第十七章机械系统的动力学分析

合集下载

机械系统的动力学分析

机械系统的动力学分析

机械系统的动力学分析机械系统是由各种部件组成的复杂结构,它们间的相互作用决定了机械系统的运动和性能。

为了更好地了解和优化机械系统的运行,我们需要进行动力学分析。

动力学分析是研究机械系统在外力作用下的运动规律和力学性质的重要方法。

动力学分析的基础概念是力和运动。

力是机械系统中最基本的因素之一,它的作用可以使机械系统发生位移或变形。

而运动是机械系统的一种状态,描述了机械系统中各个部件之间的相对运动方式和位置关系。

在进行动力学分析时,我们需要建立数学模型来描述机械系统的运动和力学行为。

其中,最常用的方法就是拉格朗日动力学和牛顿动力学。

拉格朗日动力学是以拉格朗日函数为基础的动力学分析方法。

拉格朗日函数考虑了系统的动能和势能,并通过最小作用量原理确定了系统的运动方程。

通过求解拉格朗日方程,可以得到系统的运动轨迹和各个部件受力情况。

而牛顿动力学是以牛顿第二定律为基础的动力学分析方法。

牛顿第二定律描述了力对物体运动的影响,它告诉我们力等于质量乘以加速度。

通过应用牛顿第二定律,可以得到系统的运动方程和受力情况。

动力学分析还需要考虑机械系统的约束条件。

约束条件是指机械系统中各个部件之间的约束关系,包括几何约束和运动约束。

几何约束描述了部件之间的位置关系,如平面约束、直线约束等;而运动约束描述了部件之间的相对运动关系,如滚动约束、滑动约束等。

通过考虑约束条件,可以得到系统的约束运动方程和约束受力情况。

不同的机械系统有不同的动力学特点。

例如,杆件系统是一种常见的机械系统,它由多个连杆和关节组成。

对于杆件系统的动力学分析,可以利用杆件体系的运动方程和受力条件,求解系统的运动轨迹和关节的受力情况。

另外,转子系统是另一种重要的机械系统,包括旋转轴和转子部件。

对于转子系统的动力学分析,我们可以根据系统的惯性特性和受力情况,推导出系统的转动方程和受力方程,从而得到系统的转速、振动和受力特性。

动力学分析在机械系统设计和优化中起着重要的作用。

机械系统的动力学建模及分析方法

机械系统的动力学建模及分析方法

机械系统的动力学建模及分析方法引言机械工程是一门研究机械系统设计、制造和运行的学科,它的发展与制造业的兴起密不可分。

在机械工程中,动力学建模及分析是一项重要的研究内容,它涉及到机械系统的运动学和力学特性。

本文将介绍机械系统动力学建模的基本原理和常用的分析方法。

一、机械系统动力学建模的基本原理机械系统动力学建模的目的是描述机械系统在外部作用下的运动规律和力学特性。

为了实现这一目标,需要从以下几个方面进行建模:1. 运动学建模:运动学建模是指描述机械系统的运动规律和运动参数的过程。

它包括位置、速度、加速度等运动参数的描述,可以通过几何方法或者数学方法进行建模。

2. 力学建模:力学建模是指描述机械系统受力和力的作用下的运动规律和力学特性的过程。

它包括受力分析、力的平衡和动力学分析等内容,可以通过牛顿定律和其他力学原理进行建模。

3. 系统参数建模:系统参数建模是指描述机械系统的物理特性和结构参数的过程。

它包括质量、惯性矩、刚度等参数的确定,可以通过实验测量或者理论计算进行建模。

二、机械系统动力学建模的分析方法1. 动力学方程建立:动力学方程是描述机械系统运动规律的数学表达式。

根据牛顿定律和动力学原理,可以建立机械系统的动力学方程。

常见的动力学方程包括运动学方程和力学方程,可以通过微分方程或者矩阵方程进行描述。

2. 线性化分析:线性化分析是指将非线性的动力学方程转化为线性的近似方程的过程。

在某些情况下,非线性方程的求解非常困难,因此可以通过线性化分析来简化问题的求解。

线性化分析可以通过泰勒级数展开或者线性化逼近的方法进行。

3. 模态分析:模态分析是指研究机械系统的固有振动特性和模态参数的过程。

通过模态分析,可以确定机械系统的固有频率、振型和振幅等参数,为系统的设计和优化提供依据。

常见的模态分析方法包括模态测试和有限元分析等。

4. 运动仿真:运动仿真是指通过计算机模拟机械系统的运动过程和力学特性的过程。

通过运动仿真,可以预测机械系统的运动轨迹、速度和加速度等参数,为系统的设计和优化提供参考。

机械系统的多体动力学分析与控制

机械系统的多体动力学分析与控制

机械系统的多体动力学分析与控制机械系统是由多个刚体组成的复杂系统,其运动行为由力学学科中的多体动力学进行描述和分析。

多体动力学研究的是多个刚体在给定约束下的运动规律和相互作用,为了对机械系统进行准确的分析和控制,多体动力学的理论和方法显得尤为重要。

在研究机械系统的多体动力学之前,我们需要先了解多体系统的基本概念和关键元素。

一个多体系统由多个刚体组成,每个刚体都有自己的质量、几何形状和运动状态。

这些刚体之间通过关节、轴承等约束相互连接,形成一个整体的运动系统。

多体动力学的分析过程通常分为建模、动力学方程的建立和求解三个步骤。

在建模阶段,我们需要确定系统的质量分布、几何形状和约束条件。

通过采用刚体的质心坐标系或者自定义坐标系,可以方便地描述刚体的位置、速度和加速度。

同时,刚体之间的相互作用力和力矩也是建模过程中需要考虑的重要因素。

在动力学方程的建立阶段,我们利用牛顿定律、运动学关系等基本原理,推导出描述机械系统运动行为的动力学方程。

这些方程通常是由刚体的平动方程和转动方程组成,并包含了刚体之间的约束方程。

对于一个N个自由度的多体系统,动力学方程的求解通常需要采用数值计算方法。

在多体动力学的求解过程中,为了准确地描述和控制系统的运动行为,我们还需要考虑刚体的非线性特性和约束的刚性度。

在现实系统中,刚体的非线性特性常常会导致系统的频率分布和模态特征的变化,而约束的刚性度则会影响系统的动力学性能和稳定性。

针对机械系统的多体动力学分析和控制,现代工程学科提供了丰富的方法和工具。

有限元方法、多体仿真系统以及控制理论和方法等等,都为机械系统的分析和控制提供了一定的支持。

有限元方法可以对系统进行准确的建模和分析,多体仿真系统则可以对系统的运动行为进行模拟和验证。

而控制理论和方法则可以针对系统的动力学特性进行优化和调节,以达到所需的运动控制目标。

机械系统的多体动力学分析和控制在各个领域中都具有广泛的应用。

在机械工程领域,对机械系统进行多体动力学分析可以帮助设计师理解和改进系统的结构和性能。

机械系统的动力学分析与优化

机械系统的动力学分析与优化

机械系统的动力学分析与优化随着科学技术的不断发展,机械系统的动力学分析与优化在工程设计中扮演着至关重要的角色。

机械动力学是研究机械系统运动的力学学科,而动力学分析的目标是通过研究机械系统的运动规律,揭示机械系统的稳定性、响应特性和优化设计参数,以实现系统的高效性和可靠性。

一、机械系统的动力学分析机械系统的动力学分析是指通过运用力学理论与数学方法,研究机械系统内各个零件之间的关系以及整个系统的运动规律。

主要包括运动学与动力学两个方面。

1. 运动学分析机械系统的运动学分析旨在研究物体的运动规律、速度、加速度等。

其中,关键概念包括位移、速度和加速度。

通过对机械系统内各个零件的位移、速度和加速度的分析,可以了解机械系统的整体运动状态,为动力学分析提供基础。

2. 动力学分析机械系统的动力学分析主要研究系统内各个零件之间的力学关系。

其中,重要的概念包括质点、力、力矩、惯性力等。

通过对机械系统的力学关系进行分析,可以了解系统内各个零件之间的相互作用,从而揭示系统的稳定性、响应特性等。

二、机械系统的动力学优化机械系统的动力学优化是指通过动力学分析所提供的信息,对机械系统的设计参数进行优化,以实现功能的完善与性能的提升。

主要包括结构优化与参数优化。

1. 结构优化结构优化是指通过改变机械系统的结构形式,以满足特定的设计要求。

在动力学分析的基础上,通过改变零件的几何尺寸、位置、材料等,来达到减少重量、提高刚度、减少振动等优化目标。

2. 参数优化参数优化是指通过调整机械系统的设计参数,以满足特定的设计要求。

在动力学分析的基础上,通过改变参数的数值,如质量、惯性矩、阻尼系数等,来优化系统的性能,如降低能耗、提高响应速度等。

三、案例研究:汽车减振器系统动力学分析与优化以汽车减振器系统为例,展示机械系统动力学分析与优化的应用。

汽车减振器是汽车悬挂系统中的重要组成部分,主要用于减少车辆行驶时的颠簸和冲击。

动力学分析可以揭示减振器系统的振动特性、响应速度等信息,通过优化设计参数可以提高减振效果和行驶舒适性。

机械系统的动力学分析

机械系统的动力学分析

汇报人:MR.Z
单击此处输入你的正文,请阐述观点
单击此处输入你的正文,请阐述观点
优点:计算简单、直观易懂,能够得到系统整体的力学特性
单击此处输入你的正文,请阐述观点
添加标题
添加标题
添加标题
添加标题
特点:适用于多自由度系统,能够考虑系统内部的相互作用
定义:拉格朗日法是一种基于拉格朗日方程的机械系统动力学建模方法
建模步骤:首先确定系统的自由度,然后建立系统的拉格朗日方程
牛顿第二定律:物体的加速度与所受外力成正比,与质量成反比,公式F=ma。
牛顿第三定律:作用力和反作用力大小相等、方向相反,作用在同一直线上。
定义:物体的动量等于其质量与速度的乘积单位:动量的单位是千克米每秒动量定理:物体所受合外力冲量等于物体动量的变化动量守恒定律:在不受外力作用的情况下,物体的总动量保持不变 动量矩定义:力对某点的力矩等于力与力的转动半径的乘积单位:动量矩的单位是牛顿米动量矩定理:物体所受合外力对某点的力矩等于物体动量矩的变化动量矩守恒定律:在不受外力矩作用的情况下,物体的总动量矩保持不变 动能定义:物体的动能等于其质量与速度平方的乘积的一半单位:动能的单位是千克米平方每秒动能定理:物体所受合外力对物体做的功等于物体动能的改变量动能守恒定律:在只有重力做功的情况下,物体的总动能保持不变
稳定性分类:根据系统响应的不同,可分为稳定、不稳定和临界稳定
稳定性判据:劳斯-霍尔维茨判据、奈奎斯特判据等
稳定性分析方法:时域分析法、频域分析法等
PART SIX
降低系统能耗
减少系统振动和噪声
提高系统稳定性
优化系统响应速度
单击添加标题
约束条件的确定:根据机械系统的实际应用和限制条件,确定合理的约束条件,如位移、速度、加速度等。

机械系统的动力学分析与设计

机械系统的动力学分析与设计

机械系统的动力学分析与设计引言机械系统在现代工业中扮演着至关重要的角色,其动力学分析与设计对于提高机械设备的性能和效率至关重要。

本文将探讨机械系统的动力学原理及其在设计中的应用。

一、动力学基础1. 动力学简介动力学研究物体受力产生的运动,包括力的作用、质点运动和刚体的运动。

了解动力学基本概念和定律对于理解机械系统的运动行为至关重要。

2. 牛顿第二定律牛顿第二定律描述了力与物体运动之间的关系。

公式 F=ma 表明力(F)等于物体质量(m)乘以加速度(a)。

这个定律在机械系统的分析和设计中起到了重要作用。

3. 动力学模型为了将机械系统的复杂动力学分析简化,我们可以建立数学模型。

这些模型一般基于质点或刚体的运动原理,通过力学和数学的知识建立起来。

常见的模型包括弹簧振子、单摆等。

二、机械系统的动力学分析1. 动力学方程为了描述机械系统的运动,我们需要建立动力学方程。

这个方程可以通过牛顿第二定律和能量守恒定律等原理推导而来。

通过解动力学方程,我们可以计算机械系统的加速度、速度和位移等重要参数。

2. 运动稳定性分析机械系统的运动稳定性是指系统在特定约束下是否保持平衡或稳定。

通过分析动力学方程的解,我们可以判断机械系统的稳定性。

这对于保证机械设备的正常工作和安全运行至关重要。

三、机械系统的动力学设计1. 动力学参数的优化在机械系统的设计中,我们需要考虑如何优化动力学参数。

例如,在传动装置中,通过调整齿轮的模数、齿数等参数,可以实现最佳传动效果。

在机械结构设计中,通过减少惯性矩等手段,可以提高系统的响应速度。

2. 动力学仿真和优化借助计算机辅助设计软件,我们可以进行机械系统的动力学仿真和优化。

通过建立模型和设定参数,可以模拟机械系统在不同条件下的运动行为,进而优化设计方案。

四、案例分析以某工业机械设备的传动系统设计为例,我们将进行动力学分析与设计。

在设计过程中,我们需要确定传动比、转速和扭矩等参数,以保证系统的正常运转和传动效率。

机械系统的动力学特性分析与仿真

机械系统的动力学特性分析与仿真

机械系统的动力学特性分析与仿真在现代工程领域中,机械系统的动力学特性分析与仿真是一项重要的技术。

它可以帮助工程师们更好地了解和预测机械系统的运动行为,为设计和优化机械系统提供可靠的依据。

本文将从理论与实践两个方面介绍机械系统的动力学特性分析与仿真。

一、动力学特性分析机械系统的动力学特性包括质量、惯性、刚度、阻尼等。

这些特性能直接影响机械系统的运动响应和稳定性。

在动力学特性分析中,常用的方法有质量矩阵法、阻尼矩阵法和刚度矩阵法等。

质量矩阵法利用质量矩阵描述机械系统各个部分的质量分布情况,并通过矩阵运算得到系统的动力学方程。

通过分析质量矩阵可以得知机械系统的质量分布情况,为设计优化提供依据。

阻尼矩阵法则通过对系统进行阻尼特性分析,得到系统的阻尼矩阵。

阻尼矩阵可以反映机械系统的阻尼分布和阻尼能力,对减少系统振动与噪音具有重要作用。

刚度矩阵法通过分析机械系统的刚度分布情况,得到系统的刚度矩阵。

刚度矩阵能反映机械系统的刚度分布和变形特性,为系统的优化设计提供依据。

二、动力学仿真动力学仿真是通过计算机建立机械系统的数学模型,并利用数值计算方法求解动力学方程,从而模拟机械系统的运动行为。

动力学仿真可以有效地预测机械系统的响应和稳定性,为系统的设计和优化提供指导。

在动力学仿真中,常用的方法有多体系统仿真和有限元分析。

多体系统仿真是通过建立各个部件之间的动力学联系,构建机械系统的数学模型。

通过求解模型的动力学方程,可以得到系统的运动轨迹和响应。

多体系统仿真在车辆动力学、机械振动与噪声等领域得到广泛应用。

有限元分析将机械系统分割成有限个单元,每个单元具有特定的材料和几何性质。

通过求解单元之间的力平衡方程,可以得到机械系统的运动行为。

有限元分析在结构强度、疲劳分析等方面具有重要应用。

三、实例分析以汽车悬挂系统为例,介绍动力学特性分析与仿真的应用。

汽车悬挂系统通过减震器和弹簧等组件,为车身提供舒适的行驶环境。

在悬挂系统的设计过程中,需要对系统的动力学特性进行分析与仿真。

机械系统的动力学特性分析与优化

机械系统的动力学特性分析与优化

机械系统的动力学特性分析与优化一、引言机械系统是工程领域中非常重要的一类系统,在各个行业中都有广泛应用。

机械系统的动力学特性对系统性能和工作效率有着重要影响。

因此,对机械系统的动力学特性进行深入分析和优化是提高系统运行效率的关键。

二、机械系统的动力学特性机械系统的动力学特性是指在外界作用下,机械系统所表现出来的力、速度、加速度等物理量的变化规律。

了解机械系统的动力学特性,可以帮助我们理解系统的工作原理、优化系统结构和改进系统性能。

1. 自由度机械系统的自由度指的是系统中独立的运动模式个数。

自由度越高,系统的运动模式越多。

自由度的确定对于机械系统的动力学特性分析至关重要。

2. 动力学模型机械系统的动力学模型是描述系统动态行为的数学方程。

通常采用拉格朗日方程或哈密顿方程等方法建立动力学模型。

通过动力学模型,可以推导出系统的运动方程,得到系统的运动规律。

3. 频率响应频率响应是指机械系统在外界激励下的响应情况。

通过频率响应分析,可以了解系统对不同频率激励的反应特性。

频率响应对于系统的稳定性和性能具有重要影响。

三、机械系统动力学特性的影响因素机械系统的动力学特性受多种因素影响,正确理解这些因素对系统优化至关重要。

1. 结构参数机械系统的结构参数对其动力学特性具有重要影响。

例如,系统的质量分布、刚度和阻尼等参数会直接影响系统的固有频率、振动模态和能量损耗。

2. 外部激励机械系统在运行过程中会受到外界激励的作用,如震动、冲击和噪声等。

外部激励对于机械系统的动力学特性产生明显影响,需要对外部激励进行合理分析和控制。

3. 传动装置机械系统的传动装置(如齿轮、带传动等)会引入非线性因素,对系统的动力学特性产生重要影响。

需要考虑传动装置的刚度、阻尼、摩擦等因素,以实现系统的稳定运行。

四、机械系统动力学特性的优化方法针对机械系统的动力学特性进行优化,可以提高系统的运行效率、降低能耗和提升系统的稳定性。

下面介绍几种常见的优化方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2)有害阻力,即机械在运转过程中所受到的非生 产阻力。机械为了克服这类阻力所做的功是一种纯粹的 浪费。克服有害阻力所作的功称为损失功。
§17-1 平面机构力分析
2.机构力分析的目的和方法 目的: 1)求驱动力。用以确定所需功率,选择合适的电动机。 2)求生产阻力。根据原动件上驱动力的大小,确定机
械所能克服的生产阻力。 3)求机构运动副中的反力。该力大小和性质是零件设
)
2
min
m (1
)
2
则得:
2 max
2 min
2
2 m
三、机械的调速
2、周期性速度波动的调节 讨论:
max min m
(1)由公式可知,若ωm一定,当δ↓,则ωmax-ωmin↓, 机械运转愈平稳;反之,机械运转愈不平稳。设计时为
使机械运转平稳,要求其速度不均匀系数不超过允许值。
即:
δ ≤[δ ]
设某机械系统在某一瞬间总动能的增量 为dE,则根据动能定理,此动能增量应等于 在该瞬间内作用于该机械系统的各外力所作 的元功之和dW,即:
二、机械系统动力学的等效量和运动方程
1、机械的运动方程式的一般表达式
例:曲柄滑块机构,设已知: 曲柄1为原动件,ω1,质心S1 在O点,转动惯量为J1; 连杆2质量为M2,ω2,质心S2, 转动惯量J2,速度VS2; 滑块3质量为M3,质心S3在B点,速度VB3。 则该机构在dt瞬间的动能增量为 :
Wd - Wc = E1 – E其2中:Wc = Wr+ Wf
m
B A
TT
1、 起动阶段: ω=0,↗ωm ,
o 起动 稳定运动 停车
则:E1 =0,↗E2,
故:Wd > Wc = Wr +Wf 根据动能(dynamic energy)定理,功能关系为:
§17-2 机械的运转和速度波动的调节
一、机械的运转
三、机械的调速
1、机械速度波动产生原因
算出各区间功的增量后,就
可以画出机械系统在一个运动循
环内功的增量变化曲线,如图b。 最大盈亏功为:
△Wmax = Emax-Emin = Wbc =
(M d () M r ())d
c
c
a d
b b
ee d a′
由于△Wmax只与曲线的峰、 谷顶有关,与其具体的形状无关, 故可用功能指示图代替它。
2、稳定运转阶段
1)等速稳定运转 — 即
ω=常数。在任何时间
m
B A
TT
间隔都有: Wd = Wc
o 起动 稳定运动 停车
2)周期变速稳定运转 — 围绕平均速度作周期性波动
一个周期的时间间隔,Wd=Wr,E2=E1; 不满一个周期的时间间隔,Wd≠Wr,E2≠ E1。
§17-2 机械的运转和速度波动的调节
三、机械的调速
4、飞轮尺寸的确定
设轮缘的宽度为b,材料单位体积的
重量为γ(N/m3),则GA=πDHbγ。
于是
Hb= GA /(πDγ)
式中D、H及b的单位为m。
当飞轮的材料及比值H/b 选定后,由上式即可求得轮缘的 横剖面尺寸H和b。
四、机械的非周期性速度波动及其调节
机械在运转过程中,若等效力矩的变化是非周期性的, 则机械运转的速度将出现非周期性的波动,从而破坏机械 的稳定运转状态。须进行调节,以使机械恢复到稳定运转。
二、机械系统动力学的等效量和运动方程
2、机械系统的等效动力学模型
以曲柄滑块机构为例。取曲柄1为等效构件。
t
则:d
212
[J1
J
S
2
(2 1
)2
m2
(vS 2
1
)2
m3
( v3
1
)2
]
1[M1
F3
( v3
1
)]dt

Je
J1
J
S
2
(2 1
)
2
m2
(
vS 2
1
)
2
m3
( v3
1
)2
Je— 等效转 动惯量
有害阻力
凡是阻止机械产生运动的力统称为阻抗力。 阻抗力的特征是:该力与其作用点速度的方 向相反或成钝角,所作的功为负功,称为阻 抗功。
§17-1 平面机构力分析
(2)阻抗力
1)有效阻力,即工作阻力。它是机械在生产过程 中为了改变工作物的外形、位置或状态等所受到的阻力, 克服了这些阻力就完成了有效的工作。克服有效阻力所 完成的功称为有效功或输出功。
Me = M1-F3(v3/ω1)
故其运动方程式为:
Me — 等效力矩
d
(
1 2
J
2
e1
)
M
e1dt
二、机械系统动力学的等效量和运动方程
2、机械系统的等效动力学模型 同理,取滑块为等效构件,则有:
t
d
v232
[
J1
(1 v3
)2
JS2
(2 v3
)2
m2
( vS 2 v3
)2
m3 ]
v3[M1
1 v3
一、机械的运转 3、停车阶段
Wd = 0 当阻抗功逐渐将机械 具有的动能消耗完了时, 机械便停止运转。其功能 关系可用下式表示:
-Wc = E
B
A
m
TT
o 起动 稳定运动 停车
为了缩短停车所需的时间 以加速停车,在某些机械上可 以安装制动装置。
§17-2 机械的运转和速度波动的调节
二、机械系统动力学的等效量和运动方程 1、机械的运动方程式的一般表达式
为了便于讨论机械系统在外力作用下作 功和动能变化,将整个机械系统个构件的运 动问题根据能量守恒原理转化成对某个构件 的运动问题进行研究。为此引入等效转动惯 量(质量)、等效力(力矩)、等效构件的 概念,建立系统的单自由度等效动力学模型。
§17-2 机械的运转和速度波动的调节
二、机械系统动力学的等效量和运动方程 1、机械的运动方程式的一般表达式
Mr
4
75
2
2
50
2
100
50
2
75
2
Байду номын сангаас
100
2
M r 21.875N m
例题:
M/(N.m) 100
Md
75
75
A B C
D
E
50
F
G
Mr
A 21.875 N.m
o
90 180
360 450 540 630 720
)

m
n
30

J
900Wmax
2n2
Emax、Emin—角速度为最大、 最小的位置所具有的动能;
三、机械的调速
3、飞轮的设计原理
分析:
J 900Wmax
2n2
1)当△Wmax与一定时,J与n的平方值成反比,为
减小飞轮转动惯量,飞轮安装在机械的高速轴上。
2)当△Wmax与n一定时,飞轮的转动惯量J与速度不 均匀系数成反比。J越大, 越小,机械越接近匀 速;但过分追求机械运转的均匀性,将会使飞轮过 于笨重。
瞬时功率
二、机械系统动力学的等效量和运动方程
1、机械的运动方程式的一般表达式 曲柄滑块机构的运动方程式为 : t 若机构由n个活动构件组成,则动能的一般表达式为 :
瞬时功率的一般表达式为 :
二、机械系统动力学的等效量和运动方程 则机械运动方程式的一般表达式为:
公式中,若Mi与ωi同向,则取“+”;反之取“—” 号。
计计算和强度计算的重要依据。 方法:图解法和解析法
§17-1 平面机构力分析
二、平面机构动态静力分析 1、构件惯性力的确定 1)作平面复合运动的构件
2)作平面移动的构件 惯性力P1=—mαs
3)绕定轴转动的构件 惯性力偶矩MI1
§17-2 机械的运转和速度波动的调节
一、机械的运转
机械运转中的功能关系
曲线。驱动功与阻抗功为:
Wd ( ) M d ( )d a
Wr ( ) M r ( )d a
三、机械的调速
1、机械速度波动产生原因
机械动能的增量为:
E Wd Wr
[M
d
( )
M
r
(
)]d
Je
(
)
2
/
2
J ea
(
)
2 a
/
2
a
分析:
bc段:由于Med >Mer,故Wd > Wr, 即△Wbc>0,△E >0,则 称之为盈功。
F3 ]dt

me
J1
(1
v3
)2
J
S
2
(2
v3
)2
m2
(
vS 2 v3
)2
m3
me— 等效 质量
Fe=M1(ω1/v3)-F3
Me — 等效力
故其运动方程式为:
d
(
1 2
mev32
)
FeV3dt
二、机械系统动力学的等效量和运动方程
3、等效动力学模型的意义
等效构件 + 等效质量(转动惯量) + 等效力(力矩)
(2)若δ[δ],会影响机器的正常工作。如推动照明用的发 动机的活塞式原动机。若速度波动,δ,则I、V变化
大,使灯忽暗忽明。
若不满足条件,可在机械中安装飞轮以调节机械的周期性速度波动。
三、机械的调速
3、飞轮的设计原理 飞轮 — 具有很大转动惯量的回转构件。其作用:
装置飞轮的实质就是增加机械系统的转动惯量。 飞轮在系统中的作用相当于一个容量很大的储能器。 当系统出现盈功,它将多余的能量以动能形式“储存” 起来,并使系统运转速度升高幅度减小;反之,当 系统出现亏功时,它将“储存”的动能释放出来以弥 补能量的不足,并使系统运转速度下降的幅度减小。 从而减小了系统运转速度波动的程度,。
相关文档
最新文档