⼩.即t_1 = a + \frac{F_{n-1}}{F_n}(b-a),t_2 = a + \frac{F_{n-2}}{F_n}(b-a)根据需要求解的精度\delta, 确定迭代次数的⽅式\frac{b-a}{F_n} \le \delta也可以⽤黄⾦⽐例数代替斐波那契数列.⼆次插值法对极⼩化问题, 当f(t)在[a,b]上连续时, 可以考虑⽤多项式插值来进⾏⼀维搜索. 基本思想为: 在搜索区间内,不断⽤低次(不超过三次)多项式来近似⽬标函数, 并逐步⽤插值多项式的极⼩点来逼近极⼩化问题的最优解.⽆约束问题的解法梯度下降法总是朝着梯度下降最快的⽅向前进⽜顿法⾸先需要了解⼀下什么是考虑⽬标函数f在x^k处的⼆次逼近式f(x)\approx Q(x) = f(x^k) + \nabla f(x^k)^T(x-x^k) + \frac12(x-x^k)^T\nabla^2f(x^k)(x-x^k)假设⿊塞矩阵\nabla^2 f(x^k) = \begin{bmatrix} \frac{\partial^2 f(x^k)}{\partial x_1^2} & \cdots & \frac{\partial^2f(x^k)}{\partial x_1\partial x_n}\\ \vdots & \cdots & \vdots \\ \frac{\partial f(x^k)}{\partial x_n\partial x_1} & \cdots & \frac{\partial^2 f(x^k)}{\partial x_n^2} \end{bmatrix}正定由于\nabla^2 f(x^k)正定, 函数Q的驻点x^{k+1}是Q(x)的极⼩点. 令\nabla Q(x^{k+1}) = \nabla f(x^k) + \nabla^2 f(x^k)(x^{k+1} - x^k) = 0解得x^{k+1} = x^k - [\nabla^2 f(x^k)]^{-1}\nabla f(x^k)所以从x^k出发的搜索⽅向为p^k = -[\nabla^2 f(x^k)]^{-1}\nabla f(x^k)⽜顿法的优点是收敛速度快; 缺点是有时不好⽤⽽需采取改进措施, 当维度很⾼时, 计算矩阵的逆矩阵计算量将会很⼤.变尺度法变尺度法由于能够避免计算⼆阶导数矩阵及其逆矩阵, 对于⾼纬度问题具有显著的优越性.为了不计算⼆阶导数矩阵[\nabla^2 f(x^k)]及其逆矩阵, 我们设法构造另⼀个矩阵, 来逼近⼆阶导数矩阵, 这⼀类也称为拟⽜顿法(Quasi-Newton Method).当f(x)是⼆次函数时, 任两点x^k和x^{k+1}的梯度之差为\nabla f(x^{k+1}) - \nabla f(x^k) = A(x^{k+1} - x^k)因此, 我们构造⿊塞矩阵的第k+1次近似\overline H^{k+1}满⾜关系式x^{k+1} - x^k = \overline H^{(k+1)}[\nabla f(x^{(k+1)}) - \nabla f(x^k)]这就是拟⽜顿条件.令\begin{cases} \Delta G^{(k)} = \nabla f(x^{k+1}) - \nabla f(x^k)\\ \Delta x^k = x^{k+1} - x^k\end{cases}记\Delta \overline H^{(k)} = \overline H^{(k+1)} - \overline H^{(k)}称为校正矩阵.省略中间过程, 可求得校正矩阵\Delta \overline H^{(k)} = \frac{\Delta x^k(\Delta x^k)^T}{(\Delta G^{(k)})^T\Delta x^k} -\frac{\overline H^{(k)}\Delta G^{(k)}(G^{(k)})^T\Delta H^{(k)}}{(\Delta G^{(k)})^T\overlineH^{(k)}\Delta G^{(k)}} \tag{17}从⽽有\overline H^{(k+1)} = \overline H^{(k)} + \frac{\Delta x^k(\Delta x^k)^T}{(\Delta G^{(k)})^T\Delta x^k} - \frac{\overline H^{(k)}\Delta G^{(k)}(G^{(k)})^T\Delta H^{(k)}}{(\Delta G^{(k)})^T\overlineH^{(k)}\Delta G^{(k)}} \tag{18}以上矩阵称为尺度矩阵, 取第⼀个尺度矩阵\overline H^{(0)}为单位矩阵.由此可得DFP变尺度法的计算步骤为:给定初始点x_0以及梯度允许误差\varepsilon > 0若\lvert\nabla f(x^{(0)})\rvert \le\varepsilon, 则x_0为近似点, 停⽌迭代.否则转下⼀步.令\overline H^{(0)} = I (单位矩阵)\\ p^0 = -\overline H^{(0)}\nabla f(x^0)在p^0⽅向进⾏⼀维搜索, 确定最佳步长\lambda_0\min_\lambda f(x^0+\lambda p^0) = f(x^0 + \lambda_0p^0)于是可以得到下⼀个近似点x^1 = x^0 + \lambda_0p^0对于近似点x^k, 计算其梯度, 若有\lvert\nabla f(x^k)\rvert\le \varepsilon则停⽌迭代, 最终解为x^k; 否则根据式(18)计算\overline H^{(k)}, 令p^k = -\overline H^{(k)}\nablaf(x^k). 在p^k⽅向进⾏⼀维搜索, 得到\lambda_k, 从⽽得到下⼀个近似点x^{k+1} = x^k + \lambda_kp^k不断重复第4步直到满⾜允许误差.约束极值问题带有约束条件的极值问题称为约束极值问题, 也叫规划问题.⼆次规划问题⽬标函数为⾃变量的⼆次函数的问题称为⼆次规划问题.⼆次规划的模型可以表述为\min \frac12x^THx + f^Tx,\\ s.t.\quad \begin{cases} Ax\le b\\Aeq\dot x = beq\\ \end{cases} MATLAB中求解⼆次规划的函数为[x, f] = quadprog(H, f, A, b, Aeq, beq, LB, UB, X0, OPTIONS)罚函数法利⽤罚函数法, 可将⾮线性规划问题转化为⼀系列⽆约束机制问题. 因此也称这种⽅法为序列⽆约束最⼩化技术, SUMT(Sequential Unconstrained Minization Technique).罚函数法的基本思想是利⽤问题中的约束函数作出适当的罚函数, 由此构造出带参数的增⼴⽬标函数, 把问题转化为⽆约束线性规划问题.罚函数法分为外罚函数法和内罚函数法. 现在介绍外罚函数法.对于问题:\min f(x)\\ s.t.\quad \begin{cases} g_i(x)\le 0, i = 1,\dots,r,\\ h_j(x)\ge 0, j = 1,\dots,s,\\ k_m(x) = 0, m = 1,\dots,t \end{cases}取⼀个充分⼤的正数M, 构造函数P(x, M) = f(x) + M\sum_{i=1}^r\max(g_i(x), 0) - M\sum_{i=1}^s\min(h_i(x), 0) +M\sum_{i=1}^t|k_i(x)|MATLAB 求约束极值问题fminbnd 函数求单变量⾮线性函数在区间[x_1, x_2]上的最⼩值语法格式[x, f] = fminbnd(fun, x1, x2, options)fminimax 函数可以⽤来求解带有⾮线性约束条件的问题x = fminimax(fun, x0, A, B, Aeq, Beq, LB, UB, NONLCON) Loading [MathJax]/jax/element/mml/optable/BasicLatin.js。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Operations Research
第二十一讲
§2 非线性规划的数学模型及 特点 (3)
[例4-4]非线性规划为
min f(X)=(x1-2)2+(x2-2)2 h(X)=x1+x2-6≤0
显然,此时的最优解为C点(x1*=x2*=2 ,f(X*)=0),该点落在可 行或内部,其边界约束失去作用。
从前面例中看出,非线性规划的最优解(如果存在)可在其 可行域上任一点达到。因而,非线性规划数学模型可以没有 约束条件,即存在无约束最优化问题。
page 6 22 January 2020
Prof. Wang School of Economics & Management
Operations Research
Operations Research
第二十一讲
§1 非线性规划问题的现实来 源-问题的提出 (1)
在规划模型中,如果在目标函数或在约束条件中有一个或 多个是自变量的非线性函数,则称这种规划为非线性规划 问题。
就现实问题,严格讲来,基本属于非线性规划模型。
现举例说明非线性规划的现实背景。
[例4-1]某公司经营两种设备。第一种设备每件售价为30元, 第二种设备每件售价为450元。且知,售出第一、二种设 备分别需时为每件约0.5小时和(2+0.25x2)小时,其中x2 为第二种设备售出数量。公司的总营业时间为800小时。
显然,与直线AB相切的点必 为最优解。
图 4-1(a) 中 的 D 点 即 为 最 优 点,此时目标函数值为:
f(X*)=2,x1*=x*2=3
x1 6
A
f(X)=4

3
D
2C
f(X)=2
B
0 23
6 x2
图4-1 (a)
page 5 22 January 2020
Prof. Wang School of Economics & Management
极小点,则对于任一X*的可行方向dEn必有▽f(X*)·d≥0。 (其中,▽f(X*)表示函数f( X)的一阶梯度或导数)
f(X)>f(X*),则称X*为f在Q上的一个严格相对极小点。
page 7 22 January 2020
Prof. Wang School of Economics & Management
Operations Research
第二十一讲
§3 解和算法的基本性质 (2)
ii)点X* Q,如果对于所有X Q成立f(X)≥f(X*),则称X* 为f在Q上的全局极小点。同样,若对于所有X Q, X≠X*时,存在f(X)>f(X*),则称X*为f在Q上的严格全局极 小点。
Operations Research
第二十一讲
第十讲 非线性规划(一)
§1 非线性规划问题的现实来源-问题的提出 §2 非线性规划的数学模型及特点 §3 解和算法的基本性质 §4 非线性规划求解方法分类
page 1 22 January 2020
Prof. Wang School of Economics & Management
目标函数f(X)=30x1+450x2取极大 由于营业时间有限,必须满足:0.5x1+(2+0.25x2)x2≤800 当然,销售设备数不会为负数,即:x1≥0,x2≥0 综合得出该问题数学模型为:
目标函数 约束条件
page 3 22 January 2020
max:f(X) =30x1+450x2
尽管问题的提法往往求全局极小点,然而,无论从 理论上或从计算观点看,实践现实性表明我们必须以很 多情形上满足一个相对极小点。当然,对于凸规划,这 二者是统一的。
page 8 22 January 2020
Prof. Wang School of Economics & Management
Operations Research
[例4-3]求解下述非线性规划 min f(X)=(x1-2)2+(x2-2)2 h(X)=x1+x2-6=0
page 4 22 January 2020
Prof. Wang School of Economics & Management
Operations Research
第二十一讲
§2 非线性规划的数学模型及 特点 (2)
第二十一讲
§3 解和算法的基本性质 (1)
1.极小点、凸集及其关系 ①极小点定义
i) 对于X* Q,如果存在一个 >0,使所有与X*的距离 小于 的X Q(即X Q,且|X-X*|<)都满足不等式
f(X)≥f(X*),则称X*为f在Q上的一个相对极小点或局部极
小点。若对于所有X Q,X≠X*且与X*距离小于 ,有
第二十一讲
§3 解和算法的基本性质 (3)
②相对极小点的判定
可行方向概念:沿给定方向作离开该点运动,若运动轨迹 在可行域内,则称该运动方向为可行方向(通常用d表 示)。
若从某点开始,沿任一可行方向运动(运动距离很小)都 不能使目标函数减少,则据定义,知该点即为相对极小点。
i) 判定极小点的必要条件(证明从略)
0.5x1+2x2+0.25x22≤800
x1≥0,x2≥0
Prof. Wang School of Economics & Management
Operations Research
第二十一讲
§2 非线性规划的数学模型及 特点 (1)
非线性规划的数学模型通常表示成以下形式。
min f(X) hi(X)=0 i=1,2,…,m gj(X)≥0 j=1,2,…,l
page 9 22 January 2020
Prof. Wang School of Economics & Management
Operations Research
第二十一讲
§3 解和算法的基本性质 (4)
命题1 (一阶必要条件):设是En子集,f(X) C1(C1表 明存在一阶导数)是上函数,若X*是f( X)在上一个相对
求:公司为获取最大营业额(销售额)的最优营业计划。
page 2 22 January 2020
Prof. Wang School of Economics & Management
Operations Research
第二十一讲
§1 非线性规划问题的现实来 源-问题的提出 (2)
[解]设公司应经营销售第一、二种设备数额分别为x1件和x2 件,追求的目标为最大销售额,即:
相关文档
最新文档