亥姆霍兹方程推导
复数亥姆霍兹方程

复数亥姆霍兹方程
亥姆霍兹方程是描述电磁现象的基本方程之一,它在物理学领域中发挥着重要的作用。
这个方程是由德国物理学家赫尔曼·冯·亥姆霍兹提出的,他通过对电磁场的研究,总结出了这个方程,为电磁学的发展做出了巨大贡献。
亥姆霍兹方程是一个偏微分方程,它描述了电磁场的传播和变化规律。
通过亥姆霍兹方程,我们可以了解电磁场的波动特性,以及电磁场在空间中的分布情况。
亥姆霍兹方程的一般形式是∇²E + k²E = 0,其中∇²表示拉普拉斯算符,E是电磁场的矢量,k是波数。
这个方程描述了电磁场在空间中的传播行为,通过求解这个方程,我们可以得到电磁场的分布情况和波动特性。
亥姆霍兹方程在电磁学、光学、声学等领域中都有广泛的应用。
在电磁学中,它被用来描述电磁波在空间中的传播行为,解释电磁波的干涉和衍射现象。
在光学中,它被用来描述光的传播和衍射行为,解释光的折射和散射现象。
在声学中,它被用来描述声波在空间中的传播行为,解释声音的反射和干涉现象。
亥姆霍兹方程的研究对于理解电磁现象的本质和探索新的应用有着重要意义。
通过对亥姆霍兹方程的研究,科学家们不断深化对电磁现象的认识,推动了电磁学的发展。
亥姆霍兹方程是描述电磁现象的基本方程之一,它在物理学领域中发挥着重要的作用。
通过对亥姆霍兹方程的研究,我们可以深入了解电磁场的波动特性和分布规律,推动电磁学的发展。
亥姆霍兹方程的应用范围广泛,涉及电磁学、光学、声学等多个领域,对于理解自然界的规律和开展科学研究具有重要意义。
我们应该继续深入研究亥姆霍兹方程,探索更多的应用和发现,推动科学的进步和人类的进步。
吉布斯-亥姆霍兹方程

吉布斯-亥姆霍兹方程
吉布斯─亥姆霍兹方程,是对计算系统的吉布斯自由能变化的有用热力学公式。
为一温度函数。
此方程式以约西亚·吉布斯与赫尔曼·冯·亥姆霍兹来命名。
亥姆霍兹方程通常出现在涉及同时存在空间和时间依赖的偏微分方程的物理问题的研究中。
例如,考虑波动方程;在假定u(r,t) 是可分离变量情况下分离变量。
其结果是,当且仅当等式两边都等于恒定值时,该方程在一般情况下成立。
从这一观察中,可以得到两个方程,一个是对A(r) 的,另一个是对T(t) 的。
研究
1847年,亥姆霍兹出版了《力量的守恒》(Erhaltung der Kraft)一书,阐明了能量守恒的原理,亥姆霍兹自由能即以他来命名。
他也研究过电磁学,他的研究预测了麦克斯韦方程组中的电磁辐射,相关的方程式以他来命名。
除了物理,亥姆霍兹也对感知的研究作出贡献。
他发明了检眼镜,以及以他命名的共鸣器(Helmholtz-Resonator),他两部光学和声学的著作,《作为乐理的生理学基础的音调感受的研究》(Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik)、《生理光学手册》(Handbuch der Physiologischen Optik),对后世影响很大。
《论音调的感觉》,亥姆霍兹(Hermann von Helmholtz)大师1863年作品。
主要从物理学的角度论述了各音调给人的感觉,同时具有很高的美学价值。
由麦克斯韦方程组推导亥姆霍兹方程

由麦克斯韦方程组推导亥姆霍兹方程麦克斯韦方程组:\nabla \cdot \mathrm{E} = \frac{1}{\epsilon_0} \rho\nabla \cdot \mathrm{B} = 0\nabla \times \mathrm{E} = - \frac{\partial\mathrm{B}}{\partial t}\nabla \times \mathrm{B} = \mu_0 \mathrm{J} + \mu_0\epsilon_0 \frac{\partial \mathrm{E}}{\partial t}其中,- \mathrm{E} 表示电场强度;- \mathrm{B} 表示磁场强度;- \rho 表示电荷密度;- \mathrm{J} 表示电流密度;- \epsilon_0 表示真空介电常数;- \mu_0 表示真空磁导率。
根据法拉第电磁感应定律,有\nabla \times \mathrm{E} = - \frac{\partial\mathrm{B}}{\partial t}将其代入第四个式子中,得\nabla \times \mathrm{B} = \mu_0 \mathrm{J} - \mu_0\epsilon_0 \frac{\partial \mathrm{E}}{\partial t}对两个式子分别取旋度,得\nabla \times (\nabla \times \mathrm{E}) = -\frac{\partial}{\partial t} \nabla \times \mathrm{B} \nabla \times (\nabla \times \mathrm{B}) = \mu_0 \nabla \times \mathrm{J} - \mu_0 \epsilon_0 \frac{\partial}{\partial t} (\nabla \times \mathrm{E})根据矢量恒等式\nabla \times (\nabla \times \mathrm{A}) = \nabla(\nabla \cdot \mathrm{A}) - \nabla^2 \mathrm{A}得到\nabla(\nabla \cdot \mathrm{E}) - \nabla^2 \mathrm{E} = -\frac{\partial}{\partial t} (\nabla \times \mathrm{B}) \nabla(\nabla \cdot \mathrm{B}) - \nabla^2 \mathrm{B} = \mu_0 \nabla \times \mathrm{J} - \mu_0 \epsilon_0\frac{\partial}{\partial t} (\nabla \times \mathrm{E}) 由于磁场无源,即 \nabla \cdot \mathrm{B} = 0,因此第二个式子可以简化为\nabla^2 \mathrm{B} = - \mu_0 \nabla \times \mathrm{J} + \mu_0 \epsilon_0 \frac{\partial}{\partial t} (\nabla \times \mathrm{E})对第一个式子取散度,得\nabla^2 \mathrm{E} = \frac{1}{\epsilon_0} \nabla \cdot \rho - \frac{\partial}{\partial t} (\nabla \times \mathrm{B}) 将第一个式子和上式代入第二个式子中,得到\nabla^2 \mathrm{E} = \frac{1}{\epsilon_0} \nabla \cdot \rho - \mu_0 \epsilon_0 \frac{\partial^2 \mathrm{E}}{\partial t^2} + \mu_0 \frac{\partial}{\partial t} (\nabla \times\mathrm{J})因为电荷守恒方程为 \nabla \cdot \mathrm{J} = -\frac{\partial \rho}{\partial t},所以上式可以进一步化简为\nabla^2 \mathrm{E} = \frac{1}{\epsilon_0} \nabla \cdot \rho - \mu_0 \epsilon_0 \frac{\partial^2 \mathrm{E}}{\partial t^2} - \mu_0 \frac{\partial^2 \mathrm{J}}{\partial t^2} 这就是亥姆霍兹方程。
感生电动势的计算方法

感生电动势的计算方法感生电动势是指当一根导体在磁场中运动或者磁场发生变化时,导体内产生的电动势。
它是基于法拉第电磁感应定律的原理,即磁场变化会引起电场的产生。
在这篇文章中,我们将介绍几种常用的计算感生电动势的方法。
方法一:亥姆霍兹方程法首先,我们需要了解亥姆霍兹方程:∮B·ds = μ0·I其中,∮B·ds 表示磁场沿闭合路径的环流,μ0 是真空中的磁导率,I 是通过被观察区域的电流。
根据亥姆霍兹方程,我们可以计算感生电动势的大小。
步骤一:确定闭合路径首先,我们需要确定一个闭合路径,可以是一个围绕导体的环路,也可以是一个围绕磁场变化的区域。
步骤二:计算环流计算闭合路径上的环流值,即∮B·ds。
步骤三:计算感生电动势利用亥姆霍兹方程,将计算得到的环流值代入公式中,计算感生电动势的大小。
方法二:法拉第定律法法拉第定律是计算感生电动势的另一种常用方法,它描述了磁感线数目的变化对电动势的影响。
法拉第定律表达式如下:ε = -N·dϕ/dt其中,ε 表示感生电动势,N 是导体中的匝数,dϕ/dt 是磁通量的变化率。
步骤一:确定导体的匝数首先,我们需要确定导体中的匝数,即 N。
步骤二:计算磁通量变化率计算磁通量变化率,即 dϕ/dt。
这可以是磁场的变化率,也可以是导体相对于磁场的运动速度。
步骤三:计算感生电动势将导体的匝数和磁通量变化率代入法拉第定律的表达式中,计算感生电动势的大小。
方法三:楞次定律法楞次定律是计算感生电动势的另一种常用方法,它描述了感生电动势的方向。
楞次定律表达式如下:ε = -dΦ/dt其中,ε 表示感生电动势,dΦ/dt 是磁通量的变化率。
步骤一:计算磁通量变化率计算磁通量变化率,即dΦ/dt。
这可以是磁场的变化率,也可以是导体相对于磁场的运动速度。
步骤二:计算感生电动势将磁通量变化率代入楞次定律的表达式中,计算感生电动势的大小。
综上所述,我们介绍了三种常用的计算感生电动势的方法:亥姆霍兹方程法、法拉第定律法和楞次定律法。
亥姆霍兹方程推导

亥姆霍兹方程与波动场中的其他物理量,如速度、加速度、位移等密切相关。 通过该方程,可以建立这些物理量之间的联系,为波动现象的研究提供方便。
推导亥姆霍兹方程的目的
揭示波动现象的本质
通过推导亥姆霍兹方程,可以深入了解波动现象的本质和规律,掌握波动场的基 本性质和传播特点。
为实际应用提供理论支持
亥姆霍兹方程的解的性质
解的存在性和唯一性
在一定的边界条件和初始条件下,亥姆霍兹方程存在唯一 解。解的存在性和唯一性可以通过数学方法如分离变量法、 格林函数法等来证明。
解的振荡性质
亥姆霍兹方程的解具有振荡性质,即解在空间中呈现周期 性的变化。这种振荡性质与波的传播和干涉现象密切相关。
解的衰减性质
在某些情况下,亥姆霍兹方程的解会随着距离的增加而逐 渐衰减。这种衰减性质与波的扩散和衰减现象有关。
将亥姆霍兹方程转化为等价的变分问题,即 求泛函的极值问题。
网格剖分
将求解区域剖分为有限个单元,每个单元内的 解用形函数近似表示。
单元分析
对每个单元进行分析,建立单元刚度矩阵和荷载 向量。
总体合成
将所有单元的刚度矩阵和荷载向量按照一定规则合 成总体刚度矩阵和荷载向量。
边界条件处理
根据问题的边界条件,对总体刚度矩阵和荷载向 量进行修正。
进而研究热传导的规律。
05
数值方法求解亥姆霍兹方程
有限差分法
差分格式
将亥姆霍兹方程中的微分项用差分格式近似,从 而将偏微分方程转化为代数方程。
网格划分
在求解区域上划分网格,将连续的空间离散化, 便于计算机处理。
边界条件处理
根据问题的边界条件,对差分方程进行修正,以 保证解的正确性。
亥姆霍兹方程

亥姆霍兹方程(Helmholtz equation)是一条描述电磁波的椭圆偏微分方程,以德国物理学家亥姆霍亥姆霍兹兹的名字命名。
亥姆霍兹方程通常出现在涉及同时存在空间和时间依赖的偏微分方程的物理问题的研究中。
因为它和波动方程的关系,亥姆霍兹方程出现在物理学中电磁辐射、地震学和声学研究这样的领域里的问题中。
如:电磁场中的▽^2 E+k^2 E=0,▽^2 H+k^2 H=0,称为亥姆霍兹齐次方程,是在谐变场的情况下,E波和H波的波动方程。
其中:k^2=μω^2(ε-jσ/ω) 为波数,当忽略位移电流时,k^2=μεω^2;以上^2为平方。
相关书籍数学上具有(墷2+k2)ψ =f形式的双曲型偏微分方程。
式中墷2为拉普拉斯算子,在直角坐标系中为;ψ为待求函数;k2为常数;f为源函数。
当f等于零时称为齐次亥姆霍兹方程;f不等于零时称为非齐次亥姆霍兹方程。
在电磁学中,当函数随时间作简谐变动时,波动方程化为亥姆霍兹方程。
亥姆霍兹方程相关书籍亥姆霍兹方程亥姆霍兹方程相关书籍相关书籍。
电磁场波动方程亥姆霍兹方程和平面电磁波2

(2)波长与周期
波长
2
k
周期 T 1 2 f
波长定义:两相位差为 2 的等相面间的距离。
两等相面相位差:k(Rs Rs ) 2
Rs
Rs
2
k
波长、波 k k 2
v f
速、频率
v
2
间的关系 T 1 2
v
E
v X,t
v E
v
X ,
eit d
v
B
v X,t
v B
v X,t
eit d
v
D
v X,t
v D
v
X ,
eit d
v E
v
X ,
eit d
v
证明:
B
k
E
B
i
E
i
E0eikx
i
eikx
E0
k
E
几
a) B 与 E 同相位;
点
说 明
b)
EB
E, B, k
E构 B成 右E手 k螺 E旋关0系
2
2
电场、磁场能量相等
▪ 平面电磁波能流密度:
v
v S
v E
v H
1
v E
v B
1
v E
亥姆霍兹方程

热力学 定律
一切过程都必须遵循,保持能量守 恒;不能解决过程是否必然发生、 进行的程度
热力学第二定律——判断在指定的条件下 一个过程能否发生;如能发生的话,能进行到 什么程度;如何改变外界条件(温度、压力等) 才能使变化朝人们所需要的方向进行
东莞理工学院
Dongguan University of Technology
东莞理工学院
Dongguan University of Technology
广东省分布式能源系统重点实验室
3.1.2 热力学第二定律
热力学第二定律:在不违背热力学第一定律的前 提下,判断在一定条件下过程的方向和限度的定律
“自发过程都是热力学不可逆过程”这个结论是 人类经验的总结,也是热力学第二定律的基础
东莞理工学院
Dongguan University of Technology
广东省分布式能源系统重点实验室
3.3.1.3 p、V、T都改变的过程
东莞理工学院
Dongguan University of Technology
广东省分布式能源系统重点实验室
东莞理工学院
Dongguan University of Technology
广东省分布式能源系统重点实验室
熵变计算的基本公式
当始、终态一定时,不论过程是否可逆,其熵 变都可用下式求出:
不论过程是否可 逆,都必须通过 可逆过程的热温商来计 算熵变;如果过程是不 可逆的,应设计一个与 该不可逆过程的始、终 态相同的可逆过程
东莞理工学院
Dongguan University of Technology
自然界的自发过程多种多样,但人们发现自发过 程都是相互关联的,从某一个自发过程的不可逆性 可以推断另一个自发过程的不可逆性。因此热力学 第二定律的表述也有多种,但它们都是等价的