3.2整数规划的求解方法
线性规划知识点总结

线性规划知识点总结标题:线性规划知识点总结引言概述:线性规划是运筹学中的一种最基本的数学规划方法,广泛应用于生产、运输、金融等领域。
通过线性规划,可以优化资源分配,最大化利润或者最小化成本。
本文将对线性规划的基本概念、线性规划模型、解决方法、应用领域和优缺点进行总结。
一、基本概念1.1 线性规划的定义:线性规划是一种数学优化方法,其目标是在一组线性约束条件下,找到使目标函数取得最大值或者最小值的决策变量的取值。
1.2 决策变量和目标函数:线性规划中,决策变量是需要确定的未知数,而目标函数则是需要优化的目标,通常是最大化利润或者最小化成本。
1.3 约束条件:线性规划模型中的约束条件是对决策变量的限制,可以是等式约束或者不等式约束,用来限制决策变量的取值范围。
二、线性规划模型2.1 标准形式和非标准形式:线性规划模型可以分为标准形式和非标准形式,标准形式要求目标函数是最小化形式,约束条件是等式约束;非标准形式则没有这些限制。
2.2 线性规划的矩阵形式:线性规划可以用矩阵形式表示,目标函数和约束条件可以用矩阵的乘法来表示,这样可以简化问题的求解过程。
2.3 整数规划和混合整数规划:在实际应用中,有时需要考虑变量的取值只能是整数的情况,这时就需要用到整数规划或者混合整数规划。
三、解决方法3.1 单纯形法:单纯形法是解决线性规划问题的经典方法,通过不断挪移顶点来找到最优解,是一种高效的求解方法。
3.2 对偶理论:对偶理论是线性规划的重要理论基础,通过对原问题的对偶问题进行求解,可以得到原问题的最优解。
3.3 整数规划的分支定界法:对于整数规划问题,可以采用分支定界法来求解,通过不断分支和剪枝来逐步逼近最优解。
四、应用领域4.1 生产计划优化:线性规划可以用来优化生产计划,确定最佳生产量和资源分配,以最大化利润或者最小化成本。
4.2 运输网络优化:在物流领域,线性规划可以用来优化运输网络,确定最佳的运输路径和运输量,以提高运输效率。
3.2纯整数规划的求解

分枝定界法的迭代原理
分枝线性规划(其目的是求整数解) 求其最优解(图解法,单纯形法) 该分枝不需要再分枝 整数解 最 优 解 若目标值>其它分枝最优值, 则是最优整数解,终止.
判断该整数解是否最优 否则, 其它分枝问题继续分 枝,得整数解,比较目标值,得 到最优整数解. 分枝
非整数解 不用分枝 (已判明该分枝中不可能有整数最优解) 比较分枝问题最优值 决定先分哪一枝
x1 5
LP5: X=(5, 5) Z5=35
LP4: X=(4, 6) Z4=34
作业1 用分支定界法求解:
max Z x1 x2
s .t .
max Z x1 x2
s .t .
9 51 9 51 x1 x 2 x1 x 2 14 14 14 14 松弛问题 1 1 LP1 2 x1 x 2 2 x1 x2 3 3 x1 , x2 0 x1 , x2 0, 整数
x1 4, x2 7
解集: 空集
X 3 (4.33,6)T , Z 3 35.33 x1 4.33 用图解法解LP3,得到最优解: 选择目标值最大的分支LP3进行分支,增加约束:x1 4,x1 5
得到两个分支线性规划LP4, LP5:
max Z 4 x1 3 x2 s .t . 1.2 x1 0.8 x2 10 LP3 2 x1 2.5 x2 25
max Z x1 x2
9 51 x1 x 2 14 14 1 LP1 2 x1 x 2 3 x1 , x2 0
s .t .
x2
3 10 29 A( , ) Z 2 3 6
S1
0 1 2 3
x1
整数规划求解题技巧

整数规划求解题技巧整数规划(Integer Programming,IP)是线性规划(Linear Programming,LP)的扩展,它要求所有变量的取值必须是整数。
整数规划常用于求解实际问题中的最优决策,具有广泛的应用领域,如运输、生产、资源分配等。
下面我将介绍一些整数规划求解题的技巧。
1. 转化为纯整数规划:将实际问题转化为纯整数规划问题可以简化模型。
纯整数规划要求所有变量的取值都必须是整数,没有连续变量的限制。
通过建立合适的约束条件和目标函数,可以将问题转化为纯整数规划问题进行求解。
2. 松弛约束:对于某些约束条件,如果将其从等式形式变为不等式形式且松弛一些限制,可以增加问题的可行解空间。
这样可以使得模型具有更多的可行解,从而提高求解效率。
3. 分枝定界法:分枝定界法是一种常用的求解整数规划问题的方法。
它将整数规划问题划分为多个子问题,通过不断划分和求解这些子问题,逐步逼近最优解。
分枝定界法通常包括两个步骤:分枝和定界。
分枝是指将问题分解为多个子问题,每个子问题都是原问题的一个可能解。
定界是指通过对子问题的求解,确定上界和下界,从而缩小搜索范围。
4. 启发式算法:启发式算法是一种常用的求解整数规划问题的方法,它通过启发式规则和策略来指导搜索过程。
启发式算法不保证找到最优解,但可以在较短时间内找到近似最优解。
常见的启发式算法包括贪心算法、模拟退火算法、遗传算法等。
5. 接近最优策略:在实际问题中,有时求解整数规划问题的时间复杂度非常高,甚至是NP-hard难题。
面对这种情况,可以采取接近最优的策略。
即对于一个相对较大的整数规划问题,先求解一个近似最优解,然后逐步优化,以此来降低问题的复杂度。
6. 问题分解:对于大规模的整数规划问题,可以将问题分解成多个较小的子问题。
通过对这些子问题的求解,可以逐步逼近整体问题的最优解。
问题分解可以提高求解效率,同时可以充分利用问题的结构特点。
7. 约束松弛法:约束松弛法是一种将整数规划问题转化为线性规划问题进行求解的方法。
整数规划问题的求解

C o 3 4
x1
分支定界法
x2
A
Page 16
由 于Z 21 Z 1, 选 择 LP 21进 行 分 枝 , 增 加 约 束 x1 4及x1 5, 得 线 性 规 划 LP 211 及LP 212 :
10
A
x2 7不可行
max Z 4 x1 3 x 2 1.2 x1 0.8 x 2 10 2 x1 2.5 x 2 25 LP 22 : x1 4,x 2 7 x1 , x 2 0
B 6 LP1
LP21
LP21:X=(4.33,6),Z21=35.33
整数规划问题的求解
整数规划问题的求解方法: 分支定界法和割平面法
Page 1
匈牙利法(指派问题)
分支定界法
分支定界法的解题步骤:
Page 2
1)求整数规划的松弛问题最优解; 若松弛问题的最优解满足整数要求,得到整数规划的最优解,否则转下 一步; 2)分支与定界: 任意选一个非整数解的变量xi,在松弛问题中加上约束: xi≤[xi] 和 xi≥[xi]+1 组成两个新的松弛问题,称为分枝。新的松弛问题具有特征:当原问题 是求最大值时,目标值是分枝问题的上界;当原问题是求最小值时,目 标值是分枝问题的下界。 检查所有分枝的解及目标函数值,若某分枝的解是整数并且目标函数 值大于(max)等于其它分枝的目标值,则将其它分枝剪去不再计算,若 还存在非整数解并且目标值大于(max)整数解的目标值,需要继续分枝, 再检查,直到得到最优解。
3.2整数规划的求解方法

当人们开始接触整数规划问题 时,常会有如下两种初始想法: 因为可行方案数目有限,因此 经过一一比较后,总能求出最 好方案,例如,背包问题充其 量有2n-1种方式;连线问题充其 量有n!种方式;实际上这种方法 是不可行。
设想计算机每秒能比较 1000000个方式,那么要比较 完20!(大于2*1018)种方式, 大约需要800年。比较完260 种方式,大约需要360世纪。
先放弃变量的整数性要求, 解一个线性规划问题,然后 用“四舍五入”法取整数解, 这种方法,只有在变量的取 值很大时,才有成功的可能 性,而当变量的取值较小时, 特别是0-1规划时,往往不能 成功。
整数规划的图解法
例 求下列问题:
Max Z=3x1+13x2
s.t.2x1+9x2 40 11x1-8x2 82
最通常的松驰问题是放弃变 量的整数性要求后,(P)为线性 规划问题。
分枝定界法步骤 一般求解对应的松驰问题,可能 会出现下面几种情况: 若所得的最优解的各分量恰好是 整数,则这个解也是原整数规划 的最优解,计算结束。
分枝定界法步骤 一般求解对应的松驰问题,可能 会出现下面几种情况: 若所得的最优解的各分量恰好是 整数,则这个解也是原整数规划 的最优解,计算结束。
定界:把满足整数条件各分枝的 最优目标函数值作为上(下)界, 用它来判断分枝是保留还是剪枝。 (对目标求max的ILP问题,松弛问 题的最优值是ILP的最优值的一个 上界,松弛问题的任一整数可行 解对应的目标函数值都是ILP的一 个下界)
定界:把满足整数条件各分枝的 最优目标函数值作为上(下)界, 用它来判断分枝是保留还是剪枝。 剪枝:把那些子问题的最优值与 界值比较,凡不优或不能更优的 分枝全剪掉,直到每个分枝都查 清为止。
求解整数规划常用的方法有分枝定界法和割平面法

寻找割平面方程
(1)由单纯形最终表得到决策变量非整数解方程,设 1 x1 ai k xk bi 为
k
其中bi是基变量的非整数解。 (2)将aik和bi分解为整数N和正真分数f 两部分之和
a ik N ik f ik , bi N ni f bi
2
将(2)代入(1)中,然后将整数置于方程左边,分 数置于方程右变,即
xi
N
k
ik x k
N bi f bi
f
k
ik xk
0
(3)得割平面方程
f bi
f
k
ik x k
0
3
整数线性规划模型的求解——分枝定界法
基本思想 通过分枝枚举来寻找最优解。首先不考虑对变 量的整数要求,求解相应的线性规划模型,如求得 最优解不符合整数要求,则把原模型分解为两部分, 每一部分都增加新的约束条件以减少相应线性规划 模型的可行域。通过不断分解,逐步逼近满足要求 的整数最优解,在这个过程中包括了“分枝”和 “定界”两个关键步骤。
1 1 1 0
利用这一性质,可以使原系数矩阵(cij)变换成含有
很多0元素的新系数矩阵
11 c ij ,而最优解保持不变。
匈牙利法是针对目标要求极小化问题提出的 基本原理:为了实现目标极小,在系数矩阵 元素cij≥0条件下,如果能使矩阵具有一组处于 不同行不同列的零元素cij’=0,画上圈符号 “◎”,表示对应该元素的决策变量xij=1,未画 圈元素对应的决策变量xij=0,那么目标的数值 z’=0为最小,这样的组合解x就是最优解。所以 匈牙利法又称画圈法。 画圈法的关键是如何实现系数矩阵具有一组 处于不同行又不同列的0元素(独立零),并保 证所画的圈的个数等于矩阵的阶数。
整数规划的求解方法有哪些

整数规划的求解方法有哪些在线性规划问题中,有些最优解可能是分数或小数,但对于某些具体问题,常要求某些变量的解必须是整数。
例如,当变量代表的是机器的台数,工作的人数或装货的车数等。
为了满足整数的要求,初看起来似乎只要把已得的非整数解舍入化整就可以了。
实际上化整后的数不见得是可行解和最优解,所以应该有特殊的方法来求解整数规划。
在整数规划中,如果所有变量都限制为整数,则称为纯整数规划;如果仅一部分变量限制为整数,则称为混合整数规划。
整数规划的一种特殊情形是01规划,它的变数仅限于0或1。
不同于线性规划问题,整数和01规划问题至今尚未找到一般的多项式解法。
组合最优化通常都可表述为整数规划问题。
两者都是在有限个可供选择的方案中,寻找满足一定约束的最好方案。
有许多典型的问题反映整数规划的广泛背景。
例如,背袋(或装载)问题、固定费用问题、和睦探险队问题(组合学的对集问题)、有效探险队问题(组合学的覆盖问题)、旅行推销员问题, 车辆路径问题等。
因此整数规划的应用范围也是极其广泛的。
它不仅在工业和工程设计和科学研究方面有许多应用,而且在计算机设计、系统可靠性、编码和经济分析等方面也有新的应用。
整数规划是从1958年由R.E.戈莫里提出割平面法之后形成独立分支的,30多年来发展出很多方法解决各种问题。
解整数规划最典型的做法是逐步生成一个相关的问题,称它是原问题的衍生问题。
对每个衍生问题又伴随一个比它更易于求解的松弛问题(衍生问题称为松弛问题的源问题)。
通过松弛问题的解来确定它的源问题的归宿,即源问题应被舍弃,还是再生成一个或多个它本身的衍生问题来替代它。
随即,再选择一个尚未被舍弃的或替代的原问题的衍生问题,重复以上步骤直至不再剩有未解决的衍生问题为止。
目前比较成功又流行的方法是分支定界法和割平面法,它们都是在上述框架下形成的。
0-1规划在整数规划中占有重要地位,一方面因为许多实际问题,例如指派问题、选地问题、送货问题都可归结为此类规划,另一方面任何有界变量的整数规划都与0-1规划等价,用0-1规划方法还可以把多种非线性规划问题表示成整数规划问题,所以不少人致力于这个方向的研究。
整数规划方法

割平面法是R.E.Gomory于1958年提出的一种方法,它主要 用于求解纯ILP。 割平面法是用增加新的约束来切割可行域,增加的新约束 称为割平面方程或切割方程。其基本思路为: 若其松弛问题的最优解X*不满足整数约束,则从X*的 非整分量中选取一个,用以构造一个线性约束条件,将其 加入原松弛问题中,形成一个新的线性规划,然后求解之 。若新的最优解满足整数要求,则它就是整数规划的最优 解;否则重复上述步骤,直到获得整数最优解为止。
用割平面法求整数规划问题最优解的步骤: 1. 求整数规划问题所对应的线性规划问题的最优 解。如果是整数解,则停止计算,否则,进行下一步。 2. 由最终单纯形表得到:
xi aik xk bi
k
xi 是基变量
将a ik,bi 都分解为整数部分 和非负真分数之和, N f 即:
aik N ik f ik bi N i f i 0 f ik 1 0 fi 1
为最终获得整数最优解,每次增加的线性约束条件应当两 个基本性质: (1)已获得的不符合整数要求的LP最优解不满足该线性 约束条件,从而不可能在以后的解中出现; (2)凡整数可行解均满足该线性约束条件,因而整数最优 解始终被保留在每次剩余的线性规划可行域中。
例1 用割平面法求解整数规划问题
max z x1 x 2 x1 x 2 1 3 x x 4 1 2 s.t. x1 , x 2 0 x1 , x 2是整数
继续求解定界,重复下去,直到得到最优解为 止。
7
二、整数规划求解方法
2. 分枝定界法一般步骤
1)将原整数规划问题(A)去掉所有的整数约束变为线 性规划问题(B) ,用线性规划的方法求解问题(B):
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B(9.2,2.4)
X1 2 X2 3 X1 6 P
P1
P2 P3
X2
X1
3
X1
X2 2
4
P4
7
X2
3
P5
2 分枝定界解法 (Branch and Bound Method) 原问题的松驰问题:任何整数规 划(IP),凡放弃某些约束条件 (如整数要求)后,所得到的问 题(P) 都称为(IP)的松驰问题。
例 用分枝定界法求解:
Min Z= x1+4x2
s.t. 2x1+ x2 8
x1+2x2 6 x1,x2 0 整数
用单纯形法可解得相应的松驰问题 的最优解(10/3,4/3)Z=26/3为 各分枝的下界。
x2 8
7
6 5 4 3 2 1 0 1 2 3 4 5 6 x1 p
选 x1进行分枝: (P1) x1 3 x2 8 (P2) x1
s.t. 3x1+4x2 12
4x1+2x2 9 x1,x2 0 ,x1 1, x2 2
用单纯形法可解得相应的(P11) 的最优解(1,2) Z=10
(P1)两个子问题:
(P12)Max Z=4x1+3x2
s.t. 3x1+4x2 12
4x1+2x2 9 x1,x2 0 ,x1 1, x2 3
P2:无可行解
P:(10/3,4/3) Z=26/3 X1 3 P1:(3,3/2) Z=9
P11:无可行解
X2
2
P12:(2,2) Z=10
原问题的最优解(2,2) Z=10
注:求解混合整数规划问题,只对整数变 量分支,对非整数变量不分支。
x1,x2 0,且取整数值
可行域OABD内整数点,放弃整数要求 后,最优解B(9.2,2.4) Z0=58.8,而原 整数规划最优解I(2,4) Z0=58,实际上 B附近四个整点(9,2)(10,2)(9,3)(10,3)都 x2 不是原规划最优解。
5 D 4 3 2 1 O 1 2 3 4 5 6 7 A8 9 10 x1 I(2,4)
最通常的松驰问题是放弃变 量的整数性要求后,(P)为线性 规划问题。
分枝定界法步骤 一般求解对应的松驰问题,可能 会出现下面几种情况: 若所得的最优解的各分量恰好是 整数,则这个解也是原整数规划 的最优解,计算结束。
分枝定界法步骤 一般求解对应的松驰问题,可能 会出现下面几种情况: 若所得的最优解的各分量恰好是 整数,则这个解也是原整数规划 的最优解,计算结束。
例 用分枝定界法求解:
Max Z=4x1+3x2
s.t. 3x1+4x2 12
4x1+2x2 9 x1,x2 0 整数
用单纯形法可解得相应的松驰问题 的最优解(6/5,21/10)Z=111/10 为各分枝的上界。
分枝:X1 1,x1 2
x2 4 3 2
P1
1
0
1
P2 2
3
4
B(9.2,2.4)
假如能求出可行域的“整点凸包” (包含所有整点的最小多边形 OEFGHIJ),则可在此凸包上求线性 规划的解,即为原问题的解。但当决 x2 策变量多时求“整点凸包”十分困难。
5 D 4 3 2 1 O 1 2 3 4 5 I(2,4) J I
H
G F 6 E 7 A8 9
B(9.2,2.4)
用单纯形法可解得相应的(P12) 的最优解(0,3) Z=9
X1
2
P2:(2,1/2) Z=9(1/2)
P:(6/5,21/10) Z=111/10 X1 1 P1:(1,9/4) Z=10(3/4)
X2 2 P : (1,2) Z=10 11
X2
3 P
12:
(0,3) Z=9
原问题的最优解(1,2) Z=10
先放弃变量的整数性要求, 解一个线性规划问题,然后 用“四舍五入”法取整数解, 这种方法,只有在变量的取 值很大时,才有成功的可能 性,而当变量的取值较小时, 特别是0-1规划时,往往不能 成功。
整数规划的图解法
例 求下列问题:
Max Z=3x1+13x2
s.t.2x1+9x2 40 11x1-8x2 82
x1
两个子问题:
(P1)Max Z=4x1+3x2
s.t. 3x1+4x2 12
4x1+2x2 9 x1,x2 0 , x1 1
用单纯形法可解得相应的(P1)的 最优解(1,9/4) Z=10(3/4)
(P2)Max Z=4x1+3x2
s.t. 3x1+4x2 12
4x1+2x2 9
x1,x2 0 , x1 2
用单纯形法可解得相应的(P2)的 最优解(2,1/2) Z=9(1/2)
再对(P1)分枝:X1 1
x2 4 3 2 P12
(P11) x2 2
(P12) x2 3
P1
1 P11 0 1
P2 2
3
4
x1
(P1)两个子问题:
(P11)Max Z=4x1+3x2
解法概述
当人们开始接触整数规划问题 时,常会有如下两种初始想法: 因为可行方案数目有限,因此 经过一一比较后,总能求出最 好方案,例如,背包问题充其 量有2n-1种方式;连线问题充其 量有n!种方式;实际上这种方法 是不可行。
设想计算机每秒能比较 1000000个方式,那么要比较 完20!(大于2*1018)种方式, 大约需要800年。比较完260 种方式,大约需要360世纪。
定界:把满足整数条件各分枝的 最优目标函数值作为上(下)界, 用它来判断分枝是保留还是剪枝。 (对目标求max的ILP问题,松弛问 题的最优值是ILP的最优值的一个 上界,松弛问题的任一整数可行 解对应的目标函数值都是ILP的一 个下界)
定界:把满足整数条件各分枝的 最优目标函数值作为上(下)界, 用它来判断分枝是保留还是剪枝。 剪枝:把那些子问题的最优值与 界值比较,凡不优或不能更优的 分枝全剪掉,直到每个分枝都查 清为止。
若松驰问题无可行解,则原整数 规划问题也无可行解,计算结束。
若松驰问题有最优解,但其各分 量不全是整数,则这个解不是原 整数规划的最优解,转下一步。
若松驰问题有最优解,但其各分 量不全是整数,则这个解不是原 整数规划的最优解,转下一步。 从不满足整数条件的基变量中任 选 一个xl进行分枝,它必须满足xl [xl ] 或xl [xl ] +1中的一个,把这 两个约束条件加进松弛问题P中, 形成两个互不相容的子问题P1和 P2,即改进的松弛问题 。
10
x1
假如把可行域分解成五个互不相交的 子问题P1 P2 P3 P4 P5之和, P3 P5的定义 域都是空集,而放弃整数要求后P1最优 解I(2,4),Z1=58 P2最优解(6,3),Z2=57 P4 x2 最优解(98/11,2),Z =52(8/11) 4
5 D 4 3 2 1 O 1 2 3 4 P1 P2 P4 5 6 7 A8 9 10 x1 I(2,4)
x1+2x2 6
x1,x2 0, x1 3 ,x2 1 无可行解,剪去。
(P12)
Min Z= x1+4x2
s.t. 2x1+ x2 8
x1+2x2 6 x1,x2 0, x1 3 ,x2 2
用单纯形法可解得(P12)的最优 解(2,2)Z=10
X1
4
X2 1
4
为空集
7
6 5 4 3 2 1 0 1 2 3 4 5 6 x1 P p1
(P1)
Min Z= x1+4x2
s.t. 2x1+ x2 8
x1+2x2 6 x1,x2 0 x1 3
用单纯形法可解得(P1)的最优解 (3,3/2)Z=9
(P2) Min Z= x1+4x2 s.t. 2x1+ x2 8
x1+2x2 6
x1,x2 0ห้องสมุดไป่ตู้x1 4 无可行解,剪去。
对(P1) x1 3 选 x2进行分枝: x2 8
(P11) x2 1无可行解 (P12) x2
2
7
6 5 4 3 2 1 0 1 2 3 4 5 6 x1 Pp 12
(P11) Min Z= x1+4x2 s.t. 2x1+ x2 8