同角三角函数关系、诱导公式题型归纳
同角三角函数的基本关系与诱导公式考点与提醒归纳

同角三角函数的基本关系与诱导公式考点与提醒归纳1.同角三角函数的基本关系:在一个单位圆上,以原点为中心,作出一个角度为θ的角。
那么,角θ的终边与单位圆交于一点P,点P的坐标可以表示为(Px,Py)。
根据三角函数的定义,可以得到以下关系:(1) 正弦函数(sin):sinθ = Py(2) 余弦函数(cos):cosθ = Px(3) 正切函数(tan):tanθ = Py / Px2.诱导公式:诱导公式是利用同角三角函数的基本关系,通过一些简单的代数运算推导出来的公式。
下面是一些常用的诱导公式:(1)tanθ = sinθ / cosθ -> sinθ = tanθ * cosθ(2)tanθ = py / Px -> Py = tanθ * Px(3)cotθ = 1 / tanθ -> cotθ = cosθ / sinθ(4)secθ = 1 / cosθ -> secθ = 1 / cosθ(5)cscθ = 1 / sinθ -> cscθ = 1 / Py3.开放、诱导角的关系:开放角和诱导角是同角三角函数中的两个重要概念。
(1)开放角:开放角是指角θ的终边所在的象限。
根据角度θ所在的象限,可以确定sinθ、cosθ、tanθ的正负关系。
(2)诱导角:角θ的终边与x轴正半轴之间的夹角记为θ0,称为角θ的诱导角。
根据θ0所在的象限,可以确定sinθ0、cosθ0、tanθ0的值。
4.注意事项:(1)需要记住各个象限中正弦函数、余弦函数、正切函数的正负关系。
通过画图和思考可以帮助记忆。
(2)要掌握正弦函数、余弦函数、正切函数在不同象限中的取值范围,充分理解诱导角与开放角的关系。
(3)熟练掌握诱导公式,能够熟练地根据一个三角函数的值求得其他三个函数的值。
(4)在解决实际问题和解题时,要善于利用诱导公式将一个三角函数转化为其他三个函数,以便更好地解题。
总之,同角三角函数的基本关系与诱导公式是学习三角函数的重要内容,掌握和理解好这一知识点对后续学习和解题非常有帮助。
高考数学复习同角三角函数的基本关系及诱导公式理含解析

高考数学复习核心素养提升练十九同角三角函数的基本关系及诱导公式(30分钟60分)一、选择题(每小题5分,共30分)1.sin(-1 020°)=( )A. B.- C. D.-【解析】选C.sin(-1 020°)=sin(-3×360°+60°)=sin60°=.2.α是第四象限角,tan α=-,则sin α=( )A. B.- C. D.-【解析】选D.因为tan α=-,所以=-,所以cos α=-sin α,代入sin2α+cos2α=1得sin α=±,又α是第四象限角,所以sin α=-.【一题多解】选 D.因为tan α=-,且α是第四象限角,所以可设y=-5,x=12,所以r==13,所以sin α==-.3.已知cos 29°=a,则sin 241°·tan 151°的值是( )A. B.C.-D.-【解析】选B.sin 241°·tan 151°=sin(270°-29°)·tan(180°-29°)=(-cos 29°)·(-tan 29°)=sin 29°=.4.若tan α=2,则2cos 2α+3sin2α-sin2α的值为( )A. B.- C.5 D.-【解析】选A.2cos 2α+3sin2α-sin2α=====.5.若sin(π-α)=-2sin,则sin α·cos α的值等于( )A.-B.-C.或-D.【解析】选A.因为sin(π-α)=-2sin,所以sin α=-2cos α,即tan α=-2,所以原式====-.【延伸探究】本题条件不变,试求的值. 【解析】由sin(π-α)=-2sin知tan α=-2,所以原式====.6.已知tan(α-π)=,且α∈,则sinα+等于( )A. B.- C. D.-【解析】选B.因为tan(α-π)=-tan(π-α)=tanα=>0,又α∈,所以α∈,即cos α<0,所以sin α=cos α,又因为sin2α+cos2α=1,故cos2α+cos2α=1,故cos α=-,因此sin=cos α=-.二、填空题(每小题5分,共15分)7.已知cos=,则sin=________.【解析】sin=sin=cos=.答案:8.已知sin α+2cosα=0,则2sin αcosα-cos2α的值是______.【解析】因为sin α+2cosα=0,所以sin α=-2cos α,所以tan α=-2,又因为2sin αcosα-cos2α==,所以原式==-1.答案:-19.若sin=-,且α∈,则sin=________. 【解析】因为α∈,所以α+∈,所以cos=-=-,所以sin=sin=cos=-.答案:-三、解答题10.(15分)已知在△ABC中,sin A+cos A=.(1)求sin Acos A的值.(2)求tan A的值.【解析】(1)因为sin A+cos A=,所以(sin A+cos A)2=,即1+2sin Acos A=, 故sin A cos A=-.(2)因为sin A-cos A====, ①又sin A+cos A=, ②由①②知,sin A=,cos A=-,因此tan A==-.(20分钟40分)1.(5分)已知θ为直线y=3x-5的倾斜角,若A(cos θ,sin θ),B(2cos θ+sin θ,5cos θ-sin θ),则直线AB的斜率为( )A.3B.-4C.D.-【解析】选D.由题意知:tan θ=3,k AB====-.2.(5分)若sin θ,cosθ是方程4x2+2mx+m=0的两根,则m的值为( )A.1+B.1-C.1±D.-1-【解析】选B.由题意知sin θ+cosθ=-,sin θ·cos θ=.又(sin θ+cos θ)2=1+2sin θcos θ,所以=1+,解得m=1±.又Δ=4m2-16m≥0,所以m≤0或m≥4,所以m=1-.【变式备选】(2018·衡水模拟)已知2θ是第一象限的角,且sin4θ+cos4θ=,那么tan θ=( )A. B.-C. D.-【解析】选A.因为sin4θ+cos4θ=,所以(sin2θ+cos2θ)2-2sin2θcos2θ=,所以sin θcosθ=,所以=,所以=,解得tan θ=(舍去,这是因为2θ是第一象限的角,所以tan θ为小于1的正数)或tan θ=.3.(5分)(2018·镇江模拟)已知锐角θ满足tan θ=cos θ,则= ________.【解析】因为tan θ=cos θ,所以sin θ=cos2θ=(1-sin2θ).因为θ为锐角,所以sin θ=,tan θ=,所以===3+2.答案:3+24.(12分)已知<α<,tan α+=.(1)求tan α的值.(2)求的值.【解析】(1)由已知可得tan α+=,3tan2α-10tan α+3=0,即tan α=3或tan α=.又因为<α<,所以tan α=3.(2)===-=-3.5.(13分)已知tan α=-,α为第二象限角.(1)求的值.(2)求++的值.【解析】(1)原式===-cos α.因为tan α=-,α为第二象限角,所以=-.又sin2α+cos2α=1.解得cos α=-,故原式=.(2)原式=++=++=+,因为α为第二象限角,所以上式=-1-=-1-221313=-1.。
同角三角函数基本关系式及诱导公式-高考数学复习

2.(必修第一册P194练习T2改编)(多选)已知x∈R,则下列等式恒成立的是
A.sin(-x)=sin x
B.sin32π-x=cos x
√C.cosπ2+x=-sin x
√D.cos(x-π)=-cos x
sin(-x)=-sin x,故A不成立; sin32π-x=-cos x,故 B 不成立; cosπ2+x=-sin x,故 C 成立; cos(x-π)=-cos x,故D成立.
3.(必修第一册 P185T6 改编)若 sin α= 55,π2<α<π,则 tan α 等于
A.-2
B.2
1 C.2
√D.-12
∵π2<α<π,∴cos α=- 1-sin2α=-255,∴tan α=csoins αα=-12.
4.已知
cos
α=15,-π2<α<0,则tanα+cπoscoπ2s+-ααtan
为 -13 .
因为 cosπ6+α=-13, 所以 sin23π+α=sinπ2+π6+α=cosπ6+α=-13.
诱导公式的两个应用 (1)求值:负化正,大化小,化到锐角为终了. (2)化简:统一角,统一名,同角名少为终了.
跟踪训练2 (1)化简:
sinθ-sin5θπ-co32sπ-sin2π--θθc-os4π8π-θ等于
(2)(2023·全国乙卷)若 θ∈0,π2,tan θ=12,则 sin θ-cos θ=
-
5 5
.
因为 θ∈0,π2,则 sin θ>0,cos θ>0, 又因为 tan θ=csoins θθ=12,则 cos θ=2sin θ, 且cos2θ+sin2θ=4sin2θ+sin2θ=5sin2θ=1,
2022新高考数学高频考点题型归纳18诱导公式与同角三角函数基本关系式(学生版)

13.(1)求证:tan2αsin 2α=tan2α-sin2α;
(2)已知tan2α=2tan2 β+1,求证:2sin2α=sin2β+1.
14.在ΔABC中,若sin(2π-A)=- sin(π-B ), cosA=- cos(π-B),求ΔABC的三个内角.
(2020·武汉市新洲区第一中学高一期末)在平面直角坐标系 中,以 轴非负半轴为始边作角 , ,它们的终边分别与单位圆相交于 A, 两点,已知点A, 的横坐标分别为 , .
(1)求 的值;
(2)化简并求 的值.
对点训练1.(2021·河南高一期中(文))(1)已知角 的终边经过点 ,化简并求值: ;
函数名改变符号看象限
记忆规律: 奇变偶不变,符号看象限.
2. 运用诱导公式求任意角的三角函数的步骤(☆☆☆)
(1) 把求任意角的三角函数值化为求0°~360°角的三角函数值;
(2) 把求0°~360°角的三角函数值化为求0°~90°角的三角函数值;
(3) 求0°~90°角的三角函数值.
3. 同角三角函数的基本关系(☆☆☆)
例 2-3( 和差积商相互转换)
(2019·山东高三期末(理))已知 , ,则 ( )
A. B. C. 或 D. 或
对点训练1.(2021·山西临汾市·高三二模(理))已知 ,且 ,则 ________.
对点训练2. (2021·全国高一专题练习)已知 ,则 ( )
A. B. C. D.
例2-4(平方与根式处理)
对点训练1.(2020·新课标Ⅰ)已知 ,且 ,则 ( )
A B.
C. D.
对点训练2.【多选题】若 ,且 为锐角,则下列选项中正确的有()
同角三角函数的基本关系与诱导公式知识点

同角三角函数的基本关系与诱导公式知识点[归纳·知识整合]1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1; (2)商数关系:tan α=sin αcos α.[探究] 1.如何理解基本关系中“同角”的含义?提示:只要是同一个角,基本关系就成立,不拘泥于角的形式,如sin 2α3+cos 2α3=1,tan4α=sin 4αcos 4α等都是成立的,而sin 2θ+cos 2φ=1就不成立.2.诱导公式即α+k ·2π(k ∈Z ),-α,π±α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号;π2±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号.[探究] 2.有人说sin(k π-α)=sin(π-α)=sin α(k ∈Z ),你认为正确吗?提示:不正确.当k =2n (n ∈Z )时,sin(k π-α)=sin(2n π-α)=sin(-α)=-sin α; 当k =2n +1(n ∈Z )时,sin(k π-α)=sin[(2n +1)·π-α]=sin(2n π+π-α)=sin(π-α)=sin α. 3.诱导公式的口诀“奇变偶不变,符号看象限”中的“符号”是否与α的大小有关? 提示:无关,只是把α从形式上看作锐角,从而2k π+α(k ∈Z ),π+α,-α,π-α,π2-α,π2+α分别是第一,三,四,二,一,二象限角. [自测·牛刀小试]1.(教材习题改编)已知cos(π+α)=12,则sin α的值为( )A .±12B.12C.32D .±32解析:选D cos(π+α)=-cos α=12,∴cos α=-12,∴sin α=±1-cos α2=±32.2.tan 690°的值为( ) A .-33B.33C. 3 D .- 3解析:选A tan 690°=tan(-30°+2×360°) =tan(-30°)=-tan 30°=-33. 3.(教材习题改编)若tan α=2,则sin α-cos αsin α+cos α的值为( )A .-13B .-53C.13D.53解析:选Csin α-cos αsin α+cos α=tan α-1tan α+1=2-12+1=13.4.(教材习题改编)已知tan α=3,π<α<32π,则cos α-sin α=________.解析:∵tan α=3,π<α<32π,∴α=43π,∴cos α-sin α=cos 43π-sin 43π=-cos π3+sin π3=-12+32=3-12.答案:3-125.计算sin 10π3-2cos ⎝⎛⎭⎫-19π4+tan ⎝⎛⎭⎫-13π3=________. 解析:原式=sin ⎝⎛⎭⎫2π+4π3-2cos ⎝⎛⎭⎫4π+3π4-tan ⎝⎛⎭⎫4π+π3=sin ⎝⎛⎭⎫π+π3-2cos ⎝⎛⎭⎫π-π4-tan π3 =-sin π3+2cos π4-3=-332+1.答案:-332+1[例1] 已知α是三角形的内角,且sin α+cos α=15.(1)求tan α的值; (2)把1cos 2α-sin 2α用tan α表示出来,并求其值.[自主解答] (1)法一:联立方程⎩⎪⎨⎪⎧sin α+cos α=15, ①sin 2α+cos 2α=1, ②由①得cos α=15-sin α,将其代入②,整理得 25sin 2α-5sin α-12=0. ∵α是三角形内角,∴⎩⎨⎧sin α=45,cos α=-35,∴tan α=-43.法二:∵sin α+cos α=15,∴(sin α+cos α)2=⎝⎛⎭⎫152,即1+2sin αcos α=125, ∴2sin αcos α=-2425,∴(sin α-cos α)2=1-2sin αcos α=1+2425=4925.∵sin αcos α=-1225<0且0<α<π,∴sin α>0,cos α<0,∴sin α-cos α>0. ∴sin α-cos α=75.由⎩⎨⎧sin α+cos α=15,sin α-cos α=75,得⎩⎨⎧sin α=45,cos α=-35,∴tan α=-43.(2)1cos 2α-sin 2α=sin 2α+cos 2αcos 2α-sin 2α=sin 2α+cos 2αcos 2αcos 2α-sin 2αcos 2α=tan 2α+11-tan 2α. ∵tan α=-43,∴1cos 2α-sin 2α=tan 2α+11-tan 2α=⎝⎛⎭⎫-432+11-⎝⎛⎭⎫-432=-257.保持本例条件不变,求:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+2sin αcos α的值. 解:由例题可知 tan α=-43.(1)sin α-4cos α5sin α+2cos α=tan α-45tan α+2=-43-45×⎝⎛⎭⎫-43+2=87. (2)sin 2α+2sin αcos α=sin 2α+2sin αcos αsin 2α+cos 2α=tan 2α+2tan α1+tan 2α=169-831+169=-825.———————————————————同角三角函数关系式及变形公式的应用(1)利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.(2)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.(3)注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.1.已知sin α=2sin β,tan α=3tan β,求cos α. 解:∵sin α=2sin β,tan α=3tan β, ∴sin 2α=4sin 2β,① tan 2α=9tan 2β.②由①÷②得:9cos 2α=4cos 2β.③ 由①+③得sin 2α+9cos 2α=4. 又sin 2α+cos 2α=1, ∴cos 2α=38,∴cos α=±64.[例2] (1)已知cos ⎝⎛⎭⎫π6+α=33,求cos ⎝⎛⎭⎫5π6-α的值; (2)已知π<α<2π,cos(α-7π)=-35,求sin(3π+α)·tan ⎝⎛⎭⎫α-72π的值. [自主解答] (1)∵⎝⎛⎭⎫π6+α+⎝⎛⎭⎫5π6-α=π, ∴5π6-α=π-⎝⎛⎭⎫π6+α. ∴cos ⎝⎛⎭⎫5π6-α=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6+α =-cos ⎝⎛⎭⎫π6+α=-33, 即cos ⎝⎛⎭⎫5π6-α=-33.(2)∵cos(α-7π)=cos(7π-α)=co s(π-α)=-cos α=-35,∴cos α=35.∴sin(3π+α)·tan ⎝⎛⎭⎫α-72π =sin(π+α)·⎣⎡⎦⎤-tan ⎝⎛⎭⎫72π-α =sin α·tan ⎝⎛⎭⎫π2-α=sin α·sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α =sin α·cos αsin α=cos α=35.——————————————————— 利用诱导公式化简三角函数的思路和要求(1)思路方法:①分析结构特点,选择恰当公式;②利用公式化成单角三角函数;③整理得最简形式.(2)化简要求:①化简过程是恒等变形;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.2.(1)已知sin α是方程5x 2-7x -6=0的根,且α是第三象限角,则sin ⎝⎛⎭⎫-α-3π2cos ⎝⎛⎭⎫3π2-αtan 2(π-α)cos ⎝⎛⎭⎫π2-αsin ⎝⎛⎭⎫π2+α=( )A.916 B .-916C .-34D.34(2)设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos ⎝⎛⎭⎫3π2+α-sin 2⎝⎛⎭⎫π2+α⎝⎛⎭⎫sin α≠-12,则f ⎝⎛⎭⎫-23π6=________. 解析:(1)选B ∵方程5x 2-7x -6=0的根为x 1=2,x 2=-35,由题知sin α=-35,∴cos α=-45,tan α=34.∴原式=cos α(-sin α)tan 2αsin αcos α=-tan 2α=-916.(2)∵f (α)=(-2sin α)(-cos α)+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α=cos α(1+2sin α)sin α(1+2sin α)=1tan α, ∴f ⎝⎛⎭⎫-23π6=1tan ⎝⎛⎭⎫-23π6=1tan ⎝⎛⎭⎫-4π+π6=1tan π6= 3. 答案: 3[例3] 在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos(π-B ),求△ABC 的三个内角.[自主解答] 由已知得⎩⎪⎨⎪⎧sin A =2sin B ①3cos A =2cos B ②①2+②2得2cos 2A =1 即cos A =22或cos A =-22. (1)∵当cos A =22时,cos B =32, 又A 、B 是三角形的内角,∴A =π4,B =π6,∴C =π-(A +B )=7π12.(2)∵当cos A =-22时,cos B =-32. 又A 、B 是三角形的内角, ∴A =3π4,B =5π6,不合题意.综上知,A =π4,B =π6,C =7π12.———————————————————1.三角形中的诱导公式在三角形ABC 中常用到以下结论: sin(A +B )=sin(π-C )=sin C , cos(A +B )=cos(π-C )=-cos C ,tan(A +B )=tan(π-C )=-tan C , sin ⎝⎛⎭⎫A 2+B 2=sin ⎝⎛⎭⎫π2-C 2=cos C 2, cos ⎝⎛⎭⎫A 2+B 2=cos ⎝⎛⎭⎫π2-C 2=sin C 2. 2.求角的一般步骤求角时,一般先求出该角的某一三角函数值,再确定该角的范围,最后求角.3.在△ABC 中,sin A +cos A =2,3cos A =-2cos(π-B ),求△ABC 的三个内角. 解:∵sin A +cos A =2, ∴1+2sin A cos A =2,∴sin2A =1. ∵A 为△ABC 的内角, ∴2A =π2,∴A =π4.∵3cos A =-2cos(π-B ), ∴3cos π4=2cos B ,∴cos B =32. ∵0<B <π,∴B =π6.∵A +B +C =π,∴C =7π12.∴A =π4,B =π6,C =7π12.1个口诀——诱导公式的记忆口诀 奇变偶不变,符号看象限. 1个原则——诱导公式的应用原则 负化正、大化小、化到锐角为终了.3种方法——三角函数求值与化简的常用方法(1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π4=….3个防范——应用同角三角函数关系式与诱导公式应注意的问题(1)利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.特别注意函数名称和符号的确定.(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. (3)注意求值与化简后的结果一般要尽可能有理化、整式化.易误警示——应用同角三角函数平方关系的误区[典例] (2011·重庆高考)若cos α=-35,且α∈⎝⎛⎭⎫π,3π2,则tan α=________. [解析] 依题意得sin α=-1-cos 2α=-45,tan α=sin αcos α=43.[答案] 43[易误辨析]1.解答本题时,常会出现以下两种失误(1)忽视题目中已知条件α的范围,求得sin α的两个值而致误; (2)只注意到α的范围,但判断错sin α的符号而导致tan α的值错误. 2.由同角三角函数的平方关系求sin α或cos α时,要注意以下两点(1)题目中若没有限定角α的范围,则sin α或cos α的符号应有两种情况,不可漏掉. (2)若已给出α的范围,则要准确判断在给定范围内sin α或cos α的符号,不合题意的一定要舍去.[变式训练]1.(2013·福州模拟)已知α∈⎝⎛⎭⎫π,3π2,tan α=2,则cos α=________. 解析:依题意得⎩⎪⎨⎪⎧tan α=sin αcos α=2,sin 2α+cos 2α=1,由此解得cos 2α=15,又α∈⎝⎛⎭⎫π,3π2,因此cos α=-55. 答案:-552.(2013·泰州模拟)若θ∈⎝⎛⎭⎫π4,π2,sin 2θ=116,则cos θ-sin θ的值是________. 解析:(cos θ-sin θ)2=1-sin 2θ=1516.∵π4<θ<π2,∴cos θ<sin θ.∴cos θ-sin θ=-154. 答案:-154一、选择题(本大题共6小题,每小题5分,共30分) 1.α是第一象限角,tan α=34,则sin α=( )A.45 B.35 C .-45D .-35解析:选B tan α=sin αcos α=34,sin 2 α+cos 2α=1,且α是第一象限角,所以sin α=35.2.若sin ⎝⎛⎭⎫π6+α=35,则cos ⎝⎛⎭⎫π3-α=( ) A .-35B.35C.45D .-45解析:选B cos ⎝⎛⎭⎫π3-α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π6+α=sin ⎝⎛⎭⎫π6+α=35. 3.(2013·安徽名校模拟)已知tan x =2,则sin 2x +1=( ) A .0 B.95 C.43D.53解析:选B sin 2x +1=2sin 2x +cos 2x sin 2x +cos 2x =2tan 2x +1tan 2x +1=95.4.已知f (α)=sin (π-α)cos (2π-α)cos (-π-α)tan α,则f ⎝⎛⎭⎫-313π的值为( ) A.12 B .-13C .-12D.13解析:选C ∵f (α)=sin αcos α-cos αtan α=-cos α,∴f ⎝⎛⎭⎫-313π=-cos ⎝⎛⎭⎫-313π=-cos ⎝⎛⎭⎫10π+π3 =-cos π3=-12.5.(2013·西安模拟)已知2tan α·sin α=3,-π2<α<0,则sin α=( )A.32B .-32C.12 D .-12解析:选B 由2tan α·sin α=3得,2sin 2αcos α=3,即2cos 2α+3cos α-2=0,又-π2<α<0,解得cos α=12(cos α=-2舍去),故sin α=-32. 6.若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为( ) A .1+ 5 B .1- 5 C .1±5D .-1- 5解析:选B 由题意知:sin θ+cos θ=-m2,sin θcos θ=m4.∵(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m2,解得m =1±5,又Δ=4m 2-16m ≥0, ∴m ≤0或m ≥4,∴m =1- 5.二、填空题(本大题共3小题,每小题5分,共15分) 7.化简sin ⎝⎛⎭⎫π2+α·cos ⎝⎛⎭⎫π2-αcos (π+α)+sin (π-α)·cos ⎝⎛⎭⎫π2+αsin (π+α)=________.解析:原式=cos α·sin α-cos α+sin α(-sin α)-sin α=-sin α+sin α=0. 答案:08.若cos(2π-α)=53,且α∈⎣⎡⎦⎤-π2,0,则sin(π-α)=________.解析:由诱导公式可知cos(2π-α)=cos α,sin(π-α)=sin α,由sin 2α+cos 2α=1可得,sin α=±23,∵α∈⎣⎡⎦⎤-π2,0,∴sin α=-23. 答案:-239.已知sin(π-α)-cos(π+α)=23⎝⎛⎭⎫π2<α<π.则sin α-cos α=________.解析:由sin(π-α)-cos(π+α)=23, 得sin α+cos α=23,① 将①两边平方得1+2sin α·cos α=29,故2sin αcos α=-79.∴(sin α-cos α)2=1-2sin αcos α=1-⎝⎛⎭⎫-79=169. 又∵π2<α<π,∴sin α>0,cos α<0.∴sin α-cos α=43.答案:43三、解答题(本大题共3小题,每小题12分,共36分) 10.已知sin(3π+θ)=13,求cos (π+θ)cos θ[cos (π-θ)-1]+cos (θ-2π)sin ⎝⎛⎭⎫θ-3π2cos (θ-π)-sin ⎝⎛⎭⎫3π2+θ的值.解:∵sin(3π+θ)=-sin θ=13,∴sin θ=-13.∴原式=-cos θcos θ(-cos θ-1)+cos θcos θ·(-cos θ)+cos θ=11+cos θ+cos θ-cos 2θ+cos θ=11+cos θ+11-cos θ=21-cos 2θ=2sin 2θ=2⎝⎛⎭⎫-132=18. 11.已知关于x 的方程2x 2-(3+1)x +m =0的两根sin θ和cos θ,θ∈(0,2π),求: (1)sin 2θsin θ-cos θ+cos θ1-tan θ的值; (2)m 的值;(3)方程的两根及此时θ的值. 解:(1)原式=sin 2θsin θ-cos θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ =sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ. 由条件知sin θ+cos θ=3+12,故sin 2θsin θ-cos θ+cos θ1-tan θ=3+12.(2)由sin 2θ+2sin θcos θ+cos 2θ=1+2sin θcos θ =(sin θ+cos θ)2,得m =32. (3)由⎩⎪⎨⎪⎧sin θ+cos θ=3+12,sin θ·cos θ=34知⎩⎨⎧sin θ=32,cos θ=12,或⎩⎨⎧sin θ=12,cos θ=32.又θ∈(0,2π),故θ=π6或θ=π3.12.是否存在α∈⎝⎛⎭⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝⎛⎭⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值,若不存在,请说明理由.解:假设存在α、β使得等式成立,即有⎩⎪⎨⎪⎧sin (3π-α)=2cos ⎝⎛⎭⎫π2-β, ①3cos (-α)=-2cos (π+β), ②由诱导公式可得⎩⎪⎨⎪⎧sin α=2sin β, ③3cos α=2cos β, ④ ③2+④2得sin 2α+3cos 2α=2,解得cos 2α=12.又∵α∈⎝⎛⎭⎫-π2,π2,∴α=π4或α=-π4. 将α=π4代入④得cos β=32.又β∈(0,π),∴β=π6,代入③可知符合.将α=-π4代入④得cos β=32.又β∈(0,π).∴β=π6,代入③可知不符合.综上可知,存在α=π4,β=π6满足条件.1.记cos(-80°)=k ,那么tan 100°=( ) A.1-k 2kB .-1-k 2kC.k1-k 2D .-k1-k 2解析:选B ∵cos(-80°)=cos 80°=k , sin 80°=1-k 2,∴tan 80°=1-k 2k,tan 100°=-tan 80°=-1-k 2k. 2.sin 585°的值为( ) A .-22B.22C .-32D.32解析:选A 注意到585°=360°+180°+45°,因此sin 585°=sin(360°+180°+45°)=-sin 45°=-22. 3.若cos α+2sin α=-5,则tan α=( ) A.12 B .2 C .-12D .-2解析:选B ∵cos α+2sin α=-5,结合sin 2α+cos 2α=1得(5sin α+2)2=0,∴sin α=-255,cos α=-55,∴tan α=2.4.求值:sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050)°+tan 945°. 解:原式=-sin 1 200°·cos 1 290°+cos 1 020°· (-sin 1 050°)+tan 945°=-sin 120°·cos 210°+cos 300°·(-sin 330°)+tan 225° =(-sin 60°)·(-cos 30°)+cos 60°·sin 30°+tan 45° =32×32+12×12+1=2. 5.若sin θ,cos θ是关于x 的方程5x 2-x +a =0(a 是常数)的两根,θ∈(0,π),求cos 2θ的值.解:∵由题意知:sin θ+cos θ=15,∴(sin θ+cos θ)2=125.∴sin 2θ=-2425,即2sin θcos θ=-2425<0,则sin θ与cos θ异号.又sin θ+cos θ=15>0,∴π2<θ<3π4,∴π<2θ<3π2.故cos 2θ=-1-sin22θ=-725.。
第25讲 同角三角函数基本关系式及诱导公式6种题型总结

第25讲同角三角函数基本关系式及诱导公式6种题型总结【考点分析】考点一:同角三角函数基本关系①平方关系:1cos sin 22=+αα.②商数关系:)2(tan cos sin ππααααk +≠=;考点二:三角函数诱导公式公式一二三四五六角)(2Z k k ∈+απαπ+α-απ-απ-2απ+2正弦αsin αsin -αsin -αsin αcos αcos 余弦αcos αcos -αcos αcos -αsin αsin -正切αtan αtan αtan -αtan -口诀函数名不变,符号看象限函数名改变,符号看象限【记忆口诀】奇变偶不变,符号看象限注意:①先将诱导三角函数式中的角统一写作2n πα⋅±;②无论有多大,一律视为锐角,判断2n πα⋅±所处的象限,并判断题设三角函数在该象限的正负;③当n 为奇数是,“奇变”,正变余,余变正;当n 为偶数时,“偶不变”函数名保持不变即可.【典例例题】题型一:同角三角函数公式求值【例1】已知角α为第二象限角,tan 3α=-,则cos α=()A .10B .10C .10-D .10【例2】已知12cos 13α=-,α是第三象限角,求sin α,tan α的值.【题型专练】1.已知13sin ,,322ππαα⎛⎫=∈ ⎪⎝⎭,则tan α=___________.2.下列四个命题中可能成立的一个是()A .1sin 3α=且2cos 3α=B .sin 0α=且cos 1α=-C .tan 1α=且cos 1α=-D .sin tan cos ααα-=(α为第二象限角)3.已知tan 2α=,32παπ<<,则cos sin αα-=()A B .C .5D .题型二:弦的齐次式问题【例1】已知角α的终边过点()13-,,求:①tan α;②sin cos sin 2cos αααα+-;③sin cos αα⋅【例2】已知tan 3α=,则ααααα222cos sin 21sin 2cos sin 2---___________.【例3】已知θ是第四象限角,()1,M m 为其终边上一点,且sin 5m θ=,则2sin cos sin cos θθθθ-+的值()A .0B .45C .43D .5【题型专练】1.已知tan 2α=,则sin 2cos 3cos 2sin αααα+-的值为()A .4B .4-C .54D .54-2.已知π3π,24x ⎛⎫∈ ⎪⎝⎭,且332cos sin sin cos 5x x x x +=-,则tan x =().A .2-B .12-C .52-D .3-3.若sin cos 2sin cos θθθθ+=-,则sin cos θθ的值是()A .310-B .310C .310±D .344.若sin cos 2sin cos θθθθ+=-,则()=++θθθθθcos sin cos sin 21sin ()A .65-B .25-C .65D .25题型三:知一求二问题【例1】已知(0,π)α∈,且1sin cos 5αα+=,给出下列结论:①ππ2α<<;②12sin cos 25αα=-;③3cos 5α=;④7cos sin 5αα-=-.其中所有正确结论的序号是()A .①②④B .②③④C .①②③D .①③④【例2】已知0x π-<<,1sin cos 5x x +=,求下列各式的值.(1)sin cos x x -;(2)223sin 2sin cos cos x x x x -+.【例3】已知sin cos x x +=44sin cos x x +=()A .98B .78C .54D .34)A.2或12B.2C.12D.12-【题型专练】1.已知13sin cos,644ππααα=-<<,则sin-cosαα的值等于()A.3B.3-C.3-D.432.已知1sin cos2θθ-=,则33sin cosθθ-=______.3.已知π(,π)2α∈,且1sin cos5αα+=,则sin cosαα=-____.4.(多选)已知(0,)θπ∈,1sin cos5θθ+=,则下列结论正确的是()A.,2πθπ⎛⎫∈ ⎪⎝⎭B.3cos5θ=-C.3tan4θ=-D.7sin cos5θθ-=5.已知1sin cos5θθ+=-,(0,)θπ∈,则sin cosθθ-=()A.15B.15-C.75D.75-题型四:诱导公式化简求值【例1】sin(9330︒)的值为()A.2B.12-C.12D.2【例2】已知7πtan6a⎛⎫=- ⎪⎝⎭,23πcos3b=,33πsin4c⎛⎫=- ⎪⎝⎭,则a,b,c的大小关系是()A.b c a>>B.a b c>>C.b a c>>D.a c b>>【例3】(1)计算:3sin(90)5tan1805cos0sin540-+︒+︒+︒;(2)化简:()3sin2cos()cos(2)sin()229cos()sin(3)sin()sin()2πππαααπαππαπααπα-+------+.【例4】设()()()sinπcosπxf x a b xαβ++=+,其中,,,a bαβ∈R,若()20215f=,则()2022f=()A.4B.3C.-5D.5【例5】已知sin(3π+θ)=13,则[]cos()cos cos()1πθθπθ+--+cos(2)33sin cos()sin22θπππθθπθ-⎛⎫⎛⎫---+⎪ ⎪⎝⎭⎝⎭=____.【题型专练】1.35πsin6=()2.cos 2040︒=()A .12B .12-C .2D .3.化简:sin(5)cos()cos(8)23sin()sin(4)2πθπθπθπθθπ-------=()A .-sin θB .sin θC .cos θD .-cos θ4.(1)化简:3sin(3)cos(2)sin 2cos()sin()παπαπαπαπα⎛⎫-⋅-⋅- ⎪⎝⎭-⋅--(2)求值:()()sin 150cos 210cos 420tan 60-︒⋅︒⋅-︒⋅︒5.已知()()()()()()sin cos 2tan tan sin f πβπββπββππβ--+=----.(1)若角β是第三象限角,且()1sin 5βπ-=,求()f β的值;(2)若2220β=︒,求()f β的值.题型五:诱导公式与三角函数定义、同角关系的综合运用【例1】已知3sin 5α=,且α是第二象限角,则cos()sin()παπα-++的值等于_______【例2】已知()1tan π2α-=2sin cos αα=-()A .14-B .14C .12D .12-【例3】已知角94α+的终边经过点(2,4)-,则23sin sin()cos απαα-+=()A .4-B .2-C .3D .9【例4】已知()()()()()3sin cos tan cos 222sin 2tan sin f πππααπαααπααππα⎛⎫⎛⎫⎛⎫+--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=---+.(1)化简()f α;(2)若31cos 25πα⎛⎫-=- ⎪⎝⎭,求()f α的值.【题型专练】1.已知tan()2πα+=-,则2sin 3cos 2sin 5cos αααα+=-___________.2.已知4sin()5απ+=,且sin cos 0αα<,则2sin()3tan(3)4cos(3)a αππαπ-+-=-________.3.已知22sin(3)cos(5)()3cos ()sin ()22f παπααππαα-+=-++.(1)若tan 2α=,求()f α的值;(2)若12()25f α=,(0,)απ∈,求sin cos αα-的值.4.已知(),0θπ∈-,且sin θ,cos θ为方程250x x m -+=的两根.(1)求m 的值;(2)求()()()23sin cos 2sin 25sin 3sin sin cos 222πθπθπθππππθθθθ⎛⎫-- ⎪-⎝⎭+⎛⎫⎛⎫⎛⎫--+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.5.已知3cos 4cos()02παπα⎛⎫--+= ⎪⎝⎭,求下列各式的值.(1)sin 2cos 5cos sin αααα+-;(2)24sin 3sin cos ααα-.题型六:换元法、角的拼凑【例1】若1sin ,63a π⎛⎫+= ⎪⎝⎭则2cos 3a π⎛⎫+= ⎪⎝⎭()A .13B .13-C .79D .79-【例2】已知5s n 3i πα⎛⎫ ⎪⎝=-⎭+,则3cos 10πα⎛⎫ ⎝-⎪⎭=()A.3B.3-C.3D.3【例3】若1sin 63πα⎛⎫+= ⎪⎝⎭,则5sin 6πα⎛⎫-= ⎪⎝⎭__________.【题型专练】1.当0,2πθ⎛⎫∈ ⎪⎝⎭时,若51cos 62πθ⎛⎫-=-⎪⎝⎭,则sin 6πθ⎛⎫+ ⎪⎝⎭的值为()A .12BC.D .12-2.若sin()63πα-=,则πcos()3α+=()A.B.CD3.(多选)已知π1sin 42α⎛⎫+= ⎪⎝⎭,下列结论正确的是()A.πcos 42α⎛⎫+=⎪⎝⎭B .π1cos 42α⎛⎫-=⎪⎝⎭C .5π1sin 42α⎛⎫+=⎪⎝⎭D .5π1cos 42α⎛⎫-=-⎪⎝⎭。
2023年高考数学总复习历年真题题型归纳与模拟预测4-1三角恒等变换带讲解

☆注:请用Microsoft Word2016以上版本打开文件进行编辑,.第四章 三角函数4.1 三角恒等变换单独考查三角变换的题目较少,往往以解三角形为背景,在应用正弦定理、余弦定理的同时,应用三角恒等变换进行化简,综合性比较强,但难度不大.也可能与三角函数等其他知识相结合.题型一.同角三角函数的基本关系、诱导公式1.(2020•新课标Ⅱ)若α为第四象限角,则( ) A .cos2α>0 B .cos2α<0 C .sin2α>0 D .sin2α<0【答案】D .【解答】解:α为第四象限角,则−π2+2k π<α<2k π,k ∈Z ,则﹣π+4k π<2α<4k π,∴2α是第三或第四象限角或为y 轴负半轴上的角,∴sin2α<0, 故选:D .2.(2018•新课标Ⅱ)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos2α=23,则|a ﹣b |=( ) A .15B .√55C .2√55D .1【答案】B .【解答】解:∵角α的顶点为坐标原点,始边与x 轴的非负半轴重合, 终边上有两点A (1,a ),B (2,b ),且cos2α=23, ∴cos2α=2cos 2α﹣1=23,解得cos 2α=56,∴|cosα|=√306,∴|sinα|=√1−3036=√66,|tanα|=|b−a 2−1|=|a ﹣b |=|sinα||cosα|=√66√306=√55.故选:B .3.(2017•新课标Ⅱ)已知sinα﹣cosα=43,则sin2α=( ) A .−79B .−29C .29D .79【答案】A .【解答】解:∵sinα﹣cosα=43,∴(sinα﹣cosα)2=1﹣2sinαcosα=1﹣sin2α=169, ∴sin2α=−79, 故选:A .4.(2018•新课标Ⅱ)已知sinα+cosβ=1,cosα+sinβ=0,则sin (α+β)= −12. 【答案】−12.【解答】解:sinα+cosβ=1,两边平方可得:sin 2α+2sinαcosβ+cos 2β=1,①, cosα+sinβ=0,两边平方可得:cos 2α+2cosαsinβ+sin 2β=0,②, 由①+②得:2+2(sinαcosβ+cosαsinβ)=1,即2+2sin (α+β)=1, ∴2sin (α+β)=﹣1. ∴sin (α+β)=−12. 故答案为:−12.5.(2015•四川)已知sinα+2cosα=0,则2sinαcosα﹣cos 2α的值是 ﹣1 . 【答案】﹣1【解答】解:∵sinα+2cosα=0,即sinα=﹣2cosα, ∴tanα=﹣2,则原式=2sinαcosα−cos 2α1=2sinαcosα−cos 2αsin 2α+cos 2α=2tanα−1tan 2α+1=−54+1=−1, 故答案为:﹣16.(2021•新高考Ⅱ)若tanθ=﹣2,则sinθ(1+sin2θ)sinθ+cosθ=( )A .−65 B .−25C .25D .65【答案】C .【解答】解:由题意可得:sinθ(1+sin2θ)sinθ+cosθ=sinθ(sin 2θ+cos 2θ+2sinθcosθ)sinθ+cosθ=sinθ(sinθ+cosθ)2sinθ+cosθ=sinθ(sinθ+cosθ) =sin 2θ+sinθcosθsin 2θ+cos 2θ=tan 2θ+tanθ1+tan 2θ =4−21+4=25. 故选:C .7.(2017•北京)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称,若sinα=13,则cos (α﹣β)= −79. 【答案】−79【解答】解:方法一:∵角α与角β均以Ox 为始边,它们的终边关于y 轴对称, ∴sinα=sinβ=13,cosα=﹣cosβ,∴cos (α﹣β)=cosαcosβ+sinαsinβ=﹣cos 2α+sin 2α=2sin 2α﹣1=29−1=−79 方法二:∵sinα=13,当α在第一象限时,cosα=2√23, ∵α,β角的终边关于y 轴对称,∴β在第二象限时,sinβ=sinα=13,cosβ=﹣cosα=−2√23, ∴cos (α﹣β)=cosαcosβ+sinαsinβ=−2√23×2√23+13×13=−79: ∵sinα=13,当α在第二象限时,cosα=−2√23, ∵α,β角的终边关于y 轴对称,∴β在第一象限时,sinβ=sinα=13,cosβ=﹣cosα=2√23, ∴cos (α﹣β)=cosαcosβ+sinαsinβ=−2√23×2√23+13×13=−79综上所述cos (α﹣β)=−79, 故答案为:−79题型二.两角和与差公式1.(2017•新课标Ⅱ)已知α∈(0,π2),tanα=2,则cos (α−π4)=3√1010.【答案】3√1010【解答】解:∵α∈(0,π2),tanα=2,∴sinα=2cosα,∵sin 2α+cos 2α=1,解得sinα=2√55,cosα=√55, ∴cos (α−π4)=cosαcos π4+sinαsin π4=√55×√22+2√55×√22=3√1010, 故答案为:3√10102.(2020•新课标Ⅱ)已知2tanθ﹣tan (θ+π4)=7,则tanθ=( ) A .﹣2 B .﹣1 C .1 D .2【答案】D .【解答】解:由2tanθ﹣tan (θ+π4)=7,得2tanθ−tanθ+11−tanθ=7,即2tanθ﹣2tan 2θ﹣tanθ﹣1=7﹣7tanθ,得2tan 2θ﹣8tanθ+8=0, 即tan 2θ﹣4tanθ+4=0, 即(tanθ﹣2)2=0, 则tanθ=2, 故选:D .3.(2014•新课标Ⅱ)设α∈(0,π2),β∈(0,π2),且tanα=1+sinβcosβ,则( )A .3α﹣β=π2 B .3α+β=π2C .2α﹣β=π2D .2α+β=π2【答案】C . 【解答】解:由tanα=1+sinβcosβ,得: sinαcosα=1+sinβcosβ,即sinαcosβ=cosαsinβ+cosα,sin (α﹣β)=cosα=sin (π2−α), ∵α∈(0,π2),β∈(0,π2),∴当2α−β=π2时,sin (α﹣β)=sin (π2−α)=cosα成立.故选:C .4.(2015•江苏)已知tanα=﹣2,tan (α+β)=17,则tanβ的值为 3 .【答案】3.【解答】解:tanα=﹣2,tan (α+β)=17, 可知tan (α+β)=tanα+tanβ1−tanαtanβ=17, 即−2+tanβ1+2tanβ=17,解得tanβ=3.故答案为:3.5.(2013•新课标Ⅱ)设θ为第二象限角,若tan (θ+π4)=12,则sinθ+cosθ= −√105 . 【答案】−√105【解答】解:∵tan (θ+π4)=tanθ+11−tanθ=12,∴tanθ=−13, 而cos 2θ=cos 2θsin 2θ+cos 2θ=11+tan 2θ, ∵θ为第二象限角, ∴cosθ=−√11+tan 2θ=−3√1010,sinθ=√1−cos2θ=√1010, 则sinθ+cosθ=√1010−3√1010=−√105. 故答案为:−√1056.(2016•新课标Ⅱ)已知θ是第四象限角,且sin (θ+π4)=35,则tan (θ−π4)= −43 . 【答案】−43.【解答】解:∵θ是第四象限角,∴−π2+2kπ<θ<2kπ,则−π4+2kπ<θ+π4<π4+2kπ,k ∈Z , 又sin (θ+π4)=35,∴cos (θ+π4)=√1−sin 2(θ+π4)=√1−(35)2=45. ∴cos (π4−θ)=sin (θ+π4)=35,sin (π4−θ)=cos (θ+π4)=45.则tan (θ−π4)=﹣tan (π4−θ)=−sin(π4−θ)cos(π4−θ)=−4535=−43. 故答案为:−43.7.(2015•重庆)若tanα=2tan π5,则cos(α−3π10)sin(α−π5)=( ) A .1 B .2C .3D .4【答案】C .【解答】解:tanα=2tan π5,则cos(α−3π10)sin(α−π5)=cosαcos3π10+sinαsin 3π10sinαcos π5−cosαsinπ5=cos3π10+tanαsin 3π10tanαcos π5−sinπ5=cos 3π10+2tan π5sin 3π102tan π5cos π5−sin π5=cos 3π10+2sin π5cosπ5sin 3π102sin π5cosπ5cos π5−sin π5=cos π5cos 3π10+2sin π5sin 3π102sin π5cos π5−cos π5sin π5=cos(π5−3π10)+sin π5sin 3π10sin π5cos π5+sin(π5−π5)=cos π10+sin π5sin 3π10sin π5cos π5=cos π10−12[cos(π5+3π10)−cos(π5−3π10)]12sin 2π5=cos π10+12cos π1012sin 2π5=3cos π10sin 2π5=3cos π10sin(π2−π10)=3cos π10cos π10=3. 故选:C .题型三.倍角公式1.(2021•乙卷)cos 2π12−cos 25π12=( )A .12B .√33C .√22D .√32【答案】D .【解答】解:法一、cos2π12−cos25π12=1+cos π62−1+cos5π62=12+12cos π6−12−12cos 5π6=12×√32−12×(−√32)=√32. 法二、cos 2π12−cos 25π12=cos 2π12−sin 2π12=cosπ6=√32. 故选:D .2.(2020•新课标Ⅱ)已知α∈(0,π),且3cos2α﹣8cosα=5,则sinα=( ) A .√53B .23C .13D .√59【答案】A .【解答】解:由3cos2α﹣8cosα=5,得3(2cos 2α﹣1)﹣8cosα﹣5=0, 即3cos 2α﹣4cosα﹣4=0,解得cosα=2(舍去),或cos α=−23.∵α∈(0,π),∴α∈(π2,π),则sinα=√1−cos 2α=√1−(−23)2=√53.故选:A .3.(2019•新课标Ⅱ)已知α∈(0,π2),2sin2α=cos2α+1,则sinα=( )A .15B .√55C .√33D .2√55【答案】B .【解答】解:∵2sin2α=cos2α+1, ∴可得:4sinαcosα=2cos 2α, ∵α∈(0,π2),sinα>0,cosα>0,∴cosα=2sinα,∵sin 2α+cos 2α=sin 2α+(2sinα)2=5sin 2α=1, ∴解得:sinα=√55. 故选:B .4.(2016•新课标Ⅱ)若cos (π4−α)=35,则sin2α=( )A .725B .15C .−15D .−725【答案】D .【解答】解:法1°:∵cos (π4−α)=35,∴sin2α=cos (π2−2α)=cos2(π4−α)=2cos 2(π4−α)﹣1=2×925−1=−725,法2°:∵cos (π4−α)=√22(sinα+cosα)=35,∴12(1+sin2α)=925,∴sin2α=2×925−1=−725,故选:D .5.(2013•浙江)已知α∈R ,sinα+2cosα=√102,则tan2α=( ) A .43B .34C .−34D .−43【答案】C .【解答】解:由sinα+2cosα=√102,则(sinα+2cosα)2=52,即sin 2α+4sinαcosα+4cos 2α=52, 可得tan 2α+4tanα+4tan 2α+1=52,解得tanα=3或−13.那么tan2α=2tanα1−tan 2α=−34.故选:C .6.(2013•新课标Ⅱ)已知sin2α=23,则cos 2(α+π4)=( ) A .16B .13C .12D .23【答案】A .【解答】解:∵sin2α=23,∴cos 2(α+π4)=12[1+cos (2α+π2)]=12(1﹣sin2α)=12×(1−23)=16. 故选:A .7.(2021•甲卷)若α∈(0,π2),tan2α=cosα2−sinα,则tanα=( )A .√1515B .√55C .√53D .√153【答案】A .【解答】解:由tan2α=cosα2−sinα,得sin2αcos2α=cosα2−sinα,即2sinαcosα1−2sin 2α=cosα2−sinα,∵α∈(0,π2),∴cosα≠0,则2sinα(2﹣sinα)=1﹣2sin 2α,解得sinα=14,则cosα=√1−sin 2α=√154,∴tanα=sinαcosα=14√154=√1515. 故选:A .8.(2010•宁夏)若cosα=−45,α是第三象限的角,则1+tanα21−tanα2=( )A .−12 B .12C .2D .﹣2【答案】A .【解答】解:由cosα=−45,α是第三象限的角, ∴可得sinα=−35,则1+tanα21−tanα2=cos α2+sinα2cos α2−sinα2=1+sinαcosα=1−35−45=−12,故选:A .9.(2012•江苏)设α为锐角,若cos (α+π6)=45,则sin (2α+π12)的值为 17√250. 【答案】17√250. 【解答】解:设β=α+π6,∴sinβ=35,sin2β=2sinβcosβ=2425,cos2β=2cos 2β﹣1=725, ∴sin (2α+π12)=sin (2α+π3−π4)=sin (2β−π4)=sin2βcos π4−cos2βsin π4=17√250. 故答案为:17√250.10.(2011•重庆)已知sinα=12+cosα,且α∈(0,π2),则cos2αsin(α−π4)的值为 −√142 . 【答案】−√142 【解答】解:由sinα=12+cosα,得到sinα﹣cosα=12①, 又sin 2α+cos 2α=1②,且α∈(0,π2), 联立①②解得:sinα=√7+14,cosα=√7−14,∴cos2α=cos 2α﹣sin 2α=−√74,sin (α−π4)=√22(sinα﹣cosα)=√24,则cos2αsin(α−π4)=−√74√24=−√142. 故答案为:−√142题型四.三角函数的最值——辅助角公式1.(2021•乙卷)函数f (x )=sin x3+cos x3的最小正周期和最大值分别是( )A .3π和√2B .3π和2C .6π和√2D .6π和2【答案】C .【解答】解:∵f (x )=sin x 3+cos x3=√2sin (x 3+π4), ∴T =2π13=6π.当sin (x3+π4)=1时,函数f (x )取得最大值√2;∴函数f (x )的周期为 6π,最大值√2. 故选:C .2.(2017•新课标Ⅱ)函数f (x )=15sin (x +π3)+cos (x −π6)的最大值为( ) A .65B .1C .35D .15【答案】A .【解答】解:函数f (x )=15sin (x +π3)+cos (x −π6)=15sin (x +π3)+cos (﹣x +π6)=15sin (x +π3)+sin (x +π3)=65sin (x +π3)≤65. 故选:A .3.(2017•新课标Ⅱ)函数f (x )=sin 2x +√3cos x −34(x ∈[0,π2])的最大值是 1 .【答案】1【解答】解:f (x )=sin 2x +√3cos x −34=1﹣cos 2x +√3cos x −34, 令cos x =t 且t ∈[0,1],则y =﹣t 2+√3t +14=−(t −√32)2+1, 当t =√32时,f (t )max =1, 即f (x )的最大值为1, 故答案为:14.(2018•新课标Ⅱ)已知函数f (x )=2sin x +sin2x ,则f (x )的最小值是 −3√32. 【答案】−3√32. 【解答】解:由题意可得T =2π是f (x )=2sin x +sin2x 的一个周期, 故只需考虑f (x )=2sin x +sin2x 在[0,2π)上的值域, 先来求该函数在[0,2π)上的极值点,求导数可得f ′(x )=2cos x +2cos2x =2cos x +2(2cos 2x ﹣1)=2(2cos x ﹣1)(cos x +1),令f ′(x )=0可解得cos x =12或cos x =﹣1, 可得此时x =π3,π或5π3;∴y =2sin x +sin2x 的最小值只能在点x =π3,π或5π3和边界点x =0中取到,计算可得f ( π3)=3√32,f (π)=0,f ( 5π3)=−3√32,f (0)=0,∴函数的最小值为−3√32, 故答案为:−3√32.5(2020•北京)若函数f (x )=sin (x +φ)+cos x 的最大值为2,则常数φ的一个取值为 π2.【答案】π2.【解答】解:∵sin (x +φ)≤1,cos x ≤1,又函数f (x )=sin (x +φ)+cos x 的最大值为2,所以当且仅当sin (x +φ)=1,cos x =1时函数f (x )取到最大值, 此时x =2k π,k ∈Z ,则sin (x +φ)=sinφ=1, 于是φ=π2+2k π,k ∈Z 时φ均满足题意, 故可选k =0时,φ=π2. 故答案为:π2.1.(2020•广州模拟)sin80°cos50°+cos140°sin10°=( ) A .−√32 B .√32C .−12D .12【答案】D .【解答】解:sin80°cos50°+cos140°sin10°=cos10°cos50°﹣sin50°sin10°=cos (50°+10°)=cos60°=12. 故选:D .2.(2018•沈阳一模)已知tanθ=2,则sinθ+cosθsinθ+sin 2θ的值为( )A .195B .165C .2310D .1710【答案】C .【解答】解:∵tanθ=2,则sinθ+cosθsinθ+sin 2θ=1+1tanθ+sin 2θsin 2θ+cos 2θ=1+12+tan 2θtan 2θ+1=32+44+1=2310,故选:C .3.(2020•福州一模)若tan(π2−α)=3cos(α−π),则cos2α=( ) A .﹣1 B .79C .0或79D .﹣1或79【答案】D .【解答】解:由tan(π2−α)=3cos(α−π),得sin(π2−α)cos(π2−α)=−3cosα,所以cosαsinα=−3cosα,所以cosα=0或sinα=−13,故cos2α=2cos 2α﹣1=﹣1,或cos2α=1−2sin 2α=79. 故选:D .4.(2017秋•乐山期末)已知cos(α+β)=35,sin(β−π6)=13,且α,β均为锐角,则sin(α+π6)=( ) A .8√2−315B .8√2−415C .8−3√215D .8−4√215【答案】A .【解答】解:∵α,β均为锐角, ∴α+β∈(0,π),β−π6∈(−π6,π3), 由cos(α+β)=35,sin(β−π6)=13,得sin (α+β)=√1−cos 2(α+β)=45,cos (β−π6)=√1−sin 2(β−π6)=2√23.∴sin(α+π6)=sin[(α+β)﹣(β−π6)]=sin (α+β)cos (β−π6)﹣cos (α+β)sin (β−π6)] =45×2√23−35×13=8√2−315. 故选:A .5.(2019秋•湖北月考)若sin (π6−θ)=35,则sin (π6+2θ)=( )A .−2425B .2425C .−725D .725【答案】D .【解答】解:sin (π6+2θ)=sin[π2−2(π6−θ)]=cos2(π6−θ)=1﹣2sin 2(π6−θ)=1−1825=725,故选:D .6.已知函数f (x )=sin 2x +sin 2(x +π3),则f (x )的最小值为 12.【答案】12.【解答】解:函数f (x )=sin 2x +sin 2(x +π3)=sin 2x +( 12sin x +√32cos x )2=54sin 2x +34cos 2x +√34sin2x =12sin(2x −π6)+1,当sin (2x −π6)=﹣1时,函数f (x )min =1−12=12. 故答案为:12.7.已知α,β都是锐角,且tanαtanβ=1+1cosβ,则( ) A .2α=β+πB .2α=π﹣βC .3α=π+βD .3α=π﹣β【解答】解:∵α,β都是锐角,且tanαtanβ=1+1cosβ, ∴sinα⋅sinβcosα⋅cosβ=1+1cosβ, ∴cosαcosβ+cosα=sinαsinβ, ∴cos (α+β)=﹣cosα=cos (π±α),∴α+β=2k π+π+α(k ∈Z ),或α+β=2k π+π﹣α(k ∈Z ), ∴β=2k π+π+α(k ∈Z )(舍去),或2α=2k π+π﹣β(k ∈Z ), ∵α,β都是锐角, 当k =0时,2α=π﹣β, 故选:B .8.已知α,β∈(0,π),cosα=−3√1010,若sin (2α+β)=12sinβ,则α+β=( )A .54πB .23πC .76πD .74π【解答】解:∵α(0,π),cosα=−3√1010, ∴sinα=√1−cos 2α=√1010, ∴sin2α=2sinαcosα=2×√1010×(−3√1010)=−35,cos2α=1﹣2sin 2α=1﹣2×(√1010)2=45, ∵sin (2α+β)=12sinβ, ∴sin2αcosβ+cos2αsinβ=12sinβ,∴−35cosβ+45sinβ=12sinβ,即sinβ=2cosβ, 又sin 2β+cos 2β=1,且β∈(0,π), ∴sinβ=2√55,cosβ=√55,∴sin (α+β)=sinαcosβ+cosαsinβ=√1010×√55+(−3√1010)×2√55=−√22<0, ∵α,β∈(0,π),且cosα<0,cosβ>0,∴α∈(π2,π),β∈(0,π2),∴α+β∈(π2,3π2),∴α+β=5π4. 故选:A .。
三角函数概念、同角三角函数关系式和诱导公式归纳总结

三角函数概念、同角三角函数关系式和诱导公式归纳总结三角函数概念、同角三角函数关系式和诱导公式归纳总结知识点精讲一、基本概念角的概念包括正角、负角和零角。
其中正角是逆时针旋转而成的角,负角是顺时针旋转而成的角,零角是射线没旋转而成的角。
角α的弧度范围为(−∞,+∞)。
角α的始边与x轴的非负半轴重合,终边落在第几象限,α就叫做第几象限角,终边在坐标轴上的角不是象限角,称之坐标角(或象限界角、轴线角等)。
弧度制度是半径为r的圆心角α所对弧长为l,则α=l/r(弧度或rad)。
与角α(弧度)终边相同的角的集合为β=α+2kπ,k∈Z,其意义在于α的终边逆时针旋转整数圈,终边位置不变。
弧度或rad可省略。
两制互化时,只需记忆π=180,1=π/180两个换算单位即可。
6)弧长公式:l=αr(α∈(0,2π]),扇形面积公式:S=1/2lr=αr2/2.底高=lr,如图4-1所示。
注:关于扇形面积公式的记忆,可以采用类似三角形面积公式的方法,把扇形的弧长类比成三角形的底,半径类比成三角形的高,则有S=l*r/2.二、任意角的三角函数1.定义已知角α终边上的任一点P(x,y)(非原点O),则P到原点O的距离r=OP=sqrt(x^2+y^2)。
sinα=y/r,cosα=x/r,tanα=y/x。
此定义是解直三角形内锐角三角函数的推广。
类比,对∠y,邻∠x,斜∠r,如图4-2所示。
2.单位圆中的三角函数线以α为第二象限角为例。
角α的终边交单位圆于P,PM垂直x轴于M,α的终边或其反向延长线交单位圆切线AT于T,如图4-3所示,由于取α为第二象限角,sinα=MP>0,cosα=OM<0,tanα=AT<0.3.三角函数象限符号与单调性在单位圆中r=sqrt(x^2+y^2)=1,则sinα=y,cosα=x,tanα=y/x。
在第一、二象限,三角函数值为正;在第三、四象限,sinα为负,cosα和tanα为正。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节 同角三角函数的基本关系与诱导公式❖ 基础知识1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1; (2)商数关系:tan α=sin αcos α.平方关系对任意角都成立,而商数关系中α≠k π+π2(k ∈Z).2.诱导公式诱导公式可简记为:奇变偶不变,符号看象限.“奇”“偶”指的是“k ·π2+α(k ∈Z )”中的k 是奇数还是偶数.“变”与“不变”是指函数的名称的变化,若k 是奇数,则正、余弦互变;若k 为偶数,则函数名称不变.“符号看象限”指的是在“k ·π2+α(k ∈Z )”中,将α看成锐角时,“k ·π2+α(k ∈Z )”的终边所在的象限.❖ 常用结论同角三角函数的基本关系式的几种变形(1)sin 2α=1-cos 2α=(1+cos α)(1-cos α); cos 2α=1-sin 2α=(1+sin α)(1-sin α); (sin α±cos α)2=1±2sin αcos α. (2)sin α=tan αcos α⎝⎛⎭⎫α≠π2+k π,k ∈Z .考点一 三角函数的诱导公式[典例](1)已知f (α)=cos ⎝⎛⎭⎫π2+αsin ⎝⎛⎭⎫3π2-αcos (-π-α)tan (π-α),则f ⎝⎛⎭⎫-25π3的值为________. (2)已知cos ⎝⎛⎭⎫π6-α=23,则sin ⎝⎛⎭⎫α-2π3=________. [解析] (1)因为f (α)=cos ⎝⎛⎭⎫π2+αsin ⎝⎛⎭⎫3π2-αcos (-π-α)tan (π-α)=-sin α(-cos α)(-cos α)⎝⎛⎭⎫-sin αcos α=cos α, 所以f ⎝⎛⎭⎫-25π3=cos ⎝⎛⎭⎫-25π3=cos π3=12. (2)sin ⎝⎛⎭⎫α-2π3=-sin ⎝⎛⎭⎫2π3-α=-sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π3+α=-sin ⎝⎛⎭⎫π3+α=-sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π6-α=-cos ⎝⎛⎭⎫π6-α=-23. [答案] (1)12 (2)-23[题组训练]1.已知tan α=12,且α∈⎝⎛⎭⎫π,3π2,则cos ⎝⎛⎭⎫α-π2=________. 解析:法一:cos ⎝⎛⎭⎫α-π2=sin α,由α∈⎝⎛⎭⎫π,3π2知α为第三象限角, 联立⎩⎪⎨⎪⎧tan α=sin αcos α=12,sin 2α+cos 2α=1,解得5sin 2α=1,故sin α=-55.法二:cos ⎝⎛⎭⎫α-π2=sin α,由α∈⎝⎛⎭⎫π,3π2知α为第三象限角,由tan α=12,可知点(-2,-1)为α终边上一点,由任意角的三角函数公式可得sin α=-55. 答案:-552. sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050°)+tan 945°=________.解析:原式=sin(-3×360°-120°)cos(3×360°+180°+30°)+cos(-3×360°+60°) sin(-3×360°+30°)+tan(2×360°+180°+45°)=sin 120°cos 30°+cos 60°sin 30°+tan 45°=34+14+1=2.答案:23.已知tan ⎝⎛⎭⎫π6-α=33,则tan ⎝⎛⎭⎫5π6+α=________.解析:tan ⎝⎛⎭⎫5π6+α=tan ⎝⎛⎭⎫π-π6+α=tan ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-α=-tan ⎝⎛⎭⎫π6-α=-33. 答案:-33考点二 同角三角函数的基本关系及应用[典例](1)若tan α=2,则sin α+cos αsin α-cos α+cos 2α=( )A.165 B .-165C.85D .-85(2)已知sin αcos α=38,且π4<α<π2,则cos α-sin α的值为( )A.12 B .±12C .-14D .-12[解析] (1)sin α+cos αsin α-cos α+cos 2α=sin α+cos αsin α-cos α+cos 2αsin 2α+cos 2α =tan α+1tan α-1+1tan 2α+1,将tan α=2代入上式,则原式=165.(2)因为sin αcos α=38,所以(cos α-sin α)2=cos 2α-2sin αcos α+sin 2α=1-2sin αcos α=1-2×38=14,因为π4<α<π2,所以cos α<sin α,即cos α-sin α<0, 所以cos α-sin α=-12.[答案] (1)A (2)D [题组训练]1.(2018·甘肃诊断)已知tan φ=43,且角φ的终边落在第三象限,则cos φ=( )A.45 B .-45C.35D .-35解析:选D 因为角φ的终边落在第三象限,所以cos φ<0,因为tan φ=43,所以⎩⎪⎨⎪⎧sin 2φ+cos 2φ=1,sin φcos φ=43,cos φ<0,解得cos φ=-35.2.已知tan θ=3,则sin 2θ+sin θcos θ=________.解析:sin 2θ+sin θcos θ=sin 2θ+sin θcos θsin 2θ+cos 2θ=tan 2θ+tan θtan 2θ+1=32+332+1=65.答案:653.已知sin α+3cos α3cos α-sin α=5,则sin 2α-sin αcos α=________.解析:由已知可得sin α+3cos α=5(3cos α-sin α),即sin α=2cos α,所以tan α=sin αcos α=2, 从而sin 2α-sin αcos α=sin 2α-sin αcos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1=22-222+1=25.答案:254.已知-π<α<0,sin(π+α)-cos α=-15,则cos α-sin α的值为________.解析:由已知,得sin α+cos α=15,sin 2α+2sin αcos α+cos 2α=125, 整理得2sin αcos α=-2425.因为(cos α-sin α)2=1-2sin αcos α=4925,且-π<α<0,所以sin α<0,cos α>0, 所以cos α-sin α>0,故cos α-sin α=75.答案:75[课时跟踪检测]A 级1.已知x ∈⎝⎛⎭⎫-π2,0,cos x =45,则tan x 的值为( ) A.34 B .-34C.43D .-43解析:选B 因为x ∈⎝⎛⎭⎫-π2,0,所以sin x =-1-cos 2x =-35,所以tan x =sin x cos x =-34. 2.(2019·淮南十校联考)已知sin ⎝⎛⎭⎫α-π3=13,则cos ⎝⎛⎭⎫α+π6的值为( ) A .-13B.13C.223D .-223解析:选A ∵sin ⎝⎛⎭⎫α-π3=13,∴cos ⎝⎛⎭⎫α+π6=cos ⎣⎡⎦⎤π2+⎝⎛⎭⎫α-π3=-sin ⎝⎛⎭⎫α-π3=-13. 3.计算:sin11π6+cos 10π3的值为( ) A .-1 B .1 C .0D.12-32解析:选A 原式=sin ⎝⎛⎭⎫2π-π6+cos ⎝⎛⎭⎫3π+π3 =-sin π6-cos π3=-12-12=-1.4.若sin (π-θ)+cos (θ-2π)sin θ+cos (π+θ)=12,则tan θ的值为( )A .1B .-1C .3D .-3解析:选D 因为sin (π-θ)+cos (θ-2π)sin θ+cos (π+θ)=sin θ+cos θsin θ-cos θ=12,所以2(sin θ+cos θ)=sin θ-cos θ, 所以sin θ=-3cos θ,所以tan θ=-3.5.(2018·大庆四地六校调研)若α是三角形的一个内角,且sin ⎝⎛⎭⎫π2+α+cos ⎝⎛⎭⎫3π2+α=15,则tan α的值为( )A .-43B .-34C .-43或-34D .不存在解析:选A 由sin ⎝⎛⎭⎫π2+α+cos ⎝⎛⎭⎫3π2+α=15,得cos α+sin α=15,∴2sin αcos α=-2425<0.∵α∈(0,π),∴sin α>0,cos α<0, ∴sin α-cos α=1-2sin αcos α=75,∴sin α=45,cos α=-35,∴tan α=-43.6.在△ABC 中,3sin ⎝⎛⎭⎫π2-A =3sin(π-A ),且cos A =-3cos(π-B ),则△ABC 为( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等边三角形解析:选B 将3sin ⎝⎛⎭⎫π2-A =3sin(π-A )化为3cos A =3sin A ,则tan A =33,则A =π6,将cos A =-3cos(π-B )化为 cos π6=3cos B ,则cos B =12,则B =π3,故△ABC 为直角三角形.7.化简:1-cos 22θcos 2θtan 2θ=________.解析:1-cos 22θcos 2θtan 2θ=sin 22θcos 2θ·sin 2θcos 2θ=sin 2θ.答案:sin 2θ8.化简:cos ⎝⎛⎭⎫α-π2sin ⎝⎛⎭⎫5π2+α·sin(α-π)·cos(2π-α)=________. 解析:原式=cos ⎝⎛⎭⎫π2-αsin ⎝⎛⎭⎫2π+π2+α·(-sin α)·cos α=sin αsin ⎝⎛⎭⎫π2+α·(-sin α)·cos α =sin αcos α·(-sin α)·cos α=-sin 2α. 答案:-sin 2α9.sin 4π3·cos 5π6·tan ⎝⎛⎭⎫-4π3的值为________. 解析:原式=sin ⎝⎛⎭⎫π+π3·cos ⎝⎛⎭⎫π-π6·tan ⎝⎛⎭⎫-π-π3 =⎝⎛⎭⎫-sin π3·⎝⎛⎭⎫-cos π6·⎝⎛⎭⎫-tan π3=⎝⎛⎭⎫-32×⎝⎛⎭⎫-32×(-3)=-334.答案:-33410.(2019·武昌调研)若tan α=cos α,则1sin α+cos 4α=________.解析:tan α=cos α⇒sin αcos α=cos α⇒sin α=cos 2α,故1sin α+cos 4α=sin 2α+cos 2αsin α+cos 4α=sin α+cos 2αsin α+cos 4α=sin α+sin αsin α+sin 2α=sin 2α+sin α+1=sin 2α+cos 2α+1=1+1=2.答案:211.已知α为第三象限角,f (α)=sin ⎝⎛⎭⎫α-π2·cos ⎝⎛⎭⎫3π2+α·tan (π-α)tan (-α-π)·sin (-α-π).(1)化简f (α);(2)若cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值. 解:(1)f (α)=sin ⎝⎛⎭⎫α-π2·cos ⎝⎛⎭⎫3π2+α·tan (π-α)tan (-α-π)·sin (-α-π)=(-cos α)·sin α·(-tan α)(-tan α)·sin α=-cos α.(2)∵cos ⎝⎛⎭⎫α-3π2=15, ∴-sin α=15,从而sin α=-15.又∵α为第三象限角,∴cos α=-1-sin 2α=-265,∴f (α)=-cos α=265.12.已知sin α=255,求tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α的值.解:因为sin α=255>0,所以α为第一或第二象限角.tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α=tan α+cos αsin α=sin αcos α+cos αsin α=1sin αcos α.①当α为第一象限角时,cos α=1-sin 2α=55, 原式=1sin αcos α=52.②当α为第二象限角时,cos α=-1-sin 2α=-55, 原式=1sin αcos α=-52.综合①②知,原式=52或-52.B 级1.已知sin α+cos α=12,α∈(0,π),则1-tan α1+tan α=( )A .-7 B.7 C. 3D .- 3解析:选A 因为sin α+cos α=12,所以(sin α+cos α)2=1+2sin αcos α=14,所以sin αcos α=-38,又因为α∈(0,π),所以sin α>0,cos α<0,所以cos α-sin α<0,因为(cos α-sin α)2=1-2sin αcos α=1-2×⎝⎛⎭⎫-38=74, 所以cos α-sin α=-72, 所以1-tan α1+tan α=1-sin αcos α1+sin αcos α=cos α-sin αcos α+sin α=-7212=-7.2.已知θ是第一象限角,若sin θ-2cos θ=-25,则sin θ+cos θ=________.解析:∵sin θ-2cos θ=-25,∴sin θ=2cos θ-25,∴⎝⎛⎭⎫2cos θ-252+cos 2θ=1, ∴5cos 2θ-85cos θ-2125=0,即⎝⎛⎭⎫cos θ-35⎝⎛⎭⎫5cos θ+75=0. 又∵θ为第一象限角,∴cos θ=35,∴sin θ=45,∴sin θ+cos θ=75.答案:753.已知关于x 的方程2x 2-(3+1)x +m =0的两根分别是sin θ和cos θ,θ∈(0,2π),求:(1)sin 2θsin θ-cos θ+cos θ1-tan θ的值; (2)m 的值;(3)方程的两根及此时θ的值. 解:(1)原式=sin 2θsin θ-cos θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ =sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ. 由条件知sin θ+cos θ=3+12, 故sin 2θsin θ-cos θ+cos θ1-tan θ=3+12.(2)由已知,得sin θ+cos θ=3+12,sin θcos θ=m2, 因为1+2sin θcos θ=(sin θ+cos θ)2, 所以1+2×m 2=⎝ ⎛⎭⎪⎫3+122,解得m =32. (3)由⎩⎪⎨⎪⎧sin θ+cos θ=3+12,sin θcos θ=34,得⎩⎨⎧sin θ=32,cos θ=12或⎩⎨⎧sin θ=12,cos θ=32.又θ∈(0,2π),故θ=π3或θ=π6.故当sin θ=32,cos θ=12时,θ=π3;12,cos θ=32时,θ=π6.当sin θ=。