最新高考数学二轮精品复习资料-专题-三角函数(教师版)

合集下载

高考数学二轮复习 专题2 三角函数、三角变换、解三角形、平面向量 第一讲 三角函数的图象与性质 理-

高考数学二轮复习 专题2 三角函数、三角变换、解三角形、平面向量 第一讲 三角函数的图象与性质 理-

专题二 三角函数、三角变换、解三角形、平面向量第一讲 三角函数的图象与性质1.角的概念.(1)终边相同的角不一定相等,相等的角终边一定相同(填“一定”或“不一定”). (2)确定角α所在的象限,只要把角α表示为α=2k π+α0[k ∈Z,α0∈[0,2π)],判断出α0所在的象限,即为α所在象限.2.诱导公式.诱导公式是求三角函数值、化简三角函数的重要依据,其记忆口诀为:奇变偶不变,符号看象限.1.三角函数的定义:设α是一个任意大小的角,角α的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx.2.同角三角函数的基本关系. (1)sin 2α+cos 2α=1. (2)tan α=sin αcos α.判断下面结论是否正确(请在括号中打“√”或“×”).(1)角α终边上点P 的坐标为⎝ ⎛⎭⎪⎫-12,32,那么sin α=32,cos α=-12;同理角α终边上点Q 的坐标为(x 0,y 0),那么sin α=y 0,cos α=x 0.(×)(2)锐角是第一象限角,反之亦然.(×) (3)终边相同的角的同一三角函数值相等.(√)(4)常函数f (x )=a 是周期函数,它没有最小正周期.(√) (5)y =cos x 在第一、二象限上是减函数.(×) (6)y =tan x 在整个定义域上是增函数.(×)1.(2015·某某卷)若sin α=-513,且α为第四象限角,则tan α的值等于(D )A.125 B .-125 C.512 D .-512解析:解法一:因为α为第四象限的角,故cos α=1-sin 2α=1-(-513)2=1213,所以tan α=sin αcos α=-5131213=-512. 解法二:因为α是第四象限角,且sin α=-513,所以可在α的终边上取一点P (12,-5),则tan α=y x =-512.故选D.2.已知α的终边经过点A (5a ,-12a ),其中a <0,则sin α的值为(B ) A .-1213 B.1213 C.513 D .-5133.(2014·新课标Ⅰ卷)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎪⎫2x +π6,④y=tan ⎝⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为(A ) A .①②③ B .①③④C .②④D .①③解析:①中函数是一个偶函数,其周期与y =cos 2x 相同,T =2π2=π;②中函数y =|cos x |的周期是函数y =cos x 周期的一半,即T =π;③T =2π2=π;④T =π2.故选A.4.(2015·某某卷)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin(π6x +φ)+k .据此函数可知,这段时间水深(单位:m)的最大值为(C )A .5B .6C .8D .10解析:根据图象得函数的最小值为2,有-3+k =2,k =5,最大值为3+k =8.一、选择题1.若sin(α-π)=35,α为第四象限角,则tan α=(A )A .-34B .-43C.34D.43 解析:∵sin(α-π)=35,∴-sin α=35,sin α=-35.又∵α为第四象限角, ∴cos α= 1-sin 2α= 1-⎝ ⎛⎭⎪⎫-352=45, tan α=sin αcos α=-3545=-34.2. 定义在R 上的周期函数f (x ),周期T =2,直线x =2是它的图象的一条对称轴,且f (x )在[-3,-2]上是减函数,如果A ,B 是锐角三角形的两个内角,则(A )A .f (sin A )>f (cosB ) B .f (cos B )>f (sin A )C .f (sin A )>f (sin B )D .f (cos B )>f (cos A )解析:由题意知:周期函数f (x )在[-1,0]上是减函数,在[0,1]上是增函数.又因为A ,B 是锐角三角形的两个内角,A +B >π2,得:sin A >cos B ,故f (sin A )>f (cos B ).综上知选A.3.函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为(A )A .2- 3B .0C .-1D .-1- 3解析:用五点作图法画出函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的图象,注意0≤x ≤9知,函数的最大值为2,最小值为- 3.故选A.4. 把函数y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图象是(A )解析:y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的解析式为y =cos (x +1).故选A.5.(2015·新课标Ⅰ卷)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为(D )A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈ZB.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z 解析:由图象知周期T =2⎝ ⎛⎭⎪⎫54-14=2,∴2πω=2,∴ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎪⎫πx +π4.由2k π<πx +π4<2k π+π,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z.故选D.6.已知函数f (x )=A sin(ωx +φ)(x ∈R,A >0,ω>0,|φ|<π2)的图象(部分)如图所示,则f (x )的解析式是(A )A .f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π6(x ∈R)B .f (x )=2sin ⎝ ⎛⎭⎪⎫2πx +π6(x ∈R)C .f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π3(x ∈R)D .f (x )=2sin ⎝⎛⎭⎪⎫2πx +π3(x ∈R) 解析:由图象可知其周期为:4⎝ ⎛⎭⎪⎫56-13=2,∵2πω=2,得ω=π,故只可能在A ,C 中选一个,又因为x =13时达到最大值,用待定系数法知φ=π6.二、填空题7.若sin θ=-45,tan θ>0,则cos θ=-35.8.已知角α的终边经过点(-4,3),则cos α=-45.解析:由题意可知x =-4,y =3,r =5,所以cos α=x r =-45.三、解答题9. (2014·某某卷)已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎪⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.分析:思路一 直接将5π4代入函数式,应用三角函数诱导公式计算.(2)应用和差倍半的三角函数公式,将函数化简2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 得到T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z.思路二 先应用和差倍半的三角函数公式化简函数f (x )=2sin x cos x +2cos 2x =2sin ⎝⎛⎭⎪⎫2x +π4+1.(1)将5π4代入函数式计算;(2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z.解析:解法一 (1)f ⎝⎛⎭⎪⎫5π4=2cos 5π4⎝ ⎛⎭⎪⎫sin 5π4+cos 5π4=-2cos π4⎝ ⎛⎭⎪⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.解法二 因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝ ⎛⎭⎪⎫2x +π4+1.(1)f ⎝⎛⎭⎪⎫5π4=2sin 11π4+1=2sin π4+1=2. (2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.10.函数f (x )=A sin ⎝ ⎛⎭⎪⎫ωx -π6+1(A >0,ω>0)的最大值为3, 其图象相邻两条对称轴之间的距离为π2.(1)求函数f (x )的解析式;word(2)设α∈⎝ ⎛⎭⎪⎫0,π2,则f ⎝ ⎛⎭⎪⎫α2=2,求α的值. 解析:(1)∵函数f (x )的最大值为3,∴A +1=3,即A =2.∵函数图象的相邻两条对称轴之间的距离为π2, ∴最小正周期为 T =π,∴ω=2,故函数f (x )的解析式为y =2sin ⎝ ⎛⎭⎪⎫2x -π6+1. (2)∵f ⎝ ⎛⎭⎪⎫α2=2sin ⎝⎛⎭⎪⎫α-π6+1=2, 即sin ⎝⎛⎭⎪⎫α-π6=12, ∵0<α<π2,∴-π6<α-π6<π3. ∴α-π6=π6,故α=π3. 11.(2015·卷)已知函数f (x )=2sin x 2cos x 2-2sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间[-π,0]上的最小值.解析:(1)由题意得f (x )=22sin x -22(1-cos x )=sin ⎝ ⎛⎭⎪⎫x +π4-22,所以f (x )的最小正周期为2π.(2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4. 当x +π4=-π2,即x =-3π4时,f (x )取得最小值. 所以f (x )在区间[-π,0]上的最小值为f ⎝ ⎛⎭⎪⎫-3π4=-1-22.。

江苏省高三数学二轮复习专题1 三角函数 教师版学生版二合一

江苏省高三数学二轮复习专题1 三角函数 教师版学生版二合一

江苏省高三数学二轮复习内部资料(第2版)1专题1 三角函数班级 学号 姓名【高考趋势】三角函数的图象与性质所涉及的内容,在高考中主要以填空题的形式出现,有时也会在高考的解答题中出现。

解决这类问题要注意三角函数图象的性质:正弦函数、余弦函数的有界性,正弦函数、余弦函数、正切函数的单调性、奇偶性、周期性。

另外,由于新课程中增加了三角函数的导数,所以我们有时也可以利用导数研究三角函数的性质。

【考点展示】1. 设α为锐角,若54)6cos(=+πα,则)122sin(πα+的值为 . 2. 函数x x x f cos )tan 31()(+=的最大值为 . 3. 为得到函数)3sin(π+=x y 的图象,可将函数x y sin =的图象向左平移m 个单位长度,或向右平移n 个单位长度(n m ,均为正数),则n m -的最小值是 . 4. 定义在区间)2,0(π上的函数x y cos 6=的图象与x y tan 5=的图象的交点为P ,过点P 作x PP ⊥1轴于点1P ,直线1PP 与x y sin =的图象交于点2P ,则线段12P P 的长为 . 5. 若函数)10(sin 2)(<<=w wx x f 在区间]3,0[π上的最大值是2,则=w .6. 若函数()()22f x x πϕϕ⎛⎫=+< ⎪⎝⎭的图象关于直线12x π=对称,且当1212172,,,123x x x x ππ⎛⎫∈--≠⎪⎝⎭时,()()12f x f x =,则()12f x x +等于 . 【样题剖析】题型一 与函数s i n()(0,y A x A ωϕω=+>>图像有关的问题例1 已知函数.2sin 211)(),12(cos )(2x x g x x f +=+=π(1)设0x x =是函数)(x f y =的图象的一条对称轴,求)(0x g 的值 (2)求函数)()()(x g x f x h +=的单调递增区间例 2 已知函数)22,0)(sin(3)(πϕπωϕω<≤->+=x x f 的图象关于直线3π=x 对称,且图象上相邻两个最高点的距离为π.(1)求ϕω,的值 (2)若),326(43)2(παπα<<=f 求)23cos(πα+的值题型二 化简求值 例3 求下列各式的值:(1)cos 43cos77sin 43cos167oooo+; (2【变式】计算:0210sin 110sin 8+的值为 .例4 已知4sin ,52πθθπ=,(1)求tan θ的值; (2)求222sin 2sin cos 3sin cos θθθθθ++的值;题型三 给值求角例5 若tanα=17,tanβ=13,且α,β∈(0,π),求α+2β的值.【变式】设(0,),(0,),22ππαβ∈∈且1sin tan ,cos βαβ+=则2αβ-=______________.例6 ,0,2παβ⎛⎫∈ ⎪⎝⎭,cos 2βα⎛⎫- ⎪⎝⎭,1sin 22αβ⎛⎫-=- ⎪⎝⎭,求αβ+的值.题型四 综合应用例7 在ABC ∆中,已知.32,3==BC A π设x B =,ABC ∆的周长为y ,面积为S.(1)求函数)(x f y =的解析式和定义域,并求y 的最大值; (2)求函数)(x g S =的解析式和定义域,并求S 的最大值例8 如图,在矩形纸片ABCD 中,AB=6,AD=12,将矩形纸片的右下角折起,使该角的顶点B 落在矩形的边AD 上,记该点为E ,且折痕MN 的两个端点M ,N 分别位于边AB ,BC 上.设EMN l MN MNB ∆==∠,,θ的面积为S (1)将l 表示成θ的函数,并确定θ的取值范围 (2)求l 的最小值及此时θsin 的值(3)当θ为何值时,EMN ∆的面积S 取得最小值?并求出这个最小值【总结提炼】三角函数的性质主要涉及正弦函数、余弦函数的有界性,正弦函数、余弦函数、正切函数的单调性、奇偶性、周期性。

高三数学二轮复习 第一部分 重点保分题 题型专题(十一)三角函数的图象与性质教师用书 理

高三数学二轮复习 第一部分 重点保分题 题型专题(十一)三角函数的图象与性质教师用书 理

题型专题(十一) 三角函数的图象与性质[师说考点]1.三角函数的定义若角α的终边过点P (x ,y ),则sin α=yr ,cos α=x r ,tan α=y x(其中r =x 2+y 2). 2.利用诱导公式进行化简求值的步骤利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.特别注意函数名称和符号的确定.(注意“奇变偶不变,符号看象限”)3.基本关系sin 2x +cos 2x =1,tan x =sin x cos x.[典例] (1)(2016·广州模拟)已知cos(θ+π)=-13,则sin ⎝ ⎛⎭⎪⎫2θ+π2=________. [解析] 因为cos(θ+π)=-13,所以cos θ=13,所以sin ⎝⎛⎭⎪⎫2θ+π2=cos 2θ=2cos2θ-1=-79.[答案] -79(2)已知角α的顶点与原点重合,始边与x 轴的正半轴重合,终边上一点P (-4,3),则cos ⎝ ⎛⎭⎪⎫π2+αsin (-π-α)cos ⎝ ⎛⎭⎪⎫11π2-αsin ⎝ ⎛⎭⎪⎫9π2+α的值为________.[解析] 原式=-sin α·sin α-sin α·cos α=tan α.根据三角函数的定义,得tan α=y x =-34,∴原式=-34.[答案] -34[类题通法]应用三角函数的定义和诱导公式的注意事项(1)当角的终边所在的位置不是唯一确定的时候要注意分情况解决,机械地使用三角函数的定义就会出现错误.(2)应用诱导公式与同角关系开方运算时,一定注意三角函数的符号;利用同角三角函数的关系化简要遵循一定的原则,如切化弦、化异为同、化高为低、化繁为简等.[演练冲关]1.已知点P⎝⎛⎭⎪⎫sin3π4,cos3π4落在角θ的终边上,且θ∈[0,2π),则θ的值为( ) A.π4B.3π4C.5π4D.7π4解析:选D tan θ=cos3π4sin3π4=-cosπ4sinπ4=-1,又sin3π4>0,cos3π4<0,所以θ为第四象限角且θ∈[0,2π),所以θ=7π4.2.若θ∈⎝⎛⎭⎪⎫π2,π,则1-2sin(π+θ)sin⎝⎛⎭⎪⎫3π2-θ=________.解析:因为1-2sin(π+θ)sin⎝⎛⎭⎪⎫3π2-θ=1-2sin θcos θ=(sin θ-cos θ)2=|sin θ-cos θ|,又θ∈⎝⎛⎭⎪⎫π2,π,所以原式=sin θ-cos θ.答案:sin θ-cos θ[师说考点]函数y=A sin(ωx+φ)的图象(1)“五点法”作图设z=ωx+φ,令z=0,π2,π,3π2,2π,求出x的值与相应的y的值,描点、连线可得.(2)图象变换[典例] (1)(2016·全国甲卷)函数y=A sin(ωx+φ)的部分图象如图所示,则( )A .y =2sin ⎝ ⎛⎭⎪⎫2x -π6B .y =2sin ⎝⎛⎭⎪⎫2x -π3 C .y =2sin ⎝ ⎛⎭⎪⎫x +π6 D .y =2sin ⎝⎛⎭⎪⎫x +π3 [解析] 选A 由图象知T 2=π3-⎝ ⎛⎭⎪⎫-π6=π2,故T =π,因此ω=2ππ=2.又图象的一个最高点坐标为⎝ ⎛⎭⎪⎫π3,2,所以A =2,且2×π3+φ=2k π+π2(k ∈Z ),故φ=2k π-π6(k ∈Z ),结合选项可知y =2sin ⎝⎛⎭⎪⎫2x -π6.故选A.(2)(2016·全国乙卷)将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移14个周期后,所得图象对应的函数为( )A .y =2sin ⎝ ⎛⎭⎪⎫2x +π4B .y =2sin ⎝ ⎛⎭⎪⎫2x +π3C .y =2sin ⎝ ⎛⎭⎪⎫2x -π4D .y =2sin ⎝⎛⎭⎪⎫2x -π3 [解析] 选D 函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的周期为π,将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移14个周期,即π4个单位长度,所得图象对应的函数为y =2sin[2⎝ ⎛⎭⎪⎫x -π4+π6]=2sin ⎝ ⎛⎭⎪⎫2x -π3,故选D.[类题通法]解决三角函数图象问题的方法及注意事项(1)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.(如例(1))(2)在图象变换过程中务必分清是先相位变换,还是先周期变换,变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.(如例(2))[演练冲关]1.(2016·西安质检)将函数f (x )=sin ⎝⎛⎭⎪⎫x +π6的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,所得图象的一条对称轴方程可能是( )A .x =-π12B .x =π12C .x =π3D .x =2π3解析:选D 将函数f (x )=sin ⎝⎛⎭⎪⎫x +π6的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,得到函数y =sin(12x +π6)的图象,由12x +π6=π2+k π,k ∈Z ,得x =2π3+2k π,k ∈Z ,∴当k =0时,函数图象的对称轴为x =2π3.2.(2016·贵州模拟)将函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6的图象向左平移φ(0<φ≤π2)个单位长度,所得的图象关于y 轴对称,则φ=( )A.π6 B.π4 C.π3 D.π2解析:选A 将函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6的图象向左平移φ⎝ ⎛⎭⎪⎫0<φ≤π2个单位长度,得到的图象所对应的函数解析式为y =sin ⎣⎢⎡⎦⎥⎤2(x +φ)+π6=sin ⎝ ⎛⎭⎪⎫2x +2φ+π6,由题知,该函数是偶函数,则2φ+π6=k π+π2,k ∈Z ,即φ=k π2+π6,k ∈Z ,又0<φ≤π2,所以φ=π6,选项A 正确.3.(2016·兰州模拟)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG (点G 是图象的最高点)是边长为2的等边三角形,则f (1)=________.解析:由题意得,A =3,T =4=2πω,ω=π2.又∵f (x )=A cos(ωx +φ)为奇函数,∴φ=π2+k π,k ∈Z ,取k =0,则φ=π2,∴f (x )=3cos ⎝ ⎛⎭⎪⎫π2x +π2,∴f (1)=- 3.答案:- 3[师说考点]1.三角函数的单调区间y =sin x 的单调递增区间是⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),单调递减区间是⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2(k ∈Z );y =cos x 的单调递增区间是[]2k π-π,2k π(k ∈Z ),单调递减区间是[2k π,2k π+π](k ∈Z );y =tan x 的单调递增区间是⎝⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z ).2.三角函数的奇偶性、对称轴方程y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数;当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z )求得.y =A cos(ωx +φ),当φ=k π+π2(k ∈Z )时为奇函数;当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得.y =A tan(ωx +φ),当φ=k π(k ∈Z )时为奇函数.[典例] (2016·天津高考)已知函数f (x )=4tan x ·sin(π2-x )·cos ⎝ ⎛⎭⎪⎫x -π3- 3.(1)求f (x )的定义域与最小正周期;(2)讨论f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性.[解] (1)f (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π2+k π,k ∈Z . f (x )=4tan x cos x cos ⎝⎛⎭⎪⎫x -π3- 3 =4sin x cos ⎝⎛⎭⎪⎫x -π3- 3=4sin x ⎝ ⎛⎭⎪⎫12cos x +32sin x - 3=2sin x cos x +23sin 2x - 3 =sin 2x +3(1-cos 2x )- 3 =sin 2x -3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3.所以f (x )的最小正周期T =2π2=π. (2)令z =2x -π3,则函数y =2sin z 的单调递增区间是⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z . 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,得-π12+k π≤x ≤5π12+k π,k ∈Z .设A =⎣⎢⎡⎦⎥⎤-π4,π4,B ={x |-π12+k π≤x ≤5π12+k π,k ∈Z },易知A ∩B =⎣⎢⎡⎦⎥⎤-π12,π4.所以当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π4上单调递增,在区间⎣⎢⎡⎦⎥⎤-π4,-π12上单调递减.[类题通法]三角函数的单调性、周期性及最值的求法(1)三角函数单调性的求法求形如y =A sin(ωx +φ)(或y =A cos(ωx +φ))(A ,ω,φ为常数,A ≠0,ω>0)的单调区间的一般思路:令ωx +φ=z ,则y =A sin z (或y =A cos z ),然后由复合函数的单调性求得.(2)三角函数周期性的求法函数y =A sin(ωx +φ)(或y =A cos(ωx +φ))的最小正周期T =2π|ω|.应特别注意y =|A sin(ωx +φ)|的周期为T =π|ω|.(3)三角函数最值的求法在求最值时,一般要先确定函数的定义域,然后结合三角函数性质可得函数f (x )的最值.[演练冲关]1.(2016·全国甲卷)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( )A .4B .5C .6D .7解析:选B ∵f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x =cos 2x +6sin x =1-2sin 2x +6sin x =-2⎝⎛⎭⎪⎫sin x -322+112,又sin x ∈[-1,1],∴当sin x =1时,f (x )取得最大值5.2.(2016·兰州模拟)将函数f (x )=cos 2x 的图象向右平移π4个单位后得到函数g (x )的图象,则g (x )具有性质( )A .最大值为1,图象关于直线x =π2对称B .在⎝ ⎛⎭⎪⎫0,π4上单调递增,为奇函数C .在⎝ ⎛⎭⎪⎫-3π8,π8上单调递增,为偶函数D .周期为π,图象关于点⎝⎛⎭⎪⎫3π8,0对称解析:选B 由题意可得将f (x )=cos 2x 的图象向右平移π4个单位得到g (x )=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4=cos(π2-2x )=sin 2x 的图象,因为函数g (x )为奇函数,所以排除C ,又当x=π2时函数值为0,当x =3π8时,函数值为22,所以A 和D 中对称的说法不正确,选B. 3.(2016·重庆模拟)若函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6(ω>0)的图象相邻两个对称中心之间的距离为π2,则f (x )的一个单调递增区间为( )A.⎝ ⎛⎭⎪⎫-π6,π3B.⎝ ⎛⎭⎪⎫-π3,π6 C.⎝⎛⎭⎪⎫π6,2π3 D.⎝ ⎛⎭⎪⎫π3,5π6解析:选A 依题意得,f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6的图象相邻两个对称中心之间的距离为π2,于是有T =2πω=2×π2=π,ω=2,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6.当2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,即k π-π6≤x ≤k π+π3,k ∈Z 时,f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6单调递增.因此结合各选项知,f (x )=sin ⎝⎛⎭⎪⎫2x -π6的一个单调递增区间为⎝ ⎛⎭⎪⎫-π6,π3,选A.三角函数与其他知识的交汇三角函数的图象与性质是高考考查的重点,近年来,三角函数与其他知识交汇命题成为高考的热点,由原来三角函数与平面向量的交汇渗透到三角函数与函数的零点、数列、不等式、复数、方程等知识的交汇.[典例] (1)已知方程|cos x |x=k 在(0,+∞)上有两个不同的解α,β(α<β),则下列的四个命题正确的是( )A .sin 2α=2αcos 2α B .cos 2α=2αsin 2α C .sin 2β=-2βsin 2β D .cos 2β=-2βsin 2β[解析] 选C 依题意y =|cos x |与y =kx 的图象在(0,+∞)上有两个不同的交点,如图,设直线y =kx 与y =-cos x 的切点B (β,-cos β),与y =cos x 的一个交点为A (α,cos α),又y ′=(-cos x )′=sin x ,依题意y ′|x =β=sin β,∴k =sin β,又-cos β=kβ, ∴cos β=-βsin β, ∴2sin βcos β=-2βsin 2β, 即sin 2β=-2βsin 2β.(2)(2016·合肥质检)存在实数φ,使得圆面x 2+y 2≤4恰好覆盖函数y =sin ⎝ ⎛⎭⎪⎫πkx +φ图象的最高或最低点共三个,则正数k 的取值范围是________.[解析] 函数y =sin ⎝ ⎛⎭⎪⎫πkx +φ的图象的最高点或最低点一定在直线y =±1上,由⎩⎪⎨⎪⎧y =±1,x 2+y 2≤4,解得-3≤x ≤3,由题意可得:T =2ππk=2k ,T ≤23<2T ,解得正数k 的取值范围是⎝⎛⎦⎥⎤32,3. [答案] ⎝⎛⎦⎥⎤32,3 [类题通法]解决三角函数与其他知识的交汇问题,要充分利用三角函数的图象与性质,如本例(2),可利用三角函数的周期性结合x 的范围列出不等关系求解,而本例(1)应利用数形结合思想.[演练冲关]1.设a n =1n sin n π25,S n =a 1+a 2+…+a n ,在S 1,S 2,…,S 100中,正数的个数是( )A .25B .50C .75D .100解析:选D 当1≤n ≤24时,a n >0,当26≤n ≤49时,a n <0,但其绝对值要小于1≤n ≤24时相应的值;当51≤n ≤74时,a n >0;当76≤n ≤99时,a n <0,但其绝对值要小于51≤n ≤74时相应的值.故当1≤n ≤100时,均有S n >0.2.已知函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)的图象上的两个相邻的最高点和最低点的横坐标之差为π2,则函数在[0,2π]上的零点个数为________.解析:由已知得f (x )=cos ⎝ ⎛⎭⎪⎫ωx +π6的周期为π,即2πω=π,得ω=2,∴f (x )=cos ⎝ ⎛⎭⎪⎫2x +π6.当f (x )=0时,2x +π6=π2+k π(k ∈Z ),即x =k π2+π6(k ∈Z ),则当x ∈[0,2π]时f (x )有4个零点.答案:4一、选择题1.(2016·合肥质检)函数y =sin ⎝ ⎛⎭⎪⎫ωx +π6在x =2处取得最大值,则正数ω的最小值为( )A.π2 B.π3 C.π4 D.π6解析:选D 由题意得,2ω+π6=π2+2k π(k ∈Z ),解得ω=π6+k π(k ∈Z ),∵ω>0,∴当k =0时,ωmin =π6,故选D.2.(2016·全国丙卷)若tan α=34,则cos 2α+2sin 2α=( )A.6425 B.4825 C .1 D.1625解析:选A 因为tan α=34,则cos 2α+2sin 2α=cos 2α+4sin αcos αsin 2α+cos 2α=1+4tan αtan 2α+1=1+4×34⎝ ⎛⎭⎪⎫342+1=6425.故选A.3.(2016·山东高考)函数f (x )=(3sin x +cos x )(3cos x -sin x )的最小正周期是( )A.π2 B .π C.3π2D .2π 解析:选B ∵f (x )=(3sin x +cos x )(3cos x -sin x ) =3sin x cos x +3cos 2x -3sin 2x -sin x cos x =sin 2x +3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π3,∴T =2π2=π.故选B.4.(2016·湖南东部六校联考)将函数y =sin ⎝ ⎛⎭⎪⎫x +π6的图象上各点的横坐标变为原来的12(纵坐标不变),所得图象对应的函数在下面哪个区间上单调递增( )A.⎝ ⎛⎭⎪⎫-π3,π6B.⎝ ⎛⎭⎪⎫-π2,π2C.⎝ ⎛⎭⎪⎫-π3,π3D.⎝ ⎛⎭⎪⎫-π6,2π3解析:选A 将函数y =sin ⎝ ⎛⎭⎪⎫x +π6的图象上各点的横坐标变为原来的12得到函数y =sin ⎝⎛⎭⎪⎫2x +π6的图象,令-π2+2k π≤2x +π6≤π2+2k π,k ∈Z ,解得k π-π3≤x ≤k π+π6,k ∈Z ,结合各选项知函数的一个单调递增区间为⎝⎛⎭⎪⎫-π3,π6.5.(2016·山西质检)若函数f (x )=sin(2x +φ)(|φ|<π2)的图象关于直线x =π12对称,且当x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,x 1≠x 2时,f (x 1)=f (x 2),则f (x 1+x 2)=( )A.12B.22C.32 D .1 解析:选C 由题意得,2×π12+φ=π2+k π,k ∈Z ,∴φ=π3+k π,k ∈Z ,∵|φ|<π2,∴k =0,φ=π3,又x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,∴2x 1+π3∈(0,π),2x 2+π3∈(0,π),∴2x 1+π3+2x 2+π32=π2,解得x 1+x 2=π6,∴f (x 1+x 2)=sin ⎝⎛⎭⎪⎫2×π6+π3=32,故选C.6.(2016·河北三市联考)已知函数f (x )=2sin(ωx +φ)+1(ω>0,|φ|≤π2),其图象与直线y =-1相邻两个交点的距离为π,若f (x )>1,对∀x ∈⎝ ⎛⎭⎪⎫-π12,π3恒成立,则φ的取值范围是( )A.⎣⎢⎡⎦⎥⎤π12,π2 B.⎣⎢⎡⎦⎥⎤π6,π3C.⎣⎢⎡⎦⎥⎤π12,π3D.⎝ ⎛⎦⎥⎤π6,π2 解析:选B 由已知得函数f (x )的最小正周期为π,则ω=2.当x ∈⎝ ⎛⎭⎪⎫-π12,π3时,2x +φ∈⎝ ⎛⎭⎪⎫-π6+φ,2π3+φ,∵f (x )>1,|φ|≤π2,∴⎩⎪⎨⎪⎧-π6+φ≥0,2π3+φ≤π,解得π6≤φ≤π3.二、填空题7.已知α为第二象限角,cos ⎝ ⎛⎭⎪⎫3π2-α=-33,则tan α的值为________.解析:∵cos ⎝⎛⎭⎪⎫3π2-α=-sin α,∴sin α=33,又α为第二象限角,∴cos α=-1-sin 2α=-63,∴tan α=sin αcos α=-22.答案:-228.(2016·重庆模拟)将函数y =sin x +3cos x 的图象向右平移φ(φ>0)个单位,再向上平移1个单位后,所得图象经过点⎝ ⎛⎭⎪⎫π4,1,则φ的最小值为________. 解析:依题意,将y =2sin ⎝ ⎛⎭⎪⎫x +π3的图象向右平移φ个单位得到y =2sin ⎝⎛⎭⎪⎫x -φ+π3的图象,再向上平移1个单位得到y =2sin ⎝ ⎛⎭⎪⎫x -φ+π3+1的图象,又该图象经过点⎝ ⎛⎭⎪⎫π4,1,于是有2sin ⎝ ⎛⎭⎪⎫π4-φ+π3+1=1,即sin(7π12-φ)=0,φ-7π12=k π,k ∈Z ,φ=k π+7π12,k ∈Z ,因此正数φ的最小值是7π12. 答案:7π129.已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________.解析:f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎪⎫ωx +π4,因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z ,所以ω2=π4+2k π,k ∈Z .又ω-(-ω)≤12·2πω,即ω2≤π2,所以ω2=π4,所以ω=π2. 答案:π2三、解答题10.(2016·合肥质检)已知m =⎝ ⎛⎭⎪⎫sin ⎝⎛⎭⎪⎫x -π6,1,n =(cos x ,1). (1)若m ∥n ,求tan x 的值;(2)若函数f (x )=m ·n ,x ∈[0,π],求f (x )的单调递增区间.解:(1)由m ∥n 得,sin ⎝⎛⎭⎪⎫x -π6-cos x =0,展开变形可得,sin x =3cos x ,即tan x = 3.(2)f (x )=m ·n =12sin ⎝⎛⎭⎪⎫2x -π6+34, 由-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,得-π6+k π≤x ≤π3+k π,k ∈Z .又x ∈[0,π],所以当x ∈[0,π]时,f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤0,π3和⎣⎢⎡⎦⎥⎤5π6,π.11.设函数f (x )=sin ⎝⎛⎭⎪⎫2x +π3+33sin 2x -33cos 2x . (1)求f (x )的最小正周期及其图象的对称轴方程;(2)将函数f (x )的图象向右平移π3个单位长度,得到函数g (x )的图象,求g (x )在区间⎣⎢⎡⎦⎥⎤-π6,π3上的值域. 解:(1)f (x )=12sin 2x +32cos 2x -33cos 2x =12sin 2x +36cos 2x =33sin ⎝⎛⎭⎪⎫2x +π6. 所以f (x )的最小正周期为T =2π2=π. 令2x +π6=k π+π2(k ∈Z ),得对称轴方程为x =k π2+π6(k ∈Z ). (2)将函数f (x )的图象向右平移π3个单位长度,得到函数g (x )=33sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π3+π6= -33cos 2x 的图象,即g (x )=-33cos 2x . 当x ∈⎣⎢⎡⎦⎥⎤-π6,π3时,2x ∈⎣⎢⎡⎦⎥⎤-π3,2π3,可得cos 2x ∈⎣⎢⎡⎦⎥⎤-12,1,所以g (x )=-33cos 2x ∈⎣⎢⎡⎦⎥⎤-33,36,即函数g (x )在区间⎣⎢⎡⎦⎥⎤-π6,π3上的值域是⎣⎢⎡⎦⎥⎤-33,36. 12.(2016·湖北七市联考)已知函数f (x )=2sin x +6cos x (x ∈R ).(1)若α∈[0,π]且f (α)=2,求α;(2)先将y =f (x )的图象上所有点的横坐标缩短到原来的12(纵坐标不变),再将得到的图象上所有点向右平行移动θ(θ>0)个单位长度,得到的图象关于直线x =3π4对称,求θ的最小值.解:(1)f (x )=2sin x +6cos x =22(12sin x +32cos x )=22sin ⎝⎛⎭⎪⎫x +π3. 由f (α)=2,得sin ⎝⎛⎭⎪⎫α+π3=22, 即α+π3=2k π+π4或α+π3=2k π+3π4,k ∈Z . 于是α=2k π-π12或α=2k π+5π12,k ∈Z .又α∈[0,π],故α=5π12. (2)将y =f (x )图象上所有点的横坐标缩短到原来的12(纵坐标不变),得到y =22sin ⎝ ⎛⎭⎪⎫2x +π3的图象,再将y =22sin ⎝ ⎛⎭⎪⎫2x +π3图象上所有点向右平行移动θ个单位长度,得到y =22sin ⎝ ⎛⎭⎪⎫2x -2θ+π3的图象.由于y =sin x 的图象关于直线x =k π+π2(k ∈Z )对称,令2x -2θ+π3=k π+π2,k ∈Z ,解得x =k π2+θ+π12,k ∈Z .由于y =22sin ⎝ ⎛⎭⎪⎫2x -2θ+π3的图象关于直线x =3π4对称,令k π2+θ+π12=3π4,k ∈Z ,解得θ=-k π2+2π3,k ∈Z .由θ>0可知,当k =1时,θ取得最小值π6.。

高三数学业三角函数第二轮复习资料

高三数学业三角函数第二轮复习资料

专题1 三角函数与平面向量三角函数与平面向量是高考的一个重点;三角函数高考题 型大致事分为:三角函数的单调性、三角函数图象、同角变换与诱导 公式、求三角函数的值与化简,与周期性和对性有关的问题;解三角形问题。

向量作为一项工具将广泛应用,特别是与解析几何、函数、三角、立体几何的有机结合,向量与平面几何结合的选择题 、填空题是高考的一个亮点。

第一课时 三角变换学习目标:掌握同角三角函数的基本关系、诱导公式、二倍角公式,会利用概念进行求值与化简。

考题领路:1.已知:tan 3α=,则2cos()3sin()4cos()sin(2)παπααπα--+=-+-____________( )2. 已知cos()sin 6παα-+=则7sin()6πα+的值为:( ) (A)15 (B)15- (C)135 (D) 135-3.(2008某某)若数列{}n a 是首项为1,公比为32a =的无穷等比数列,且{}n a 各项的和为a ,则a 的值是( )A.1 B.2 C.12 D.54典例探索:【例1】已知1tan 2θ=-,则222sin 3sin cos 5cos θθθθ--的值是。

A .1B .125-C .-1或1D .1、解析:2、变式:πα1已知tan(+)=42. (1) 求tan α的值; (2) 求2sin 2cos 1cos 2ααα-+的值。

【例2】已知α为第二象限角,且cos sin222αα+=-,求sincos22αα-和sin 2cos2αα+的值。

1、解析:2、变式:(2008某某)已知3cos()(,)41024x x πππ-=∈. (1) 求sin x 的值; (2) 求sin(2)3x π+的值。

整合提升1、三角函数的求值一般有三种类型:①“给角求值”,②“给值求值”,③“给值求角”,因此在求值过程中,要依据条件与求的式子中角、名、结构形式的差异找到化简、求值的突破口。

高三数学第二轮三角函数专题复习资料

高三数学第二轮三角函数专题复习资料

高三数学第二轮三角函数专题复习资料考点一:三角函数的概念例1、若角α的终边经过点P (12),则 2α的值为 . 解:222tan 4tan 2,tan 2.11tan 3αααα-==-∴==- 点评:一个角的终边经过某一点,在平面直角坐标系中画出图形,用三角函数的定义来求解,或者不画图形直接套用公式求解都可以。

考点二:同角三角函数的关系例2、若cos 2sin αα+=则tan α=( ) (A )21 (B )2 (C )21- (D )2- 解:由cos 2sin αα+=cos 2sin αα=, 又由22sincos 1αα+=,可得:2sin α+(2sin α)2=1可得αsin =-552,cos 2sin αα==-55,所以,tan α=ααcos sin =2。

例3、)α是第四象限角,5tan 12α=-,则sin α=( ) A .15B .15-C .513D .513-解:由5tan 12α=-,所以,有⎪⎩⎪⎨⎧=+-=1cos sin 125cos sin 22αααα,α是第四象限角,解得:sin α=513- 考点三: 诱导公式 例4、若==+θθπ2cos ,53)2sin(则 . 解:由3sin()25πθ+=可知,3cos 5θ=;而2237cos 22cos 12()1525θθ=-=⨯-=-。

考点四:三角函数的图象和性质例5、设5sin7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c << B .a c b << C .b c a << D .b a c <<解:2sin 7a π=,因为2472πππ<<,所以220cos sin 1tan 7772πππ<<<<,选D .例6、函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )解: ln cos ()22y x x ππ=-<<是偶函数,可排除B 、D ,由cos x 的值域可以确定.因此本题应选A.例7、把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( ) A .sin 23y x x π⎛⎫=-∈ ⎪⎝⎭R , B .sin 26x y x π⎛⎫=+∈⎪⎝⎭R , C .sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R , D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R , 解:sin x3π−−−−−−→向左平移个单位sin()3y x π=+12−−−−−−−→横坐标缩短到原来的倍sin(2)3y x π=+,故选(C )。

高三数学二轮复习第部分专题突破点三角函数问题教师用书理

高三数学二轮复习第部分专题突破点三角函数问题教师用书理

专题一三角函数与平面向量建知识网络明内在联系高考点拨] 三角函数与平面向量是高考高频考点,常以“两小一大〞形式呈现,两小题主要考察三角函数图象与性质与平面向量内容,一大题常考察解三角形内容,有时平面向量还与圆锥曲线、线性规划等知识相交汇.本专题按照“三角函数问题〞“解三角形〞“平面向量〞三条主线分门别类进展备考.突破点1 三角函数问题(1)函数y =A 低点确定A ,利用周期确定ω,利用图象某一点坐标确定φ.(2)三角函数图象两种常见变换(1)y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数;当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z )求得,对称中心横坐标可由ωx +φ=k π,(k ∈Z )解得.(2)y =A cos(ωx +φ),当φ=k π+π2(k ∈Z )时为奇函数;当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得,对称中心横坐标可由ωx +φ=k π+π2(k ∈Z )解得.y =A tan(ωx +φ),当φ=k π(k ∈Z )时为奇函数;对称中心横坐标可由ωx +φ=k π2(k ∈Z )解得,无对称轴.(1)cos 2θ=tan 45°等.(2)项分拆与角配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等.(3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次. (4)弦、切互化:一般是切化弦.(1)y =a sin x y 转化为y =a 2+b 2sin(x +φ)+c 其中tan φ=ba形式,这样通过引入辅助角φ可将此类函数最值问题转化为y =a 2+b 2sin(x +φ)+c 最值问题,然后利用三角函数图象与性质求解.(2)y =a sin 2x +b sin x cos x +c cos 2x 型函数最值:可利用降幂公式sin 2x =1-cos 2x 2,sin x cos x =sin 2x 2,cos 2x =1+cos 2x 2,将y =a sin 2x +b sin x cos x +c cos 2x 转化整理为y =A sin 2x +B cos 2x +C ,这样就可将其转化为(1)类型来求最值.回访1 三角函数图象问题1.(2021·全国甲卷)假设将函数y =2sin 2x 图象向左平移π12个单位长度,那么平移后图象对称轴为( )A .x =k π2-π6(k ∈Z ) B .x =k π2+π6(k ∈Z )C .x =k π2-π12(k ∈Z )D .x =k π2+π12(k ∈Z )B 将函数y =2sin 2x 图象向左平移π12个单位长度,得到函数y =2sin 2⎝ ⎛⎭⎪⎪⎫x +π12=2sin ⎝⎛⎭⎪⎪⎫2x +π6图象.由2x +π6=kx +π2(k ∈Z ),得x =k π2+π6(k ∈Z ),即平移后图象对称轴为x =k π2+π6(k ∈Z ).]2.(2021·全国卷Ⅰ)图1­1如图1­1,圆O 半径为1,A 是圆上定点,P 是圆上动点,角x 始边为射线OA ,终边为射线OP ,过点P 作直线OA 垂线,垂足为M .将点M 到直线OP 距离表示成x 函数f (x ),那么y =f (x )在0,π]图象大致为( )B 如下图,当x ∈⎝ ⎛⎭⎪⎪⎫0,π2时,那么P (cos x ,sin x ),M (cos x,0),作MM ′⊥OP ,M ′为垂足,那么|MM ′||OM |=sin x ,∴f xcos x =sin x ,∴f (x )=sin x cos x =12sin 2x ,那么当x =π4时,f (x )max =12;当x ∈⎝ ⎛⎭⎪⎪⎫π2,π时,有f x |cos x |=sin(π-x ),f (x )=-sin x cos x =-12sin 2x ,当x =3π4时,f (x )max =12.只有B 选项图象符合.] 回访2 三角函数性质问题3.(2021 ·全国卷Ⅰ)函数f (x )=cos(ωx +φ)局部图象如图1­2所示,那么f (x )单调递减区间为( )图1­2A.⎝⎛⎭⎪⎪⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎪⎪⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎪⎪⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎪⎪⎫2k -14,2k +34,k ∈Z D 由图象知,周期T =2⎝ ⎛⎭⎪⎪⎫54-14=2, ∴2πω=2,∴ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎪⎪⎫πx +π4.由2k π<πx +π4<2k π+π,k ∈Z ,得2k -14<x <2k +34,k ∈Z ,∴f (x )单调递减区间为⎝⎛⎭⎪⎪⎫2k -14,2k +34,k ∈Z .应选D.] 4.(2021·全国乙卷)函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )零点,x =π4为y =f (x )图象对称轴,且f (x )在⎝ ⎛⎭⎪⎪⎫π18,5π36上单调,那么ω最大值为( )A .11B .9C .7D .5B 因为f (x )=sin(ωx +φ)一个零点为x =-π4,x =π4为y =f (x )图象对称轴,所以T4·k =π2(k 为奇数).又T =2πω,所以ω=k (k 为奇数).又函数f (x )在⎝⎛⎭⎪⎪⎫π18,5π36上单调, 所以π12≤12×2πω,即ω≤12.假设ω=11,又|φ|≤π2,那么ω=-π4,此时,f (x )=sin ⎝⎛⎭⎪⎪⎫11x -π4,f (x )在⎝ ⎛⎭⎪⎪⎫π18,3π44上单调递增,在⎝ ⎛⎭⎪⎪⎫3π44,5π36上单调递减,不满足条件.假设ω=9,又|φ|≤π2,那么φ=π4,此时,f (x )=sin ⎝⎛⎭⎪⎪⎫9x +π4,满足f (x )在⎝⎛⎭⎪⎪⎫π18,5π36上单调条件.应选B.] 5.(2021·全国卷Ⅰ)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,那么cos θ=________.-255 ∵f (x )=sin x -2cos x =5⎝⎛⎭⎪⎪⎫15sin x -25cos x , 设15=cos α,25=sin α,那么y =5(sin x cos α-cos x sin α)=5sin(x -α). ∵x ∈R ,∴x -α∈R ,∴y max = 5. 又∵x =θ时,f (x )取得最大值, ∴f (θ)=sin θ-2cos θ= 5. 又sin 2θ+cos 2θ=1,∴⎩⎪⎨⎪⎧sin θ=15,cos θ=-25,即cos θ=-255.]回访3 三角恒等变换6.(2021 ·全国卷Ⅰ)sin 20°cos 10°-cos 160°sin 10°=( )A .-32B.32C .-12D.12D sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,应选D.]7.(2021·全国甲卷)假设cos ⎝⎛⎭⎪⎪⎫π4-α=35,那么sin 2α=( ) A.725 B.15 C .-15D .-725D 因为cos ⎝⎛⎭⎪⎪⎫π4-α=35, 所以sin 2α=cos ⎝ ⎛⎭⎪⎪⎫π2-2α=cos 2⎝ ⎛⎭⎪⎪⎫π4-α=2cos 2⎝⎛⎭⎪⎪⎫π4-α-1=2×925-1=-725.]热点题型1 三角函数图象问题题型分析:高考对该热点考察方式主要表达在以下两方面:一是考察三角函数解析式求法;二是考察三角函数图象平移变换,常以选择、填空题形式考察,难度较低.(1)(2021·山西四校联考)将函数y =3cos x +sin x (x ∈R )图象向左平移m (m >0)个单位长度后,所得到图象关于y 轴对称,那么m 最小值是( )A.π6 B.π12C.π3D.5π6(2)(2021·衡水中学四调)A ,B ,C ,D 是函数y =sin(ωx +φ)⎝⎛⎭⎪⎪⎫ω>0,0<φ<π2一个周期内图象上四个点,如图1­3所示,A ⎝⎛⎭⎪⎪⎫-π6,0,B 为y 轴上点,C 为图象上最低点,E 为该图象一个对称中心,B 与D 关于点E 对称,CD →在x 轴上投影为π12,那么( )图1­3A .ω=2,φ=π3B .ω=2,φ=π6C .ω=12,φ=π3D .ω=12,φ=π6(1)A(2)A(1)设f (x )=3cos x +sin x =2⎝ ⎛⎭⎪⎪⎫32cos x +12sin x =2sin ⎝⎛⎭⎪⎪⎫π3+x ,向左平移m 个单位长度得g (x )=2sin ⎝ ⎛⎭⎪⎪⎫x +m +π3.∵g (x )图象关于y 轴对称,∴g (x )为偶函数,∴π3+m =π2+k π(k ∈Z ),∴m =π6+k π(k ∈Z ),又m >0,∴m 最小值为π6.(2)由题意可知T 4=π6+π12=π4,∴T =π,ω=2ππ⎣⎢⎢⎡⎦⎥⎥⎤2×⎝ ⎛⎭⎪⎪⎫-π6+φ=0,0<φ<π2,∴φ=π3,应选A.]1.函数y =A sin(ωx +φ)解析式确定 (1)A 由最值确定,A =最大值-最小值2;(2)ω由周期确定;(3)φ由图象上特殊点确定.提醒:根据“五点法〞中零点求φ时,一般先依据图象升降分清零点类型.2.在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中自变量x 而言,如果x 系数不是1,就要把这个系数提取后再确定变换单位长度与方向.变式训练1] (1)为了得到函数y =sin ⎝⎛⎭⎪⎪⎫2x -π6图象,可以将函数y =cos 2x 图象( )【导学号:85952021】A .向右平移π6个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向左平移π3个单位长度(2)(2021·江西八校联考)函数f (x )=A sin ωx (A >0,ω>0)局部图象如图1­4所示,那么f (1)+f (2)+f (3)+…+f (2 016)值为( )图1­4A .0B .3 2C .6 2D .-2(1)B (2)A (1)∵y =cos 2x =sin ⎝⎛⎭⎪⎪⎫2x +π2,∴y =cos 2x 图象向右平移π3个单位长度,得y =sin ⎣⎢⎢⎡⎦⎥⎥⎤2⎝ ⎛⎭⎪⎪⎫x -π3+π2=sin ⎝ ⎛⎭⎪⎪⎫2x -π6图象.应选B.(2)由题图可得,A =2,T =8,2πω=8,ω=π4,∴f (x )=2sin π4x .∴f (1)=2,f (2)=2,f (3)=2,f (4)=0,f (5)=-2,f (6)=-2,f (7)=-2,f (8)=0,而2 016=8×252,∴f (1)+f (2)+…+f (2 016)=0.]等,是高考重要命题点之一,常与三角恒等变换交汇命题,难度中等.(2021·天津高考)函数f (x )=4tanx ·sin ⎝ ⎛⎭⎪⎪⎫π2-x ·cos ⎝⎛⎭⎪⎪⎫x -π3- 3.(1)求f (x )定义域与最小正周期;(2)讨论f (x )在区间⎣⎢⎢⎡⎦⎥⎥⎤-π4,π4上单调性. 解] (1)f (x )定义域为xx ≠π2+k π,k ∈Z .1分f (x )=4tan x cos x cos ⎝⎛⎭⎪⎪⎫x -π3-3=4sin x cos ⎝⎛⎭⎪⎪⎫x -π3-3=4sin x ⎝⎛⎭⎪⎪⎫12cos x +32sin x -3=2sin x cos x +23sin 2x -3 =sin 2x +3(1-cos 2x )-3 =sin 2x -3cos 2x =2sin ⎝⎛⎭⎪⎪⎫2x -π3.4分 所以f (x )最小正周期T =2π2=π.6分(2)令z =2x -π3,那么函数y =2sin z 单调递增区间是⎣⎢⎢⎡⎦⎥⎥⎤-π2+2k π,π2+2k π,k ∈Z .由-π2+2k π≤2x -π3≤π2+2k π,得-π12+k π≤x ≤5π12+k π,k ∈Z .8分设A =⎣⎢⎢⎡⎦⎥⎥⎤-π4,π4,B =x -π12+k π≤x ≤5π12+k π,k ∈Z ,易知A ∩B =⎣⎢⎢⎡⎦⎥⎥⎤-π12,π4.10分 所以当x ∈⎣⎢⎢⎡⎦⎥⎥⎤-π4,π4时,f (x )在区间⎣⎢⎢⎡⎦⎥⎥⎤-π12,π4上单调递增,在区间⎣⎢⎢⎡⎦⎥⎥⎤-π4,-π12 研究函数y =A sin(ωx +φ)性质“两种〞意识1.转化意识:利用三角恒等变换把待求函数化成y =A sin(ωx +φ)+B 形式.2.整体意识:类比于研究y =sin x 性质,只需将y =A sin(ωx +φ)中“ωx +φ〞看成y =sin x 中“x 〞代入求解便可.变式训练2] (1)(名师押题)函数f (x )=2sin ⎝⎛⎭⎪⎪⎫2x +π6,把函数f (x )图象沿x 轴向左平移π6个单位,得到函数g (x )图象.关于函数g (x ),以下说法正确是( )A .在⎣⎢⎢⎡⎦⎥⎥⎤π4,π2上是增函数B .其图象关于直线x =-π4对称C .函数g (x )是奇函数D .当x ∈⎣⎢⎢⎡⎦⎥⎥⎤π6,23π时,函数g (x )值域是-2,1] (2)函数f (x )=-2sin(2x +φ)(|φ|<π),假设⎝ ⎛⎭⎪⎪⎫π5,5π8是f (x )一个单调递增区间,那么φ取值范围为( )【导学号:85952021】A.⎣⎢⎢⎡⎦⎥⎥⎤-3π10,-9π10 B.⎣⎢⎢⎡⎦⎥⎥⎤9π10,4π4 C.⎣⎢⎢⎡⎦⎥⎥⎤π10,π4 D.⎝ ⎛⎦⎥⎥⎤-∞,π10∪⎣⎢⎢⎡⎭⎪⎪⎫3π4,+∞ (1)D (2)C (1)因为f (x )=2sin ⎝⎛⎭⎪⎪⎫2x +π6,把函数f (x )图象沿x轴向左平移π6个单位,得g (x )=f ⎝ ⎛⎭⎪⎪⎫x +π6=2sin ⎣⎢⎢⎡⎦⎥⎥⎤2⎝ ⎛⎭⎪⎪⎫x +π6+π6=2sin ⎝⎛⎭⎪⎪⎫2x +π2=2cos 2x . 对于A ,由x ∈⎣⎢⎢⎡⎦⎥⎥⎤π4,π2可知2x ∈⎣⎢⎢⎡⎦⎥⎥⎤π2,π,故g (x )在⎣⎢⎢⎡⎦⎥⎥⎤π4,π2上是减函数,故A 错;又g ⎝ ⎛⎭⎪⎪⎫-π4=2cos ⎝ ⎛⎭⎪⎪⎫-π2=0,故x =-π4不是g (x )对称轴,故B 错;又g (-x )=2cos 2x =g (x ),故C 错;又当x ∈⎣⎢⎢⎡⎦⎥⎥⎤π6,2π3时,2x ∈⎣⎢⎢⎡⎦⎥⎥⎤π3,4π3,故g (x )值域为-2,1],D 正确. (2)令2k π+π2<2x +φ<2k π+3π2,k ∈Z ,所以k π+π4-φ2≤x ≤k π+3π4-φ2,k ∈Z ,所以函数f (x )在⎣⎢⎢⎡⎦⎥⎥⎤k π+π4-φ2,k π+3π4-φ2上单调递增. 因为⎝ ⎛⎭⎪⎪⎫π5,5π8是f (x )一个单调递增区间, 所以5π8≤k π+3π4-φ2,且k π+π4-φ2≤π5,k ∈Z ,解得2k π+π10≤φ≤2k π+π4,k ∈Z ,又|φ|<π,所以π10≤φ≤π4.应选C.]热点题型3 三角恒等变换题型分析:高考对该热点考察方式主要表达在以下两个方面:一是直接利用与、差、倍、半角公式对三角函数式化简求值;二是以三角恒等变换为载体,考察y =A sin ωx +φ有关性质.(1)(2021·江西八校联考)如图1­5,圆O 与x 轴正半轴交点为A ,点C ,B 在圆O 上,且点C 位于第一象限,点B 坐标为⎝ ⎛⎭⎪⎪⎫1213,-513,∠AOC =α,假设|BC |=1,那么3cos 2α2-sin α2cos α2-32值为________.图1­5(2)函数f (x )=sin 25x 6-cos 25x 6+23sin 5x 6·cos 5x 6+λ图象经过点⎝ ⎛⎭⎪⎪⎫π4,0,那么函数f (x )在区间⎣⎢⎢⎡⎦⎥⎥⎤0,3π10上最大值为________. (1)513(2)3-2 (1)由题意可知|OB |=|BC |=1,∴△OBC 为正三角形.由三角函数定义可知,sin ∠AOB =sin ⎝ ⎛⎭⎪⎪⎫π3-α=513,∴3cos 2α2-sin α2cos α2-32=31+cos α2-sin α2-32=32cos α-12sin α=sin ⎝ ⎛⎭⎪⎪⎫π3-α=513.(2)f (x )=sin 25x 6-cos 25x 6+23sin 5x 6·cos 5x 6+λ=-cos5x 3+3sin 5x 3+λ=2sin ⎝ ⎛⎭⎪⎪⎫5x 3-π6+λ. 由f (x )图象过点⎝ ⎛⎭⎪⎪⎫π4,0,得λ=-2sin ⎝ ⎛⎭⎪⎪⎫53×π4-π6=-2sin π4=-2,故f (x )=2sin ⎝⎛⎭⎪⎪⎫53x -π6- 2.因为0≤x ≤3π10,所以-π6≤5x 3-π6≤π3.因为y =sin x 在⎣⎢⎢⎡⎦⎥⎥⎤-π6,π3上单调递增, 所以f (x )最大值为f ⎝ ⎛⎭⎪⎪⎫3π10=2sin π3-2=3- 2.]1.解决三角函数式化简求值要坚持“三看〞原那么:一看“角〞,通过看角之间差异与联系,把角进展合理拆分;二是“函数名称〞,是需进展“切化弦〞还是“弦化切〞等,从而确定使用公式;三看“构造特征〞,了解变式或化简方向.2.在研究形如f (x )=a sin ωx +b cos ωx 函数性质时,通常利用辅助角公式a sin x +b cos x =a 2+b 2·sin(x +φ)把函数f (x )化为A sin(ωx +φ)形式,通过对函数y =A sin(ωx +φ)性质研究得到f (x )=a sin ωx +b cos ωx 性质.变式训练3] (1)(2021·全国卷Ⅰ)设α∈⎝ ⎛⎭⎪⎪⎫0,π2,β∈⎝⎛⎭⎪⎪⎫0,π2,且tan α=1+sin βcos β,那么( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2(2)sin ⎝ ⎛⎭⎪⎪⎫α+π3+sin α=-435,-π2<α<0,那么cos ⎝⎛⎭⎪⎪⎫α+2π3等于( )A .-45B .-35C.45D.35(1)B (2)C (1)法一:由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+cos αsin β,∴sin(α-β)=cos α=sin ⎝⎛⎭⎪⎪⎫π2-α. ∵α∈⎝ ⎛⎭⎪⎪⎫0,π2,β∈⎝⎛⎭⎪⎪⎫0,π2, ∴α-β∈⎝ ⎛⎭⎪⎪⎫-π2,π2,π2-α∈⎝⎛⎭⎪⎪⎫0,π2, 由sin(α-β)=sin ⎝ ⎛⎭⎪⎪⎫π2-α,得α-β=π2-α,∴2α-β=π2.法二:tan α=1+sin βcos β=1+cos ⎝⎛⎭⎪⎪⎫π2-βsin ⎝ ⎛⎭⎪⎪⎫π2-β=2cos 2⎝ ⎛⎭⎪⎪⎫π4-β22sin ⎝ ⎛⎭⎪⎪⎫π4-β2cos ⎝ ⎛⎭⎪⎪⎫π4-β2=cot ⎝ ⎛⎭⎪⎪⎫π4-β2 =tan ⎣⎢⎢⎡⎦⎥⎥⎤π2-⎝ ⎛⎭⎪⎪⎫π4-β2=tan ⎝ ⎛⎭⎪⎪⎫π4+β2, ∴α=k π+⎝ ⎛⎭⎪⎪⎫π4+β2,k ∈Z , ∴2α-β=2k π+π2,k ∈Z .当k =0时,满足2α-β=π2,应选B.(2)∵sin ⎝ ⎛⎭⎪⎪⎫α+π3+sin α=-435,-π2<α<0,∴32sin α+32cos α=-435, ∴32sin α+12cos α=-45,∴cos ⎝⎛⎭⎪⎪⎫α+2π3=cos αcos 2π3-sin αsin 2π3=-12cos α-32sin α=45.]。

高三数学第二轮三角函数专题复习资料

高三数学第二轮三角函数专题复习资料

高三数学第二轮三角函数专题复习资料【基础自测】1.已知21cos cos ,31sin sin =--=-βαβα,求)cos(βα-的值. 2.已知1312)4sin(,53)sin(),,43(,=--=+∈πββαππβα,求)4cos(πα+的值. 3.求000098tan 22tan 98tan 22tan 3--⋅ 的值. 4.已知,0cos 2sin =+αα求下列各式的值 (1)αααα22cos 5cos sin 3sin 2-- (2)ααααcos sin cos sin -+5.已知函数R x x x x x y ∈++=,cos 3cos sin 2sin 22 (1) 求函数的单调递增区间(2)该函数的图像可由)(sin R x x y ∈=的图像经过怎样的平移和伸缩变换得到? 考点一:三角函数的概念例1.若角α的终边经过点),2,1(-P 则tan 2α的值为 . 考点二:同角三角函数的关系例2.若cos 2sin αα+=则tan α=( )(A )21 (B )2 (C )21- (D )2- 例3.α是第四象限角,5tan 12α=-,则sin α=( )A .15B .15-C .513D .513-考点三: 诱导公式 例4.若==+θθπ2cos ,53)2sin(则 .例5.计算00000015sin 8sin 7cos 15cos 8sin 7sin -+例6.计算)10tan 31(50sin 00+ 考点四:三角函数的图象和性质例7.设5sin7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c << B .a c b << C .b c a << D .b a c <<例8.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )例9.把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( ) A .sin 23y x x π⎛⎫=-∈ ⎪⎝⎭R , B .sin 26x y x π⎛⎫=+∈⎪⎝⎭R , C .sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R , D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R , 例10.已知⎪⎭⎫⎝⎛3∈=⎪⎭⎫⎝⎛-4,2,1024cos πππx x .(Ⅰ)求x sin 的值;(Ⅱ)求⎪⎭⎫ ⎝⎛+32sin πx 的值. 例11.已知函数2π()sinsin 2f x x x x ωωω⎛⎫=+ ⎪⎝⎭(0ω>)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.例12.已知函数()tan(2),4f x x π=+,(Ⅰ)求()f x 的定义域与最小正周期;(Ⅱ)设0,4πα⎛⎫∈ ⎪⎝⎭,若()2cos 2,2f αα=求α的大小. 考点五:三角恒等变换例13.已知函数x x x x f cos sin sin 3)(2+-=(I )求函数)(x f 的最小正周期; (II )求函数⎥⎦⎤⎢⎣⎡∈2,0)(πx x f 在的值域. 例14.已知向量a =(cos 23x ,sin 23x ),b =(2sin 2cos x x ,-),且x ∈[0,2π].(1)求ba + (2)设函数b a x f +=)(+b a⋅,求函数)(x f 的最值及相应的x 的值。

高考数学二轮复习 专题06 三角函数的图像与性质讲学案 文-人教版高三全册数学学案

高考数学二轮复习 专题06 三角函数的图像与性质讲学案 文-人教版高三全册数学学案

专题06 三角函数的图像与性质1.三角函数y =A sin (ωx +φ)( A >0,ω>0)的图象变换,周期及单调性是高考热点.2.备考时应掌握y =sin x ,y =cos x ,y =tan x 的图象与性质,并熟练掌握函数y =A sin (ωx +φ)(A >0,ω>0)的值域、单调性、周期性等.1.任意角和弧度制(1)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }.(2)把长度等于半径长的弧所对的圆心角叫做1弧度的角. (3)弧长公式:l =|α|r ,扇形的面积公式:S =12lr =12|α|r 2.2.任意角的三角函数(1)设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx(x ≠0). (2)各象限角的三角函数值的符号:一全正,二正弦,三正切,四余弦. 3.诱导公式公式一sin(2k π+α)=sin α,cos(2k π+α)=cos α,tan(2k π+α)=tan α公式二sin(π+α)=-sin α,cos(π+α)=-cos α,tan(π+α)=tan α公式三sin(-α)=-sin α,cos(-α)=cos α,tan(-α)=-tan α4.同角三角函数基本关系式sin2α+cos2α=1,tanα=sinαcosα(cosα≠0).5.正弦、余弦、正切函数的性质对称性对称中心:(kπ,0)(k∈Z).对称轴:x =π2+kπ(k∈Z)对称中心:(π2+kπ,0)(k∈Z). 对称轴:x =kπ(k∈Z)对称中心:(kπ2,0)(k∈Z)6.函数y =A sin(ωx +φ)的图象 (1)“五点法”作图设z =ωx +φ,令z =0、π2、π、3π2、2π,求出x 的值与相应的y 的值,描点连线可得.考点一 三角函数图象及其变换例1、(1)(2016·高考全国卷Ⅱ)函数y =A sin(ωx +φ)的部分图象如图所示,则( )A .y =2sin ⎝⎛⎭⎪⎫2x -π6 B .y =2sin ⎝⎛⎭⎪⎫2x -π3C .y =2sin ⎝⎛⎭⎪⎫x +π6D .y =2sin ⎝⎛⎭⎪⎫x +π3【答案】A且2×π3+φ=2k π+π2(k ∈Z),故φ=2k π-π6(k ∈Z),结合选项可知y =2sin ⎝⎛⎭⎪⎫2x -π6.优解:代入特殊点检验排除. 当x =π3,y =2时,排除B ,D.当x =-π6,y =-2时,排除C ,故选A.(2)(2016·高考全国卷Ⅲ)函数y =sin x -3cos x 的图象可由函数y =sin x +3cos x 的图象至少向右平移________个单位长度得到.【答案】23π【解析】通解:化简后平移函数y =sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3的图象可由函数y =sin x +3cos x =2sin ⎝⎛⎭⎪⎫x +π3的图象至少向右平移2π3个单位长度得到.【方法规律】1.已知图象求解析式y =A sin(ωx +φ)+B (A >0,ω>0)的方法 (1)求A ,B ,已知函数的最大值M 和最小值m ,则A =M -m2,B =M +m2.(2)求ω,已知函数的周期T ,则ω=2πT.(3)求φ,常用方法有:①代入法:把图象上的一个已知点代入(此时,A ,ω,B 已知),或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间还是下降区间).②五点法:确定φ值时,往往以寻找“五点法”中的第一个零点⎝ ⎛⎭⎪⎫-φω,0作为突破口,具体如下:“第一点”(即图象上升时与x 轴的交点中距原点最近的交点)为ωx +φ=0;“第二点”(即图象的“峰点”)为ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)为ωx +φ=π;“第四点”(即图象的“谷点”)为ωx +φ=3π2;“第五点”为ωx +φ=2π.2.三角函数图象平移问题处理策略(1)看平移要求:首先要看题目要求由哪个函数平移得到哪个函数,这是判断移动方向的关键点; (2)看左右移动方向,左“+”右“-”;(3)看移动单位:在函数y =A sin(ωx +φ)中,周期变换和相位变换都是沿x 轴方向的,所以ω和φ之间有一定的关系,φ是初相,再经过ω的压缩,最后移动的单位是⎪⎪⎪⎪⎪⎪φω.【变式探究】1.函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z 期的周期函数可知,f (x )的单调递减区间为⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z,故选D.考点二 三角函数性质及应用例2、(1)(2016·高考全国卷Ⅱ)若将函数y =2sin 2x 的图象向左平移π12个单位长度,则平移后图象的对称轴为( )A .x =k π2-π6(k ∈Z)B .x =k π2+π6(k ∈Z) C .x =k π2-π12(k ∈Z) D .x =k π2+π12(k ∈Z) 【答案】B【解析】通解:写出解析式求对称轴.函数y =2sin 2x 的图象向左平移π12个单位长度,得到的图象对应的函数表达式为y =2sin 2⎝ ⎛⎭⎪⎫x +π12,令2⎝ ⎛⎭⎪⎫x +π12=k π+π2(k ∈Z),解得x =k π2+π6(k ∈Z),所以所求对称轴的方程为x =k π2+π6(k ∈Z),故选B.优解:由对称轴平移得对称轴.y =2sin 2x 的对称轴为x =π4+k 2π,向左平移π12个单位长度得x =π4-π12+k 2π=k π2+π6.(k ∈Z),故选B.(2)(2016·高考全国卷Ⅰ)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A .11B .9C .7D .5【答案】B【方法技巧】 求解三角函数的性质问题的常用方法及技巧 1.求单调区间的两种方法(1)代换法:求形如y =A sin(ωx +φ)(或y =A cos(ωx +φ)(A ,ω,φ为常数,A ≠0,ω>0)的单调区间时,令ωx +φ=z ,则y =A sin z (或y =A cos z ),然后由复合函数的单调性求得.(2)图象法:画出三角函数的图象,结合图象求其单调区间.2.判断对称中心与对称轴:利用函数y =A sin(ωx +φ)的对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点这一性质,通过检验f (x 0)的值进行判断.3.三角函数的周期的求法 (1)定义法;(2)公式法:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|. (3)利用图象.【变式探究】设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且f (-x )=f (x ),则( )A .f (x )在⎝ ⎛⎭⎪⎫0,π2单调递减B .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递减C .f (x )在⎝ ⎛⎭⎪⎫0,π2单调递增D .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递增考点三 三角函数的图象与性质的综合应用例3、已知函数f (x )=23sin ⎝ ⎛⎭⎪⎫ωx +π6cos ωx (0<ω<2),且f (x )的图象过点⎝ ⎛⎭⎪⎫5π12,32. (1)求ω的值及函数f (x )的最小正周期;(2)将y =f (x )的图象向右平移π6个单位,得到函数y =g (x )的图象,已知g ⎝ ⎛⎭⎪⎫α2=536,求cos ⎝ ⎛⎭⎪⎫2α-π3的值.解:(1)f (x )=23sin ⎝ ⎛⎭⎪⎫ωx +π6cos ωx =3sin ωx cos ωx +3cos 2ωx =32sin 2ωx +32cos 2ωx +32【方法技巧】三角函数解析式化简的基本思路1.将“sin x cos x ”化为12sin 2x ,将sin 2x 或cos 2x 降幂.2.函数解析式成为“a sin x +b cos x ”后,利用辅助角公式化为a 2+b 2sin(x +φ),⎝⎛⎭⎪⎫cos φ=a a 2+b 2,sin φ=b a 2+b 2.3.利用整体思想,对于a 2+b 2sin(ωx +φ)型的三角函数. 视“ωx +φ”为整体,利用sin x 的性质来求解.【变式探究】已知函数f (x )=2sin ωx cos ωx +23sin 2ωx -3(ω>0)的最小正周期为π. (1)求函数f (x )的单调增区间.(2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g (x )的图象,若y =g (x )在[0,b ](b >0)上至少含有10个零点,求b 的最小值.所以在[0,π]上恰好有两个零点,若y =g (x )在[0,b ]上有10个零点,则b 不小于第10个零点的横坐标即可,即b 的最小值为4π+1112π=5912π.1.(2017·高考全国卷Ⅲ)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65 B .1 C.35D.15【解析】选A.解法一:∵f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6=15⎝ ⎛⎭⎪⎫12sin x +32cos x +32cos x +12sin x =110sin x +310cos x +32cos x +12sin x =35sin x +335cos x =65sin ⎝⎛⎭⎪⎫x +π3,∴当x =π6+2k π(k ∈Z )时,f (x )取得最大值65.故选A.解法二:∵⎝ ⎛⎭⎪⎫x +π3+⎝ ⎛⎭⎪⎫π6-x =π2,∴f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6 =15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫π6-x=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3 =65sin ⎝⎛⎭⎪⎫x +π3≤65.∴f (x )max =65.故选A.2.(2017·高考全国卷Ⅰ)已知曲线C 1:y =cos x ,C 2:y =sin ⎝ ⎛⎭⎪⎫2x +2π3,则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 23.【2017课标3,文6】函数1ππ()sin()cos()536f x x x =++-的最大值为( )A .65B .1C .35D .15【答案】A【解析】由诱导公式可得:cos cos sin 6233x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ , 则:()16sin sin sin 53353f x x x x πππ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ , 函数的最大值为65.所以选A.1.【2016高考新课标3文数】在ABC △中,π4B,BC 边上的高等于13BC ,则cos A ( )(A )31010 (B )1010(C )1010 (D )31010【答案】C2.【2016高考新课标2文数】若3cos()45πα-=,则sin 2α=( ) (A )725 (B )15 (C )15- (D )725- 【答案】D【解析】2237cos 22cos 12144525ππαα⎡⎤⎛⎫⎛⎫⎛⎫-=--=⋅-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ,且cos 2cos 2sin 242ππααα⎡⎤⎛⎫⎡⎤-=-=⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,故选D.3.【2016高考新课标3文数】若3tan 4α=,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625【答案】A 【解析】由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .4.【2016年高考四川文数】22cossin 88ππ-= .【答案】2【解析】由二倍角公式得22cossin 88ππ-=cos42=π5.【2016年高考四川文数】为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点( )(A )向左平行移动π3个单位长度 (B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度 (D )向右平行移动π6个单位长度【答案】D【解析】由题意,为了得到函数sin(2)sin[2()]36y x x ππ=-=-,只需把函数sin 2y x =的图像上所有点向右移6π个单位,故选D. 6.【2016高考新课标2文数】若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为( )(A )()26k x k Z ππ=-∈ (B )()26k x k Z ππ=+∈ (C )()212k x k Z ππ=-∈ (D )()212k x k Z ππ=+∈ 【答案】B7.【2016年高考北京文数】将函数sin(2)3y x π=-图象上的点(,)4P t π向左平移s (0s >) 个单位长度得到点'P ,若'P 位于函数sin 2y x =的图象上,则( )A.12t =,s 的最小值为6πB.32t = ,s 的最小值为6πC.12t =,s 的最小值为3πD.32t =,s 的最小值为3π【答案】A【解析】由题意得,ππ1sin(2)432t =⨯-=,当s 最小时,'P 所对应的点为π1(,)122,此时min πππ4126s ==-,故选A. 8.【2016高考新课标3文数】函数sin 3y x x =-的图像可由函数sin 3y x x =+的图像至少向右平移_____________个单位长度得到.【答案】32π 【解析】因为sin 32sin()3y x x x π=+=+,sin 32sin()3y x x x π==-=2sin[()]33x π2π+-,所以函数sin 3y x x =的图像可由函数sin 3y x x =+的图像至少向右平移32π个单位长度得到. 9.【2016高考浙江文数】设函数2()sin sin f x x b x c =++,则()f x 的最小正周期( ) A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关 【答案】B10.【2016高考山东文数】函数f (x )=3sin x +cos x )3x –sin x )的最小正周期是( ) (A )2π(B )π (C )23π(D )2π【答案】B【解析】()2sin 2cos 2sin 2663f x x x x πππ⎛⎫⎛⎫⎛⎫=+⨯+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故最小正周期22T ππ==,故选B. 11.【2016年高考四川文数】为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点( )(A )向左平行移动π3个单位长度 (B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度 (D )向右平行移动π6个单位长度【答案】D【解析】由题意,为了得到函数sin(2)sin[2()]36y x x ππ=-=-,只需把函数sin 2y x =的图像上所有点向右移6π个单位,故选D. 12.【2016高考新课标2文数】若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为( )(A )()26k x k Z ππ=-∈ (B )()26k x k Z ππ=+∈ (C )()212k x k Z ππ=-∈ (D )()212k x k Z ππ=+∈ 【答案】B13.【2016年高考北京文数】将函数sin(2)3y x π=-图象上的点(,)4P t π向左平移s (0s >) 个单位长度得到点'P ,若'P 位于函数sin 2y x =的图象上,则( )A.12t =,s 的最小值为6πB.32t = ,s 的最小值为6πC.12t =,s 的最小值为3πD.32t =,s 的最小值为3π【答案】A【解析】由题意得,ππ1sin(2)432t =⨯-=,当s 最小时,'P 所对应的点为π1(,)122,此时min πππ4126s ==-,故选A. 14.【2016高考新课标3文数】函数sin 3y x x =的图像可由函数sin 3y x x =+的图像至少向右平移_____________个单位长度得到.【答案】32π 【解析】因为sin 32sin()3y x x x π=+=+,sin 32sin()3y x x x π==-=2sin[()]33x π2π+-,所以函数sin 3y x x =的图像可由函数sin 3y x x =+的图像至少向右平移32π个单位长度得到. 15.【2016高考新课标3文数】在ABC △中,π4B,BC 边上的高等于13BC ,则cos A ( )(A 310 (B 10(C )1010 (D )31010【答案】C16.【2016高考新课标2文数】若3cos()45πα-=,则sin 2α=( ) (A )725 (B )15 (C )15- (D )725- 【答案】D【解析】2237cos 22cos 12144525ππαα⎡⎤⎛⎫⎛⎫⎛⎫-=--=⋅-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ,且cos 2cos 2sin 242ππααα⎡⎤⎛⎫⎡⎤-=-=⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,故选D.17.【2016高考新课标3文数】若3tan 4α=,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625【答案】A 【解析】由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .【2015高考新课标1,文2】o o o o sin 20cos10cos160sin10- =( )(A )3-(B 3(C )12- (D )12【答案】D【解析】原式=o o o o sin 20cos10cos 20sin10+ =osin30=12,故选D. 【2015江苏高考,8】已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 【答案】3【解析】12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++- 【2015高考福建,文19】已知函数f()x 的图像是由函数()cos g x x 的图像经如下变换得到:先将()g x 图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图像向右平移2个单位长度.(Ⅰ)求函数f()x 的解析式,并求其图像的对称轴方程; (Ⅱ)已知关于x 的方程f()g()x x m 在[0,2)内有两个不同的解,.(1)求实数m 的取值范围; (2)证明:22cos )1.5m ( 【答案】(Ⅰ) f()2sin x x ,(kZ).2xk;(Ⅱ)(1)(5,5);(2)详见解析.【解析】解法一:(1)将()cos g x x 的图像上所有点的纵坐标伸长到原来的2倍(横坐标不变)得到当1m<5时,+=2(),2();2当5<m<1时, 3+=2(),32();2所以2222cos )cos 2()2sin ()12()1 1.55m m (【2015高考山东,文16】设()2sin cos cos 4f x x x x π⎛⎫=-+⎪⎝⎭. (Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若0,12A f a ⎛⎫==⎪⎝⎭,求ABC ∆面积的最大值. 【答案】(I )单调递增区间是(),44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;单调递减区间是()3,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(II )ABC ∆ 23+ 【解析】(I )由题意知()1cos 2sin 2222x x f x π⎛⎫++ ⎪⎝⎭=- sin 21sin 21sin 2222x x x -=-=- 由222,22k x k k Z ππππ-+≤≤+∈ 可得,44k x k k Z ππππ-+≤≤+∈由3222,22k x k k Z ππππ+≤≤+∈ 可得3,44k x k k Z ππππ+≤≤+∈ 所以函数()f x 的单调递增区间是(),44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;单调递减区间是()3,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【2015高考重庆,文9】若tan 2tan 5πα=,则3cos()10sin()5παπα-=-( )A 、1B 、2C 、3D 、4 【答案】C 【解析】由已知,3cos()10sin()5παπα-=-33cos cos sin sin 1010sin cos cos sin 55ππααππαα+-33cos tan sin 1010tan cos sin55ππαππα+=-33cos 2tan sin 105102tan cos sin 555ππππππ+=- 33cos cos 2sin sin 510510sin cos 55ππππππ+==155(cos cos )(cos cos )21010101012sin 25πππππ++-3cos103cos 10ππ==,选C . 【2015高考山东,文3】要得到函数sin 43y x π⎛⎫=-⎪⎝⎭的图象,只需要将函数sin 4y x =的图象( )(A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位 【答案】B【2015高考新课标1,文8】函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )(A)13(,),44k k k Z ππ-+∈ (B)13(2,2),44k k k Z ππ-+∈ (C)13(,),44k k k Z -+∈ (D)13(2,2),44k k k Z -+∈【答案】D【解析】由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D.1. 【2014高考湖南卷第9题】已知函数()sin(),f x x ϕ=-且230()0,f x dx π=⎰则函数()f x 的图象的一条对称轴是( )A.56x π=B.712x π=C.3x π=D.6x π= 【答案】A【考点定位】三角函数图像、辅助角公式2. 【2014高考江苏卷第5题】已知函数cos y x =与函数sin(2)(0)y x φφπ=+≤<,它们的图像有一个横坐标为3π的交点,则ϕ的值是 .【答案】6π 【解析】由题意cossin(2)33ππϕ=⨯+,即21sin()32πϕ+=,2(1)36k k ππϕπ+=+-⋅,()k Z ∈,因为0ϕπ≤<,所以6πϕ=.【考点】三角函数图象的交点与已知三角函数值求角. 3. 【2014辽宁高考文第9题】将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( )A .在区间7[,]1212ππ上单调递减 B .在区间7[,]1212ππ上单调递增C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增 【答案】B【考点定位】函数sin()yA x ωϕ=+的性质.4. 【2014四川高考文第3题】为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点( )A .向左平行移动12个单位长度 B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度 【答案】A【解析】1sin(21)sin 2()2y x x =+=+,所以只需把sin 2y x =的图象上所有的点向左平移12个单位.选A.【考点定位】三角函数图象的变换.5. 【2014全国1高考文第6题】如图,图O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数)(x f ,则],0[)(π在x f y =的图像大致为( )POAM【答案】CPOAMD POAM D【考点定位】解直角三角形、三角函数的图象.6. 【2014高考北卷文第14题】设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0,0A ω>>).若()f x 在区间[,]62ππ上具有单调性,且2()()()236f f f πππ==-,则()f x 的最小正周期为 .【答案】π【解析】由)(x f 在区间]2,6[ππ上具有单调性,且)6()2(ππf f -=知,函数)(x f 的对称中心为)0,3(π,由)32()2(ππf f =知函数)(x f 的对称轴为直线127)322(21πππ=+=x ,设函数)(x f 的最小正周期为T ,所以,6221ππ-≥T ,即32π≥T ,所以43127T =-ππ,解得π=T . 【考点定位】函数)sin()(ϕω+=x A x f 的对称性、周期性, 7. 【2014高考安徽卷文第11题】若将函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭的图像向右平移ϕ个单位,所得图像关于y 轴对称, 则ϕ的最小正值是________.【答案】83π【考点定位】三角函数的平移、三角函数恒等变换与图象性质.8. 【2014浙江高考文第4题】为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位【答案】D【解析】sin 3cos3234y x x x π⎛⎫=+=+ ⎪⎝⎭,故只需将23y x =向左平移4π个单位.【考点定位】三角函数化简,图像平移.9. 【2014陕西高考文第2题】函数()cos(2)6f x x π=-的最小正周期是( ).2A π.B π .2C π .4D π【答案】B【解析】由周期公式2T w π=,又2w =,所以函数()cos(2)6f x x π=-的周期22T ππ==,故选B . 【考点定位】三角函数的最小正周期.10. 【2014大纲高考文第16题】若函数()cos 2sin f x x a x =+在区间(,)62ππ是减函数,则a 的取值范围是 .【答案】(],2-∞.【解析】()()2sin 2cos 4sin cos cos cos 4sin .,62f x x a x x x a x x x a x ππ⎛⎫'=-+=-+=-+∈ ⎪⎝⎭时,()f x 是减函数,又cos 0x >,∴由()0f x '≤得4sin 0,4sin x a a x -+≤∴≤在,62ππ⎛⎫⎪⎝⎭上恒成立,()min 4sin ,,262a x x a ππ⎛⎫⎛⎫∴≤∈∴≤ ⎪ ⎪⎝⎭⎝⎭.【考点定位】三角函数的单调性11. 【2014高考江西文第16题】已知函数()sin()cos(2)f xx a x θθ=+++,其中,(,)22a R ππθ∈∈-(1)当4a πθ==时,求()f x 在区间[0,]π上的最大值与最小值;(2)若()0,()12f f ππ==,求,a θ的值.【答案】(1最小值为-1. (2)1.6a πθ=-⎧⎪⎨=-⎪⎩【考点定位】三角函数性质12. (2014·福建卷)已知函数f(x)=2cos x(sin x +cos x). (1)求f ⎝⎛⎭⎪⎫5π4的值;(2)求函数f (x)的最小正周期及单调递增区间.【解析】思路一 直接将5π4代入函数式,应用三角函数诱导公式计算.(2)应用和差倍半的三角函数公式,将函数化简2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 得到T =2π2=π.由2kπ-π2≤2x+π4≤2kπ+π2,k∈Z,解得kπ-3π8≤x≤kπ+π8,k∈Z.思路二 先应用和差倍半的三角函数公式化简函数f(x)=2sin xcos x +2cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π4+1.(1)将5π4代入函数式计算;(2)T =2π2=π.[]由2kπ-π2≤2x+π4≤2kπ+π2,k∈Z,解得kπ-3π8≤x≤kπ+π8,k∈Z.(1)f ⎝⎛⎭⎪⎫5π4=2sin 11π4+1=2sin π4+1=2.(2)T =2π2=π.由2k π-π2≤2x+π4≤2kπ+π2,k∈Z,得k π-3π8≤x≤kπ+π8,k∈Z,所以f(x)的单调递增区间为⎣⎢⎡⎦⎥⎤kπ-3π8,kπ+π8,k∈Z.13. (2014·北京卷)函数f(x)=3sin ⎝⎛⎭⎪⎫2x +π6的部分图象如图所示.(1)写出f(x)的最小正周期及图中x 0、y 0的值; (2)求f(x)在区间⎣⎢⎡⎦⎥⎤-π2,-π12上的最大值和最小值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014届高考数学二轮复习资料 专题四 三角函数(教师版)【考纲解读】1.了解任意角的概念,了解弧度制的概念,能进行弧度与角度的互化;理解任意角的三角函数(正弦、余弦、正切)的定义.2.能利用单位圆中的三角函数线推导出2πα±,πα±的正弦、余弦、正切的诱导公式;理解同角的三角函数的基本关系式:sin 2x+cos 2x=1,sin tan cos xx x=. 3.能画出y=sinx, y=cosx, y=tanx 的图象,了解三角函数的周期性;2.理解正弦函数,余弦函数在区间[0,2π]上的性质(如单调性,最大值和最小值以及与x 轴的交点等),理解正切函数在区间(-2π,2π)内的单调性. 4.了解函数sin()y A x ωϕ=+的物理意义;能画出sin()y A x ωϕ=+的图象,了解,,A ωϕ对函数图象变化的影响.5.会用向量的数量积推导两角差的余弦公式;能利用两角差的余弦公式导出两角和与差的正弦、余弦和正切公式,了解它们的内在联系.6.能利用两角差的余弦公式导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).【考点预测】从近几年高考试题来看,对三角函数的考查:一是以选择填空的形式考查三角函数的性质及公式的应用,一般占两个小题;二是以解答题的形式综合考查三角恒等变换、sin()y A x ωϕ=+的性质、三角函数与向量等其他知识综合及三角函数为背景的实际问题等.预测明年,考查形式不变,选择、填空题以考查三角函数性质及公式应用为主,解答题将会以向量为载体,考查三角函数的图象与性质或者与函数奇偶性、周期性、最值等相结合,以小型综合题形式出现.【要点梳理】1.知识点:弧度制、象限角、终边相同的角、任意角三角函数的定义、同角三角函数基本关系式、诱导公式、三角函数线、三角函数图象和性质;和、差、倍角公式,正、余弦定理及其变形公式.2.三角函数中常用的转化思想及方法技巧:(1)方程思想:sin cos αα+, sin cos αα-,sin cos αα三者中,知一可求二; (2)“1”的替换: 22sin cos 1αα+=; (3)切弦互化:弦的齐次式可化为切;(4)角的替换:2()()ααβαβ=++-,()22αβαβααββ+-=+-=+;(5)公式变形:21cos 2cos2αα+=, 21cos 2sin 2αα-=, tan tan tan()(1tan tan )αβαβαβ+=+-;(6)构造辅助角(以特殊角为主):sin cos )(tan )ba b aαααϕϕ+=+=.3.函数sin()y A x ωϕ=+的问题: (1)“五点法”画图:分别令0x ωϕ+=、2π、π、32π、2π,求出五个特殊点;(2)给出sin()y A x ωϕ=+的部分图象,求函数表达式时,比较难求的是ϕ,一般从“五点法”中取靠近y 轴较近的已知点代入突破; (3)求对称轴方程:令x ωϕ+=2k ππ+()k Z ∈,求对称中心: 令x ωϕ+=k π()k Z ∈; (4)求单调区间:分别令22k x ππωϕ-≤+≤22k ππ+()k Z ∈;22k x ππωϕ+≤+≤322k ππ+()k Z ∈,同时注意A 、ω符号. 4.解三角形:(1)基本公式:正弦、余弦定理及其变形公式;三角形面积公式; (2)判断三角形形状时,注意边角之间的互化. 【考点在线】考点1 三角函数的求值与化简此类题目主要有以下几种题型:⑴考查运用诱导公式和逆用两角和的正弦、余弦公式化简三角函数式能力,以及求三角函数的值的基本方法.⑵考查运用诱导公式、倍角公式,两角和的正弦公式,以及利用三角函数的有界性来求的值故f (x )的定义域为.Z ,2|R ⎭⎬⎫⎩⎨⎧∈-≠∈k k x x ππ(Ⅱ)由已知条件得.54531cos 1sin 22-⎪⎭⎫⎝⎛-=-=a a从而)2sin()42cos(21)(ππ+-+=a a a f =a a a cos 4sin 2sin 4cos cos 21⎪⎭⎫ ⎝⎛++ππ =a a a a a a a cos cos sin 2cos 2cos sin 2cos 12+=++ =.514)sin (cos 2=+a a 【名师点睛】本小题主要考查三角函数的定义域和两角差的公式,同角三角函数的关系等基本知识,考查运算和推理能力,以及求角的基本知识..【备考提示】:熟练掌握三角函数公式与性质是解答好本类题的关键. 练习1: (2011年高考福建卷文科9)若α∈(0, 2π),且2sin α+1cos 24α=,则tan α的值等于( ) A.22 B. 33C. 2D. 3【答案】D【解析】因为α∈(0,2π),且2sin α+1cos 24α=,所以2sin α+221cos sin 4αα-=, 即21cos 4α=,所以cos α=12或12-(舍去),所以3πα=,即tan 3α=选D.考点2 考查sin()y A x ωϕ=+的图象与性质考查三角函数的图象和性质的题目,是高考的重点题型.此类题目要求考生在熟练掌握三角函数图象的基础上要对三角函数的性质灵活运用,会用数形结合的思想来解题.【备考提示】:三角函数的图象及性质是高考考查的热点内容之一,熟练其基础知识是解答好本类题的关键.练习2.(2011年高考江苏卷9)函数ϕϕ,,(),sin()(w A wx A x f +=是常数,)0,0>>w A 的部分图象如图所示,则____)0(=f6【解析】由图象知:函数()sin()f x A wx φ=+的周期为74()123πππ-=,而周期2T wπ=,所以2w =,由五点作图法知:23πφπ⨯+=,解得3πφ=,又A=2,所以函数()2)3f x x π=+,所以(0)f =623π=考点3 三角函数与向量等知识的综合三角函数与平面向量的综合,解答过程中,向量的运算往往为三角函数提供等量条件. 例3.(2009年高考江苏卷第15题)设向量(4cos ,sin ),(sin ,4cos ),(cos ,4sin )a b c ααββββ===-r r r精品文档(1)若a r 与2b c -r r垂直,求tan()αβ+的值;(2)求||b c +r r的最大值;(3)若tan tan 16αβ=,求证:a r ∥b r.【解析】【名师点睛】本小题主要考查向量的基本概念,同时考查同角三角函数的基本关系式、二倍角的正弦、两角和的正弦与余弦公式,考查运算和证明得基本能力. 【备考提示】:熟练三角公式与平面向量的基础知识是解决此类问题的关键. 练习3.(天津市十二区县重点中学2011年高三联考二理)(本小题满分13分)已知向量2(3sin ,1),(cos ,cos )444x x x m n ==u r r ,()f x m n =⋅u r r .(I )若()1f x =,求cos()3x π+值;(II )在ABC ∆中,角,,A B C 的对边分别是,,a b c ,且满足(2)cos cos a c B b C -=, 求函数()f A 的取值范围.【解析】(I )()f x m n =⋅=u r r 23cos cos 444x x x + ----------------1分=311cos 22222x x ++ ----------------3分 =1sin()262x π++----------------4分∵()1f x = ∴1sin()262x π+=∴2cos()12sin ()326x x ππ+=-+=12-------6分 (II )∵(2)cos cos a c B b C -=,由正弦定理得(2sin sin )cos sin cos A C B B C -= -----------------8分 ∴2sin sin cos sin cos AcosB C B B C -=∴2sin cos sin()A B B C =+- ----------------9分 ∵A B C π++=∴sin()sin B C A +=,且sin 0A ≠∴1cos ,2B =∵0B <<π∴3B π= ----------------10分∴203A π<< ----------------11分∴1,sin()16262226A A ππππ<+<<+< ----------------12分∴131sin()2622A π<++< ∴()f A =1sin()262A π++3(1,)2∈---13分考点4. 解三角形解决此类问题,要根据已知条件,灵活运用正弦定理或余弦定理,求边角或将边角互化. 例4. (2011年高考安徽卷文科16) 在V ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,3212cos()0B C ++=,求边BC 上的高. 【解析】∵A +B +C =180°,所以B +C =A , 又12cos()0B C ++=,∴12cos(180)0A +-=o, 即12cos 0A -=,1cos 2A =,又0°<A<180°,所以A =60°. 在△ABC 中,由正弦定理sin sin a b A B=得sin 22sin 23b A B a ===o , 又∵b a <,所以B <A ,B =45°,C =75°,∴BC 边上的高AD =AC ·sinC 275230)=+oo o2(sin 45cos30cos 45sin 30)=+o o o o 2321312()22222=⨯+=. 【名师点睛】本题考察两角和的正弦公式,同角三角函数的基本关系,利用内角和定理、正弦定理、余弦定理以及三角形边与角之间的大小对应关系解三角形的能力,考察综合运算求解能力.【备考提示】:解三角形问题所必备的知识点是三大定理“内角和定理、正弦定理、余弦定理”具体的思路是化统一的思想“统一成纯边或纯角问题”即可.练习4. (2011年高考山东卷文科17)在V ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.已知cos A-2cosC 2c-a=cos B b. (I ) 求sin sin CA的值;(II ) 若cosB=14,5b ABC V 的周长为,求的长.【解析】(1)由正弦定理得2sin ,a R A =2sin ,b R B =2sin ,c R C =所以cos A-2cosC 2c-a =cos B b=2sin sin sin C AB -,即sin cos 2sin cos 2sin cos sin cos B A BC C B A B -=-,即有sin()2sin()A B B C +=+,即sin 2sin C A =,所以sin sin CA=2. (2)由(1)知sin sin CA=2,所以有2c a =,即c=2a,又因为ABC ∆的周长为5,所以b=5-3a,由余弦定理得:2222cos b c a ac B =+-,即22221(53)(2)44a a a a -=+-⨯,解得a=1,所以b=2.【易错专区】问题:三角函数的图象变换例. (2011年高考全国卷理科5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于( ) (A )13(B )3 (C )6 (D )9【答案】C 【解析】()cos[()]cos 33f x x x ππωω-=-=即cos()cos 3x x ωπωω-=, 22()663k k Z k ωπππω∴-=+∈⇒=--z 则1k =-时min 6ω=故选C.【名师点睛】本题考查三角函数的图象平移,在平移时,应注意x 的系数. 【备考提示】:三角函数的图象变换是高考的热点,必须熟练此类问题的解法. 【考题回放】1. (2011年高考山东卷理科3)若点(a,9)在函数3xy =的图象上,则tan=6a π的值为( )(A ) 【答案】D【解析】由题意知:9=3a,解得a =2,所以2tantan tan 663a πππ===故选D. 2. (2011年高考山东卷理科6)若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在【答案】C.【解析】若()()6f x f π≤对x R ∈恒成立,则()sin()163f ππϕ=+=,所以,32k k Z ππϕπ+=+∈,,6k k Z πϕπ=+∈.由()()2f f ππ>,(k Z ∈),可知sin()sin(2)πϕπϕ+>+,即sin 0ϕ<,所以72,6k k Z πϕπ=+∈,代入()sin(2)f x x ϕ=+,得7()sin(2)6f x x π=+,由7222262k x k πππππ-++剟,得563k x k ππππ--剟,故选C.4.(2011年高考辽宁卷理科4)△ABC 的三个内角A 、B 、C 所对的边分别为a ,b ,c ,asin AsinB+bcos 22a 则ba=( ) (A) 23 (B) 22 (C) 3 2【答案】 D【解析】由正弦定理得,sin 2AsinB+sinBcos 22sinA ,即sinB (sin 2A+cos 2A )2sinA , 故2sinA ,所以2ba= 5.(2011年高考辽宁卷理科7)设sin1+=43πθ(),则sin 2θ=( ) (A) 79- (B) 19- (C) 19 (D)79【答案】A【解析】217sin 2cos 22sin 121.2499ππθθθ⎛⎫⎛⎫=-+=+-=⨯-=- ⎪ ⎪⎝⎭⎝⎭ 6.(2011年高考浙江卷理科6)若02πα<<,02πβ-<<,1cos()43πα+=,cos()423πβ-=,则cos()2βα+=( )(A )3 (B )3- (C )9 (D )9-【答案】 C 【解析】()()2442βππβαα+=+--Q cos()cos[()()]2442βππβαα∴+=+--sin()sin()442ππβα+++ 133=+==故选C. 7. (2011年高考全国新课标卷理科5)已知角θ的顶点与原点重合,始边与横轴的正半轴重合,终边在直线x y 2=上,则,=θ2cos ( ) A 54-B 53-C 32D 43【答案】B【解析】因为该直线的斜率是θtan 2==k ,所以,53tan 1tan 1cos 22-=+-=θθθ. 8. (2011年高考全国新课标卷理科11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( ) (A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 【答案】A【解析】函数解析式可化为)4sin(2)(πϕω++=x x f ,2,2=∴=ωπωπT Θ又因为该函数是偶函数,所以,x x f 2cos 2)(4=∴=πϕ,所以,该函数在⎪⎭⎫⎝⎛2,0π上是减函数。

相关文档
最新文档