浅析发电机漏氢原因及处理 林享 郝元
发电机漏氢故障分析与处理

发电机漏氢故障分析与处理
故障现象:发电机漏氢量量大,一天需补氢21m3/d,
原因分析:机组正常运行补氢量应小于14 m3/d,补氢量大应是氢气系统有漏点,存在漏点的地方主要是
1)、管道、阀门法兰接合面。
2)、阀门盘根压兰处。
3)、管道丝扣接口处
4)、密封油排油风机排气口处
5)、氢管道排污阀未关严
处理方法:将所有的法兰、丝扣接口处先用测氢仪测量是否有漏氢,然后用肥皂水喷到法兰合接口处,观察是否有气泡产生就可确认是否漏氢。
然后将法兰或接口进行紧固或用胶粘。
将系统管道漏点处理完后,最后确认排油风机排气口处也泄漏。
说明发电机轴瓦处漏氢只能在机组小修时将发电机轴瓦进行调整。
防范措施:
1)、打开氢管道排污门后应及时关闭,并确认关闭牢固。
2)、大小修应对所有的接头和法兰及盘根泄漏处进行彻底处理。
发电机漏氢查找及处理措施

发电机漏氢查找及处理措施一、漏氢原因1.1 漏氢原因:发电机漏氢的主要原因是氢气的泄漏,导致氢气的浓度下降,从而影响发电机的发电效率和运行时间。
发电机漏氢的原因有以下几方面:1)发电机容器(压力容器)密封不良或材料受腐蚀,出现渗透,从而使氢气渗漏出来。
2)储氢罐、氢气管路等连接处密封不良,氢气从这些连接处泄漏出来。
3)发电机设备使用寿命过长,使得部分材料老化、裂纹等,使氢气从这些裂缝、破损处泄漏。
4)发电机的安装误差和设备损坏。
5)机组的振动和过度磨损。
1.2 检测方法:1)使用氢气检测仪检测气体泄漏。
可检测到漏氢点的位置。
2)检查设备是否有震动、声音、异味等现象。
检查设备的总体状态。
二、处理措施2.1 发现漏氢点的位置,停机处理首先,应该对漏氢点进行检查,找到漏氢点的位置。
对于漏氢点无法确定的情况,应该对整个发电机进行检查,确定漏氢点或可疑部位。
2.2 修复漏氢点修复漏氢点时应注意:1)检查密封材料的完整性,如需要更换。
2)检查泄漏点是否有深刻的裂纹或明显的变形。
3)确保修复后的设备可以承受系统压力和温度。
4)确认修复后设备的功能是否正常。
2.3 检查机组全面状态1)根据修复需求调整设备的位置和保养设备。
2)查找其他可能存在的故障。
3)更换损失严重的部件。
2.4 安全措施1)在停止使用或修复发电机之前,应该减压,以防止氢气泄漏。
2)使用安全设备来保护工作场所。
3)根据实际情况做好现场安全管理。
总之,为了预防发电机漏氢现象,除了准时进行发电机维护外,还需要对发电机进行不定期维护和检查。
只有做到这些,才能保证发电机的正常运行和安全使用。
发电机漏氢原因分析与防范措施

5 )重 新修 订检 修 工艺 规 程 。水 系统 禁 【 L 使H { 棉 垫 和蓝胶 。拆 卸水 系统 管道必 须 落实好 监 护工
作, 防止 异物 掉入 机 内。
6 ) 制定 发 电机反 冲洗 规 定 - 竖持 “ 儿俘 必 冲” 原 则 。利用 机组 检修机 会对 发 电机绕 组进 行 i l 反『 叶 1 洗, 确保 绕 组 内部 无堵 塞 、 尤异 物 。
路的密封绝缘老化等处 泄露 。内漏 基本属 于 “ 暗
漏 ”, 漏 点位置 不 明确 , 检 查处 理较 为 复杂 , H处
理 时 间较 长 , 影 响 到 发 电机 定 子 线 棒 绝 缘 和 使 用
发 电机漏 氯 的主 要途 径有 外漏 和 内漏两种 。外 漏足 由 : 接 漏到 大气 中 ,内漏是 漏到发 电机 密封 油 和
l 08 0 ~3 5 66 — 3 8 2 0
定 子线 圈接 线 方 式
双 星 肜
电机 采川 为 水 氢氰 冷 却 办 式 , 即定 子 绕 组 为 水 内
冷, 定 绕 组 端 部 接 头 采 用 “ 水 电分 开 ” 结 构 。定
绝缘等级
冷却水最高温度/ q C
F级 ( 按 B级 使 刖 )
议, 以 供 仃参 考借 鉴
关键词 :发 电机 ; 漏氖; 分析 ; 结合 面 ; 线棒
表 1 发 电 机主 要参 数
0 引言
型 号
2 1 f 6 7 0 9 6 0 / 1 V H
58 8 0 00 5 00 0 00
50
漏氢 是 氢 冷 发 电 机 任 运 行 中 普 遍 存 在 的 现
7 )严 格执 行 发 电 机 大 修 后 气 密 性 试 验 、 氢 气 冷却 器气 密 ( 水压) 试 验 和 回装 后 的 整体 气 密 试验 , 以保 证发 电机 漏氢 率 ( 量) 达 到预 定 目标 , 将 所 有 造 成 系统泄 漏 的现象 在 此 阶 段 消 除 , 合格 f 禁 机 组
发电机漏氢查找及处理措施

发电机漏氢查找及处理措施发电机是发电厂的主要设备之一,其可靠性和安全性对整个电网系统的稳定运行至关重要。
而发电机漏氢是影响发电机安全性的一个重要问题,不仅可能导致设备损坏和损失,还可能引发事故,对人身安全造成威胁。
及时查找和处理发电机漏氢问题至关重要。
本文将从漏氢的原因、检测方法和处理措施等方面进行介绍。
一、漏氢的原因1. 设备老化:发电机在长期运行过程中,受到电机负载、磁通变化等因素的影响,会导致绝缘材料老化,从而引起绝缘降低,氢气泄漏现象。
2. 设备制造质量:制造过程中存在缺陷或者质量不合格,如焊接不牢固,密封不严等,容易引起漏氢现象。
3. 非法操作:人为操作不当,如意外损坏设备,或者使用不当等,也可能导致漏氢问题的发生。
二、漏氢的检测方法1. 气体检测仪:可以使用氢气检测仪进行现场检测,通过检测氢气浓度的大小来确定是否存在漏氢问题。
2. 线缆检测:通过发电机线缆的绝缘电阻检测来确认绝缘状态,从而判断是否有漏氢现象。
3. 人工巡检:定期对发电机进行人工巡检,检查设备有无损坏、泄漏等情况,及时发现问题并进行处理。
三、漏氢的处理措施1. 更新设备:针对老化的设备,可以进行设备更新或更换,提高设备的绝缘性能,减少漏氢的发生。
2. 加强维护:定期对设备进行维护和检修工作,保持设备的良好状态,减少意外发生的可能。
3. 安全防护:在设备周围加装氢气检测器和报警系统,及时发现氢气泄漏情况,并采取相应的措施进行处理,保障设备和人员安全。
4. 提高安全意识:加强员工的安全培训和教育,提高员工对漏氢问题的认识和重视程度,减少因操作不当引起的问题。
发电机氢气泄漏原因分析及防范措施

一、发电机氢气泄漏原因分析及防范措施1、发电机本体方面发电机本体在安装过程中必须严格按照制造厂图纸说明书和《电力建设施工及验收技术规范》(以下简称《规范》)做好以下现场试验:①发电机定子绕组水路水压试验。
该试验必须在电气主引线及柔性连接线安装后进行,主要检查定子端部接头、绝缘引水管、汇水管、过渡引线及排水管等处有无渗漏现象。
②发电机转子气密性试验。
试验时特别要用无水乙醇检查导电螺钉处是否有渗漏现象。
③氢气冷却器水压试验。
④发电机定子单独气密性试验。
试验时用堵板封堵密封瓦座,试验范围包括:定子、出线瓷套管、出线罩、测温元件接线柱板、氢冷器、氢冷器罩、端盖、机座等。
试验介质应为无油、干净、干燥的压缩空气或氮气,试验压力为0.3Mpa,历时24小时,要求漏气量小于0.73m3/24h(或漏氢率小于0.3%)。
2、发电机外端盖方面①在发电机穿转子之前先进行外端盖试装。
主要检查水平、垂直中分面的间隙,在把紧1/3螺栓状态下,用0.03mm塞尺检查应不入。
②在把合外端盖前,应预填HDJ892密封填料于接合面密封槽内,然后均匀把紧螺栓。
再用专用工具注入HDJ892密封胶于密封槽内。
3、氢气冷却器方面①氢气冷却器罩通过螺栓把紧在定子机座上,之间的结合面有密封槽,注入密封胶进行密封,安装完后在氢气冷却器罩与定子机座之间烧密封焊。
②氢气冷却器装配在氢气冷却器罩内,冷却器与冷却器罩之间用密封垫密封,密封垫两面均匀涂一层750-2型密封胶,氢气冷却器组装前后均进行严密性试验。
4、发电机出线罩处泄漏发电机出线罩安装完后应及时烧密封焊,一旦穿入出线将无法内部焊接,若运行中确认发电机出线罩处泄漏,往往因位置狭窄或运行安全考虑无法处理。
5、发电机轴密封装配方面轴密封装置是氢密封系统中一个很重要的环节,机组大多采用双流环式油密封,密封瓦的氢侧与空侧各自是独立的油路,平衡阀使两路油压维持平衡(压差小于1Kpa);油压与氢压差由差压阀控制(压差为0.085±0.01MPa),密封瓦可以在轴颈上随意径向浮动,并通过圆键定位于密封座内。
发电机漏氢查找及处理措施

发电机漏氢查找及处理措施
发电机漏氢是指发电机在运行过程中,氢气泄漏到周围环境中。
氢气是一种易燃易爆的气体,如果发电机漏氢严重,存在着安全隐患,因此需要及时查找并采取相应的处理措施。
一、发电机漏氢的原因
1. 爆炸盖门未密封好。
爆炸盖门是发电机中重要的密封部件,如果安装不牢固或密封不好,就容易造成氢气泄漏。
2. 氢气管道连接不严密。
发电机中氢气管道连接部分是氢气泄漏的重要位置,如果连接不牢固或密封不好,就会导致氢气泄漏。
3. 氢气压力过高。
如果发电机中氢气压力过高,就容易导致氢气泄漏。
4. 氢气泄漏检测装置故障。
发电机中一般会安装氢气泄漏检测装置,用于检测氢气泄漏情况,如果该装置故障,就无法及时察觉氢气泄漏。
1. 检查爆炸盖门的密封情况。
发电机运行前,应仔细检查爆炸盖门是否密封好,如果有松动等情况,应及时修复或更换。
2. 检查氢气管道连接是否严密。
发电机运行前,应仔细检查氢气管道连接处是否有松动现象,如有松动,应及时进行紧固。
5. 建立安全管理体系。
发电机运行过程中,需要建立完善的安全管理体系,严格按照规章制度操作,在确保安全的前提下进行检修和维护。
发电机漏氢是一项非常危险的问题,需要高度重视。
只有加强对发电机运行过程中氢气泄漏的检查和处理,才能确保发电机的安全运行。
浅析600MW氢冷发电机漏氢原因与处理

浅析 600MW氢冷发电机漏氢原因与处理摘要:发电机漏氢原因涉及多个方面,本文结合哈尔滨电机厂生产的QFSN-600-2YHG型汽轮发电机漏氢情况,说明了发电机本体结合面等位置可能存在的漏氢原因及处理方法,并阐明了发电机漏氢的检测方法。
关键字:发电机,漏氢,处理,检测0 前言发电机漏氢涉及设备制造、检修工艺等多方面原因,本文结合哈尔滨电机厂生产的QFSN-600-2YHG型汽轮发电机漏氢情况,阐明常见的发电机漏氢原因与处理方法。
1 发电机漏氢原因分析及处理1.1 发电机本体结合面发电机本体结构复杂,主要结合面包括发电机端盖与基座结合面、上下端盖结合面、本体各人孔门等,为防止这些部位漏氢,应采取以下措施:1.发电机检修回装时,必须保证发电机端盖与基座结合面、上下端盖结合面光滑、无毛刺,注胶沟道清理干净,紧固螺栓均匀使力防止紧偏,端盖回装后,应分段注胶,注胶至胶孔溢胶为止,注胶完毕密封好注胶孔。
2.发电机检修中凡打开的人孔门,有条件的应更换新密封垫,不具备条件的也应认真检查密封垫弹性及有无破损情况,存在问题的必须更换。
应当做好密封垫材质把控,选择质地优良、一次成型的氟橡胶密封垫,严禁使用合成橡胶、再生橡胶制品。
以上部位问题,应当在发电机检修后的气密性试验中查找并消除,如运行中出现漏氢大问题,也应该对上述重点部位进行排查,并通过端盖加注密封胶,适当紧固螺栓等方法排除漏点。
1.2密封油系统1.密封油压应调整合理。
对于双流环密封瓦结构,密封油系统平衡阀、差压阀必须保证动作灵活,跟踪性能良好,我厂集控运行规程规定:油氢压差为0.084Mpa,空、氢侧密封油差压为0.5kPa,运行中应当严格控制,以防止密封油进入发电机内部、氢气外排或大量进入密封油、经密封油外排的现象发生。
2.保证密封瓦安装质量。
近年,密封瓦安装质量不高已成为我厂发电机漏氢量大的主要因素。
保证密封瓦安装质量,密封瓦间隙必须调整合格,密封瓦法兰面所使用的密封材料,一定要进行检验合格后方可使用,涂抹密封胶一定要涂匀不能有断点,以防止氢气由此处泄漏。
浅析氢冷发电机组漏氢的问题

浅析氢冷发电机组漏氢的问题摘要:氢冷发电机组是由氢冷却器和发电机组组成的发电设备,其具有高效节能、绿色环保等优点,但同时也存在着漏氢问题。
本文对氢冷发电机组漏氢问题进行分析,阐述了它的成因与影响,以及其解决方法。
关键词:氢冷发电机组,漏氢,成因,影响,解决方法。
正文:1. 氢冷发电机组漏氢成因氢冷发电机组漏氢问题主要有以下三种成因:(1)氢气管路和接头密封不良。
氢气管路和接头密封不良会导致氢气泄漏,严重时会导致氢冷却器失效。
(2)氢冷却器内外壁通气孔堵塞。
氢冷却器内外壁通气孔的堵塞会导致内外压力失衡,从而导致氢气泄漏。
(3)氢冷却器壳体漏氢。
在使用过程中,氢冷却器壳体会受到冲击和磨损,从而导致氢气泄漏。
2. 氢冷发电机组漏氢的影响氢冷发电机组漏氢问题的影响主要有以下三点:(1)安全隐患。
氢气具有易燃易爆的特性,一旦发生泄漏,极易引发火灾或爆炸事故,对人员和设备都会造成严重伤害和损失。
(2)降低发电效率。
氢冷发电机组泄漏了氢气后,其冷却效果将受到影响,从而使发电效率下降。
(3)环境污染。
氢气是一种危险化学品,如果泄漏,会对周围环境造成污染,对生态环境和人居健康造成威胁。
3. 氢冷发电机组漏氢的解决方法为了保证氢冷发电机组的安全可靠运行,并提高其使用寿命,需要采取以下措施来解决漏氢问题:(1)加强预防措施。
加强对氢气管路和接头的检修和维护,定期清洗和检查氢冷却器内外壁通气孔以防止堵塞,及时更换磨损严重的氢冷却器壳体。
(2)提高密封性能。
采用高质量的密封材料和技术,提高密封性能,减少氢气泄漏的风险。
(3)加强监测和安全措施。
建立完善的氢气泄漏监测系统,及时发现和处理泄漏事故。
另外,要制定严格的安全操作规程和应急预案,做好应急处理和救援工作。
结论:综上所述,氢冷发电机组漏氢问题对设备使用和人员安全都会带来很大的威胁,需要及时采取有效措施预防和解决。
各企业应根据自身实际情况,实行科学的管控措施,避免漏氢事故的发生,保障氢冷发电机组的安全、可靠运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅析发电机漏氢原因及处理林享郝元发表时间:2018-01-18T09:49:53.090Z 来源:《基层建设》2017年第30期作者:林享郝元[导读] 摘要:福清核电发电机组采用氢气冷却,而氢冷发电机漏氢量的大小影响到发电机组的安全稳定运行,本文主要针对福清核电3台机组商运以来出现的漏氢现象的概述与事件分析处理,并根据原因和处理过程对今后的发电机检修、运行提供了相应的预防措施。
福建福清核电有限公司福建福清 350318摘要:福清核电发电机组采用氢气冷却,而氢冷发电机漏氢量的大小影响到发电机组的安全稳定运行,本文主要针对福清核电3台机组商运以来出现的漏氢现象的概述与事件分析处理,并根据原因和处理过程对今后的发电机检修、运行提供了相应的预防措施。
关键词:漏氢;分析;发电机;密封瓦;发电机的正常工作离不开发电机各系统之间的平衡与协调,发电机的漏氢会直接影响电机组的经济安全运行。
引起发电机漏氢产生的原因多种多样,因此如何减少发电机组漏氢现象,将漏氢量控制在规定范围,实现发电机组的安全、经济运行,是值得深入研究的问题,针对发电机的漏氢原因展开分析,从漏氢原因出发,提出相应的解决措施,并提出相应的漏氢查找方法,以实现发电机的经济安全运行,提高发电机的实际经济效益。
1 福清核电3台机组发电机大修气密性试验不合格与漏氢事件过程以及检查发电机内氢气压力不能够保持在额定值,从而影响到发电机的出力由于发电机漏氢量过大,消耗氢气过多,从而造成制氢站不能够满足氢气需量要求,只能从外地购买氢气,耗费大量资金。
现在机组运行所需要的氢气就是从外地购买的氢气。
制氢站因为设备本身问题而未投入运行。
一、二号机组基本上每班都要补充氢气一次。
漏氢气量基本上在40多立方米/天。
由于发电机存在漏氢,而氢气又是易燃易爆气体,在和氧气混合后极易引起氢气爆炸,发电机周围着火,造成发电机损坏,酿成重大事故。
所以发电机漏氢应该引起高度重视,加强巡检。
1.1福清三台机组出现的漏氢事件1) 2015年11月29日,1#机组小修后重新启动,发电机漏氢量达20m³/天;2) 2015年4月3日,2号机组启动进行发电机密封性试验失败;3) 2016年6月,3号机组启动进行发电机气密性试验失败4) 2016年12月,2号机组首次大修完毕后启动进行发电机密封性试验失败5) 2017年2月24日发电机漏氢量13.41m³/D1.2问题检查与处理过程1.2.1影响发电机漏氢量的因素很多,涉及到制造、安装、运行、检修等各方面a. 密封瓦油路堵塞(如滤网堵塞、差压阀故障)等使密封油压降低。
b. 密封瓦与轴之间以及密封瓦与瓦座之间的间隙大c. 各法兰及发电机本体各结合面包括大端盖、人孔门等的密封橡胶或密封垫不良d. 氢气冷却器铜管是否破裂e. 所有要求关闭的阀门未关严f. 发电机本体和各管道的焊缝焊接不好g. 氢气系统内阀门内漏2015年11月29日1号机组小修后启动漏氢量大问题运行一处专工组织各部门对现场进行一次整体查漏工作,发现了诸多漏点,并通过封堵形式进行处理1)运行人员对每日漏氢量变化监测2)发电机消泡箱通气接口法兰漏氢,12月12日采用胶带式密封堵漏3)发电机底部油水报警器1GRV005SN返回发电机内螺纹接口漏氢,12月12日采用夹具堵漏4)发电机底部汽端左侧孔洞部位氢积聚,12月12日底部堵漏完成后吹扫,14日复检无氢5)发电机励端端盖有一处顶丝孔存在漏氢,并进行紧固最终在2015年12月15日,发电机漏氢量下降至10m³/D以下1.2.2关于气密性试验不合格问题主要原因在于设计选型错误、安装质量不合格、误启动GST系统以及轴端密封处泄漏。
2 原因分析a. 设计选型错误:发电机氢气供应系统设备供应厂家在设备出厂前均做过气密性实验,在保证设备气密性良好的前提下,才供货出厂,因此设备在出厂时气密性是有可靠保障的,设计选型问题主要反映在乙供阀门内漏方面。
b. 安装质量不合格:GRV系统管线接头泄漏:其中90%管线接头泄漏的位置都在GRV发电机氢气供应系统设备上的相关仪表与相应设备连接处,漏点十分集中。
这是因为在进行发电机气密性实验之前,安装公司对该系统相关仪表进行定期校验。
拆卸的仪表恢复过程中,并未保证其恢复仪表连接处的气密性。
GRV系统法兰泄漏:发电机氢气供应系统是按成套设备分模块供应至福清现场,模块之间是需要安装单位进行现场安装,该系统存在法兰泄漏,主要原因在于安装单位安装精度不够造成。
发电机励磁端氢气冷却器密封条存在较大漏点,分析原因为:压条未安装到位,螺栓紧固力矩不平衡,力矩不合要求。
汽端氢气冷却器右侧上端面法兰、氢气冷却器下部法兰有漏点、密封油回油管道法兰(励端)泄漏、定子冷却水回水管道法兰泄漏,原因为:螺栓紧固力矩不平衡,力矩不合要求。
发电机汽端左侧测温探头第一个电缆法兰处泄漏,原因为:法兰上引出线丝堵紧固力矩不足。
发电机通风罩人孔漏点(2处),原因为:紧固力矩不平衡、人孔门处垫片不合格、人孔门本身平整度不合格。
GRV001EL电磁阀内漏原因:由于该阀门长期未使用,内部橡胶老化造成。
从以上分析可知,安装质量差直接导致多次气密性试验不合格,而且主要原因就是设备连接处紧固力矩不够,未对称紧固。
在后续机组中,应在安装质量上严格考核和把关。
误启动GST系统:在实验过程中,GST发电机定子冷却水系统处于连续运行状态,不符合实验前提条件。
在发电机整体气密性实验期间,不能启动对发电机内部测温测压仪表造成干扰的相关系统:GST发电机定子冷却水系统、GRH发电机氢气、励磁机空气冷却和温度测量系统。
因此,实验结果不合格,需要重做。
气密性试验的验收标准为24小时后压降必须低于20mbar,泄漏率计算公式如下[4]:c. 通过泄漏率计算公式分析可知:测试结束时氢气平均温度t2偏低、氢气压力P2 偏高,均会使实验结果ΔP减小,使计算出的泄漏率ΔP偏小,很可能使不满足泄漏率验收标准的试验,因为人为改变t2或p2,而使实验泄漏率的计算结果合格。
GST系统在运行过程中,发电机内部的气体是不会流动的,并且会对相应温度探头造成加热,使所测结束时的氢气平均温度升高,造成计算公式中ΔP减小,使实验结果合格。
但是气体并未流动,该温度,不能真实表达发电机内部气体温度。
因此实验结果不合格。
d. 轴端密封处泄漏,密封瓦处安装精度不达标导致发电机气密性不合格的情况也时有发生。
虽然在1号发电机气密性试验过程中,并没有发现轴端有泄漏,但在此处一并提出进行分析,以便后续机组采取借鉴。
发电机端盖中分面密封结构示意图5 [5],其中红色代表密封油,蓝色代表端盖中分面密封胶,绿色代表橡胶条。
发电机轴端密封中,径向密封依靠有两条密封胶条、大端盖处密封胶,轴向密封依靠密封瓦室内密封油、中分面处密封油槽、密封胶。
发电机端盖中分面密封结构示意图发电机轴端密封泄漏的原因包括:密封油压低,密封油进油堵塞;密封瓦安装不合格,瓦块刮伤、有污垢等;过渡环胶条质量不合格、安装不合格、螺栓力矩不平衡、力矩过小;密封胶粘度不够,压力不足;端盖与发电机端罩结合面平整度不合格,间隙过大;端盖、过渡环,密封瓦室中分面平整度不合格;密封胶渗入到油槽,堵塞油路,造成密封瓦室、过渡环中分面未充满油,密封不够。
发电机轴端密封如果出现泄漏,则需对照上述可能原因逐个排查。
3 发电机氢内漏防范措施a. 运行人员应监视发电机线棒温度,线棒出水温度,有异常时引起高度重视。
发电机运行期间,运行人员定期检查漏液监测装置,并密切监视发电机的定冷水质,如异常,通知相关专业要查明原因并及时消除。
b. 运行要严格控制发电机各系统运行参数,保证氢压高于内冷水压,防止由于发电机内部水系统部位损坏,出现向发电机内漏水。
c. 发电机运行期间,要关注油氢压差,排烟风机管路氢气浓度,密封油压等d. 发电机大修时,将冷却器抽出进行外部检查和清理,检查密封件,重点检查内部各法兰结合面,发现密封垫有老化现象,及时更换处理。
e. 机组停运期间要检查水氢压差平衡阀,就地仪表,二次阀等部件存在漏点,防止故障将氢气漏入定子水路f. 重点区域排查,经过几次氢气泄漏的处理,目前运行人员已编制氢气区域泄漏排查方案4 针对GRV氢气泄漏的技术改造4.1改造必要性与可行性分析发电机及其辅助系统存在漏点。
若不及时发现,势必将导致常规岛厂房氢浓度上升,造成氢爆风险。
经与秦山二期常规岛专家调研,秦山二期在发电机氢气分配系统相关敏感设备适合位置安装了相应的氢浓度探测仪,并且将厂房氢浓度高报警送主控DCS二层,以便操纵员及时发现处理事故。
因此我们根据福清现场实际情况结合秦山二期的实践,建议在下述位置安装氢浓度探测仪,并将厂房浓度高报警送主控DCS二层。
因此具备改造的必要和可行性。
4.2 所有涉及漏氢泄漏区域的选点4.3改造效果经过两台机组大修对GRV区域的增加的氢气浓度探测仪,效果很明显,特别是2号机组在2017年2月时,出现过浓度高报警,并且帮助运行人员迅速锁定漏点,及时联系维修处理,避免了一次事故的发生。
5 结论及建议当发电机发生漏氢故障后,检查处理的周期较长,对发电机的安全稳定运行影响比较大,建议在安装过程中应加强过程控制、严把质量关,确保发电机本体及氢气系统安装工艺,保证密封油的清洁度。
在运行过程中,当发现发电机漏氢事件,应加强设备巡视,缩短检修周期,当漏氢量明显增加或遇到检修机会时应立即安排检查处理。
在处理过程中,一定要严格遵守工艺纪律,提高检修技能,严格执行防范措施,这样才能从根本上解决发电机漏氢量超标的症结。
参考文献[1]彭航宇,.《发电机漏氢原因分析及处理》[Z],2015,9,30PengHangyu.《Thegeneratorhydrogenleakagereasonanalysisandprocessing》,2011,11,09[2]付蓉,.《GRV增设氢浓度探测报警装置变更》[Z],2015,11,24FuRong,《Addinghydrogenconcentrationchangedetectionalarmdevice》[3]李伟清,.《汽轮发电机故障检查分析与预防》[Z],2010LiWeiqing,《Steamturbinegeneratorfaultinspectionanalysisandprevention》[4]钱准,.《GRV发电机氢气供应系统手册》[Z],2011,07,11QianZhun,《Thegeneratorhydrogensupplysystemmanual》作者简介林享(1989—),男,江苏南京人,本科,助理工程师,从事核电厂运行技术工作。
郝元(1988—),男,内蒙古人,本科,助理工程师,从事核电厂运行技术工作。