信息光学第二版课后答案 苏显渝版概论

合集下载

信息光学第二版课后答案-苏显渝版可修改全文

信息光学第二版课后答案-苏显渝版可修改全文

4如图所示的等腰直角三角形孔径放在透镜的前焦平面上,以单 位振幅的单色平面波垂直照明,试求透镜后焦面上的夫琅和费衍 射图样的复振幅分布。
y0 y0 x0
U(x, y)
1
jf
exp(
jkf
) e xp
j
k 2f
(x2
y
2
)
45 0 45
x0 a
x0
2
U0( x0 ,
y0 ) exp
0
其它
1.5 计算下列一维卷积
(1) (2 x 3) rect( x 1)
2
(2) rect( x 1) rect( x 1)
2
2
(3) com b( x) rect( x)
解(1)
(1) (2 x 3) rect( x 1) 1 ( x 3 ) rect( x 1)
2 z
2z
I
(0,0,
z
)
4
sin2
a 2
2
z
1 exp( j2x) 2 j exp( jx)sin x
2.1 焦距f=500mm,直径D=50mm的透镜将波长 632.8nm
的激光束聚焦,激光束的截面D1=20mm。试求透镜焦点处 的光强是激光束光强的多少倍?
解:设入射激光束的复振幅A0,强度为 I0 A02 通过透镜后的出
(1)
sinc4( x)
( ) ( )d
( )
1
1
0 (1 )2d 1 (1 )2d 2
1
0
3
(2)
sinc2( x)cos xdx
1 ( ) ( 1 )d 1 ( ) ( 1 )d
2
2

信息光学(第二版)01-引言

信息光学(第二版)01-引言

光电子
光电子成为现代产业的主角
机械领域: 激光加工: 打孔、切割、焊接、表面处理 激光光刻、激光微细加工、X射线光刻 能源领域: 太阳能电池、激光核聚变 —— 空间卫星的能源,地球能源
光信息科学
光 是最重要的信息载体,人类感官接收 客观世界总信息量的 90%以上通过眼睛 光纤通信: 以低损耗石英光纤和半导体激光器为基础, 成为当今通信的主体和方向 显示技术:液晶大屏幕显示成为下一代电视的主流;
存储 1万 幅二维图像,数据量达到10Gbit 计算机控制,快速存储
全息信息存储
探测器 参考光束 成像透镜 空间光 调制器 记录介质 变换透镜 数据页 信号 光束 激光器 待存储 的信息
中国的光学(光子学)已经对高科技、国民 经济与人民生活产生了影响。可以预期,光学 (光子学)在21世纪将会像20世纪的电子学 (微电子学)那样大发展。让我们一起为迎接 光学(光子学)方面的重大突破而欢呼吧! --王大珩 你们这一代人 将成为最有希望的力量 是一支强大的生力军
光学领域的扩展 应用功能的扩展 研究内容的扩展 应用范围的扩展
20世纪光学的 主要特点 1、光学领域的扩展
• 波段: 向两端扩展
可见光 X射线 新学科
紫外
近红外 中红外 远红外
紫外光学、X射线光学、微光夜视、红外光学
• 波长:单色性、相干性
研究方向
激光器
激光全息
• 光强:单光子
激光光源
星际光源
20世纪光学的 主要特点 1、光学领域的扩展
信息光学 Information Optics
享受光 享受光学
光学科学与技术的成果已深深渗透到我们的生 活中
--王大珩
王大珩先生说:
• 20世纪以前的光学

信息光学习题答案1(word文档良心出品)

信息光学习题答案1(word文档良心出品)

第一章 习题解答1.1 已知不变线性系统的输入为 ()()x x g c o mb= 系统的传递函数⎪⎭⎫⎝⎛b f Λ。

若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。

并画出输出函数及其频谱的图形。

答:(1)()(){}1==x x g δF 图形从略,(2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。

1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零, (1)如果L a 1<,Wb 1<,试证明()()y x f y x f b x a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1 证明:(){}(){}(){}()()(){}(){}()y x,f b x sinc a x sinc ab bf af rect y x f y x,f bf af rect y x f Wf L f rect y x f y x,f y x y x yx *⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫⎝⎛=,,F F ,,F ,,F F 1-(2)如果L a 1>, Wb 1>,还能得出以上结论吗? 答:不能。

因为这时(){}(){}()y x yx bf af rect y x f Wf L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫⎝⎛。

1.3 对一个空间不变线性系统,脉冲响应为 ()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。

(必要时,可取合理近似) (1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F F F F F ,F ,F F ,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫⎝⎛754=2y rect x rect x cos y x f π,答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π,答: ()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F ,(4)()()()()()y rect x rect x comb y x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f f f rect f f δf f δf f δf f δf rect f sinc 2f sinc f f comb y 7x sin y rect x rect x comb y x g y x y x y x y x y x x yx y x y x y x x y x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F ,.,.,.,F F F F F ,δδδδ0.25δδδ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波 ()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛50⎪⎭⎫ ⎝⎛331=对下述传递函数利用图解方法确定系统的输出。

信息光学教程全书习题及参考答案

信息光学教程全书习题及参考答案

L{} 来表示,当
2
L{ f ( x, y)} = g (ξ ,η ) , L{ f
1 1
( x, y )} = g 2 (ξ ,η ) ,且 a1 、 a 2 为常数时,
L{a
1 1
f ( x, y ) + a 2 f 2 ( x, y )} = a1 g1 (ξ ,η ) + a 2 g 2 (ξ ,η )
1 ,y 方 2Bx
向的格点距为
1 。 2B y
由此可见,Whittaker-Shannon 二维抽样定理并不是唯一的抽样定理,只要改变这两个 条件中的任何一个,就可以导出别的二维抽样定理。例如,用一个传递函数为
H ( ρ ) = circ( ) 的滤波器来滤波,可导出新的二维抽样定理,其公式描述为: B
2
2
⎞ ⎡ jk 2 2 ⎟ exp ⎢− 2 f x + y ⎟ ⎣ ⎠
(
x
⎛ x +y 2 P0 exp⎜ 2 ⎜ − w2 πw ⎝
2
2
⎡ jk ⎛ 1 1 ⎞ 2 ⎤ ⎞ ⎛ jk 2 ⎞ ⎜ ⎟ ⎟ ⎜ − + exp x exp ⎢ ⎥ ⎜− 2 f y ⎟ ⎟ ⎟ ⎜f f ⎟ 2 ⎝ ⎠ ⎠ x ⎠ ⎝ ⎣ ⎦
g ( x, y ) =
ρ
π
2 n = −∞ m = −∞
∑ ∑ g ( 2B , 2B ) ×


n
m
J 1 [2πB ( x −
n 2 m 2 ) + (y − ) ] 2B 2B n 2 m 2 2πB ( x − ) + (y − ) 2B 2B
式中 B 为空间函数 g ( x, y ) 的频谱以极半径的形式描述的频率带限宽。 公式推导中用到的博里叶变换关系为:

光学信息技术原理及应用(第二版)课后答案汇总

光学信息技术原理及应用(第二版)课后答案汇总

第一章 习题解答1.1 已知不变线性系统的输入为()()x x g c o m b =系统的传递函数⎪⎭⎫⎝⎛b f Λ。

若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。

并画出输出函数及其频谱的图形。

答:(1)()(){}1==x x g δF 图形从略, (2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。

1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零,(1) 如果L a 1<,Wb 1<,试证明()()y x f y x f b x a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1 证明:(){}(){}(){}()()(){}(){}()y x,f b x sinc a x sinc ab bf af rect y x f y x,f bf af rect y x f Wf L f rect y x f y x,f y x y x yx *⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫⎝⎛=,,F F ,,F ,,F F 1-(2) 如果L a 1>, Wb 1>,还能得出以上结论吗?答:不能。

因为这时(){}(){}()y x yx bf af rect y x f W f L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫⎝⎛。

1.3 对一个空间不变线性系统,脉冲响应为 ()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。

(必要时,可取合理近似) (1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F F F F F ,F ,F F ,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫⎝⎛754=2y rect x rect x cos y x f π, 答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π, 答:()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F ,(4)()()()()()y rect x rect x comby x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f f f rect f f δf f δf f δf f δf rect f sinc 2f sinc f f com b y 7x sin y rect x rect x com by x g y x y x y x y x y x x yx y x y x y x x y x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F ,.,.,.,F F F F F ,δδδδ0.25δδδ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛50⎪⎭⎫ ⎝⎛331= 对下述传递函数利用图解方法确定系统的输出。

信息光学习题答案

信息光学习题答案

信息光学习题答案信息光学习题答案第一章线性系统分析简要说明以下系统是否有线性和平移不变性. g?x??df?x?;g?x???f?x?dx; dx?g?x??f?x?;g?x??????f????h?x????d?;2???f???exp??j2????d? 解:线性、平移不变;线性、平移不变;非线性、平移不变;线性、平移不变;线性、非平移不变。

证明comb(x)exp(j?x)?comb(x) ???comb????x? ?x??1?证明:左边=comb???????n?????(x?2n)??2??(x?2n) ?2?n????2?n????2?n??????x??2?右边?comb(x)?comb(x)exp(j?x)?? ?n?????(x?n)??exp(j?x)?(x?n)n?????n???? ??(x?n)??exp(jn?)?(x?n)n???? n?????(x?n)??(?1)n???n?(x?n)?当n为奇数时,右边=0,当n为偶数时,右边=2所以当n为偶数时,左右两边相等。

n?????(x?2n) (x) 证明??(sin?x)?comb证明:根据复合函数形式的δ函数公式?[h(x)]??i?1n?(x?xi)h?(xi ),h?(xi)?0 式中xi是h(x)=0的根,h?(xi)表示h(x)在x?xi处的导数。

于是??(sin?x)??n?????(x?n)???co mb(x) 1 计算图题所示的两函数的一维卷积。

解:设卷积为g(x)。

当-1≤x≤0时,如图题(a)所示,g(x)??1?x0(1??)(1?x??)d??111?x?x3 326 图题当0 2??2?2??2?2?2?x?2设卷积为g(x),当x≤0时,如图题(a)所示,g(x)??0d??x?2 当0 2 图题g(x)??d??2?x x2?x?1?2,x?0 g(x)?2?x?1?,x?0?2即g(x)?2??? ?x??2?(x)?rect(x)?1已知exp(??x2)的傅立叶变换为exp(???2),试求?exp?x2???exp?x2/2?2解:设y??????????? ?x,z??? 即??exp(??y2)??exp(???2) 1????F?,? 得ab?ab?2坐标缩放性质??f(ax,by)???exp?x2???????exp(?y2/??? exp(??z2)??exp(??2?2)2??exp?x/2???2?????exp??y?/2??2 ? ??2??exp(?2??2z2)?2??exp(?2??2?2)计算积分.????sinc?x?dx?? 4??2?x?cos?xdx?? sinc?解:应用广义巴塞伐定理可得? sinc(x)sinc(x)dx?????2222 ?(?)?(?)d??(1?? )d??(1??)d??????103??021???1?1?1?????s inc(x)cos?xdx????(?)?????d????(?)?????d ??2???2?2????????2?1??1??1??1 ??????????? 2??2??2?? 应用卷积定理求f?x??sinc?x?sinc?2x?的傅里叶变换. 3解:??sinc(x)sinc(2x)????sinc(x)????sinc( 2x)??1???rect(?)?rect?? 2?2?当?31????时,如图题(a)所示,2211??3 G(?)??2du??? 2?12当?11???时,如图题(b)所示,2211??2 G(?)??1du?1 2??2当13???时,如图题(c)所示,22113 G(?)??1du??? 2??222G(ξ)的图形如图题(d)所示,图可知G(?)?3???1?????????? 4?3/2?4?1/2? 图题 4 设f?x??exp??x,??0,求??f?x????解:?exp(??x)???????f?x?dx?? ?0?? ?0??exp(?x)exp(?j2??x)dx??exp(??x)exp(? j2??x)dx ?2??2??(2??)2??? exp(??x)dx?2??2?(2??)2???02? 设线性平移不变系统的原点响应为h?x??exp??x?step?x?,试计算系统对阶跃函数step?x?的响应. 解:阶跃函数定义step(x)??线性平移不变系统的原点响应为h?x??exp??x?step?x??exp??x?,所以系统对解阶跃函数step?x?的响应为g(x)?step(x)?h(x)??1,?0,x?0得x?0x?0 ??0exp[?(x??)]d??1?exp(?x), x?0 有两个线性平移不变系统,它们的原点脉冲响应分别为h1?x??sinc?x?和h2?x??sinc?3x?.试计算各自对输入函数f?x??cos2?x的响应g1?x?和g2?x?. 解:已知一平面波的复振幅表达式为U(x,y,z)?Aexp[j(2x?3y?4z)] 试计算其波长λ以及沿x,y,z方向的空间频率。

电子信息科学技术导论 第2版第一章课后答案

电子信息科学技术导论 第2版第一章课后答案
信息化社会是指以信息技术为基础以信息产业为支柱以信息价值的生产为中心以信息产品为标志的社会信息化是建立在计算机技术数字化技术和生物工程技术等先进技术基础之上的是经济社会发展到一定历史阶段的必然产物
第1章概述思考题与习题参考答案
1-1什么是信息?信息、信号、消息和数据有无区别?
答:信息到现在都还没有一个特定的、公认的定义,不同的学科和学者,从不同的角度对信息的含义有不同的解释。
1-4什么是信息技术?它包括哪些主要技术?它的发展趋势怎样?
答:信息技术是在信息科学的基本原理和方法的指导下扩展人类信息功能的技术,是对信息进行采集、传输、存储、处理、应用的各种技术之和。
信息技术主要包括传感技术、通信技术、计算机技术和控制技术。
未来信息技术的发展趋势:(1)核心技术是光电子技术,信息技术在经历电子、光电子发展之后,会逐渐步入以光子学为研究和发展重点的新阶段。(2)微电子技术向系统集成方向发展,未来集成电路产品的集成度会更高,芯片面积会更大,特征尺寸会更小,系统会更加完善。(3)网络技术向多业务、高性能大容量方向发展。(4)计算机技术向多媒体、智能化方向发展。
然而信息化在给人类带来许多好处的同时,也可能带来一些负面影响及消极后果,主要体现在:(1)各国的信息网络化水平目前还很不平衡;(2)信息泛滥、信息污染;(3)知识产权侵权;(4)信息犯罪;(5)对人们身心健康可能带来的不良影响。
1-7简述你所使用或了解的信息技术应用热点。
答:量子计算机、5G通信、物联网以及人工智能等等方面,根据个人理解情况回答。
答:依据所学专业进行回答。略。
答:信息科学是研究信息及其运动规律的科学,是由信息论、控制论、计算机科学、仿生学、系统工程与人工智能等学科互相渗透、互相结合而形成的。

信息光学习题答案及解析

信息光学习题答案及解析

信息光学习题答案第一章 线性系统分析1.1 简要说明以下系统是否有线性和平移不变性. (1)()();x f dxdx g =(2)()();⎰=dx x f x g (3)()();x f x g = (4)()()()[];2⎰∞∞--=αααd x h f x g(5)()()απξααd j f ⎰∞∞--2exp解:(1)线性、平移不变; (2)线性、平移不变; (3)非线性、平移不变; (4)线性、平移不变; (5)线性、非平移不变。

1.2 证明)()ex p()(2x comb x j x comb x comb +=⎪⎭⎫ ⎝⎛π证明:左边=∑∑∑∞-∞=∞-∞=∞-∞=-=⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛n n n n x n x n x x comb )2(2)2(2122δδδ∑∑∑∑∑∑∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=--+-=-+-=-+-=+=n nn n n n n n x n x n x jn n x n x x j n x x j x comb x comb )()1()()()exp()()()exp()()exp()()(δδδπδδπδπ右边当n 为奇数时,右边=0,当n 为偶数时,右边=∑∞-∞=-n n x )2(2δ所以当n 为偶数时,左右两边相等。

1.3 证明)()(sin x comb x =ππδ 证明:根据复合函数形式的δ函数公式0)(,)()()]([1≠''-=∑=i ni i i x h x h x x x h δδ式中i x 是h(x)=0的根,)(i x h '表示)(x h 在i x x =处的导数。

于是)()()(sin x comb n x x n =-=∑∞-∞=πδπππδ1.4 计算图题1.1所示的两函数的一维卷积。

解:设卷积为g(x)。

当-1≤x ≤0时,如图题1.1(a)所示, ⎰+-+=-+-=xx x d x x g 103612131)1)(1()(ααα图题1.1当0 < x ≤1时,如图题1.1(b)所示, ⎰+-=-+-=13612131)1)(1()(xx x d x x g ααα 即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤≤--+=其它,010,61213101,612131)(33x x x x x x x g 1.5 计算下列一维卷积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)n ( x n)
n
comb( x)exp( j x ) comb( x) (1)n ( x n) ( x n)
n
n
0 n为奇数
2 ( x 2n)
n
1.4 计算下面两个函数的一维卷积
h( x) 1 x
f (x) 1 x
1
0
x
解:(1)改变量
h( )
0
1
x
f ( )
e xp(
x2
2 2
)
e xp
x2
2
2
2
?
2 exp 2 2 2
2 exp 2 2 2 2
1.7 计算积分
(1) sinc4( x) ? (2) sinc2( x)cos x ?
解:利用广义巴塞伐定理求解
f ( x, y)g (x,y)dx dy F ( , )G ( , )d d
2
2
2
2
1 rect( x
3 1 2)
1 rect ( x 2.5 )
2
2
2
2
(2) rect( x 1) rect( x 1)
2
2
rect( x 1)
2
rect( 1)
2
2 x
2 x0
0 x2
1 x2 2
2 x
g( x) 0 d x 2
2
g( x) x d 2 x
0
其它
1.5 计算下列一维卷积
(1) (2 x 3) rect( x 1)
2
(2) rect( x 1) rect( x 1)
2
2
(3) com b( x) rect( x)
解(1)
(1) (2 x 3) rect( x 1) 1 ( x 3 ) rect( x 1)
1.9 设 f ( x) exp( x ), 0 求
f ( x( )
0
exp( x)exp( j2 x)dx
exp( x)exp( j2 x)dx
0
2 2 (2 )2
f ( x) dx
2 2 (2 )2
0
2
1.10设线性平移不变系统的原点响应为 h( x) exp( x)step( x) 试计算系统对阶跃函数step(x)的响应。
第一章
1.2 证明 comb( x ) comb( x)exp( j x ) comb( x)
2
证:comb( x )
( x n) 2
( x 2n)
2
2 n
n
ccomb( x)exp( j x ) ( x n)exp( j x)
n
( x n)exp( j n)
n
0
32 6
当 0 x 1 如图
f ( )
相乘、积分得卷积
h( x )
1
g( x) x f ( )h( x )d
0x 1
1
x (1 )(1 x )d
1 1 x 1 x3 32 6
g( x)
1 1 x 1 x3 32 6 1 1 x 1 x3 32 6
1 x 0 0 x1
0
(2)折叠
1
(3)位移 当 1 x 0
0
1
h( x ) f ( )
0 1 x 1
(3)位移 当 1 x 0 如图
h( x )
f ( )
相乘、积分得卷积
1 x
g( x) 0 f ( )h( x )d
0 1 x 1
1 x
(1 )(1 x )d
1 1 x 1 x3
2
2
1 1
2
-1
1 3
1
2
1
2
2
1 1
2
G( ) 1
2
1
12d 2
1 2
G( ) 1
1
2 d
3
2 1
42
G( ) 1
2
1
1 d 2
3
42
G( )
3
42 1/2
3
42 0
3 1
2
2
1 1
2
2
1 3
2
2
其它
G( ) 3 ( ) 1 ( )
4 3/ 2 4 1/ 2
=
1.6 已知 exp( x2 ) 的傅里叶变换为 exp( 2 ) 试求
exp( x2 ) ?
x2
e xp(
2
2
)
?
解: 利用傅里叶变换的坐标缩放性质可求得答案
f (ax, by) 1 F ( , )
ab a b
exp( x2 )
e xp(
x
2
)
exp( 2 2 )
x1
2
2 x
2 x0
g( x) 2 x
0 x2
0
1 x 2
=2 1 x 2
0
其它 2 x0
0 x2 其它
g(x) 2 ( x ) 2
(3) comb( x) rect( x) ( x n) rect( x)
comb( x)
n
comb( x) rect( x)
rect( x)
h( ) 1
f ( ) 1
01
0
(2)、将h() h(-)只要将h()曲线相对纵轴折叠便得到其镜
像h(-)曲线。
f ( )
h(- ) 1
1
01
0
(3)、将曲线h(-)沿x轴平移x便得到h(x-), 当x 0时, f ( )h( x ) 0 因此 g(x)=0
当x 0时,计算积f(α)h(xα)曲线下面的面积
f ( )
1
h( x - )
0x
g( x)
x
g( x) 0 f ( )h( x )d
x
-( x )
0 1 e d
g( x0 )
x
-( x )
1 e d
1 ex
0
x 0 x0
1.11 有两个线性平移不变系统,它们的原点脉冲响应分别为 h1( x) sinc( x) 和 h2 ( x) sinc(3 x) 试计算各自对输入函数 f ( x) cos 2 x 的响应 g1 ( x) 和 g2 ( x)
(1)
sinc4( x)
( ) ( )d
( )
1
1
0 (1 )2d 1 (1 )2d 2
1
0
3
(2)
sinc2( x)cos xdx
1 ( ) ( 1 )d 1 ( ) ( 1 )d
2
2
2
2
1 ( 1) 1 (1) 1 2 222 2
1.8应用卷积定理求 f (x) sinc(x)sinc(2x) 的傅里叶变换
解: sinc(x)sinc(2x) sinc(x) sinc(2x)
1 rect( ) rect( ) G( )
2
2
1
1
1 1
2
2
3 1
2
2
1
1 3
2
2
1 1
2
2
1
2
3 1
解: h( x) exp( x)step( x) exp( x) g(x) step( x) h( x) f ( x) h( x)
x0 x0
f (x)
1, x 0 0, 其它
h( x)
1
h( x )
ex , x 0 0, 其它
f (x)
1
x 01
x 0
(1)、将f (x)和h (x)变为f ()和h (),并画出相应的曲线
相关文档
最新文档