【真题】2019年湖南省特岗教师初中数学学科专业知识试卷全解析版
2019下半年教师资格考试初中数学学科知识与教学能力真题及答案

2019下半年教师资格考试初中数学学科知识与教学能力真题及答案每个科目考试时长为2小时,采取纸笔化考试。
一、单项选择题(本大题共8小题,每小题5分,共40分)参考答案:B参考答案:D参考答案:D参考答案:A参考答案:C参考答案:B7.在平面直角坐标系中,将一个多边形依次沿两个坐标轴方向分别平移2个单位和3个单位后,得到的图形与原来的图形的关系不一定正确的是()A.全等B.平移C.相似D.对称参考答案:D8.学生是数学研究的主体是数学教学的重要理念,下列关于教师角色的概述不正确的是()A.组织者B.引导者C.合作者D.指挥者参考答案:D二、简答题(本大题共5小题,每小题7分,共35分)参考答案:(2)以第一问中的椭圆方程为例,在该变化下得到的新方程是圆的标准方程,其中图形的大小、形状、几何中心的位置都发生了变化。
参考答案:参考解析:11、一个袋子里有8个黑球,8个白球,随机不放回地连续取球五次。
每次掏出1个球,求最多取到3个白球的几率。
参考答案:参考解析:12.简述研究中学多少问题的三种主要办法。
[答案要点]研究中学几何问题的方法主要数形结合、化归思想、变换思想。
中学多少数学是-门比力笼统的学科,包括的空间和数目的干系,数形结合能够帮助学生将两者相互转化,使笼统的知识更便于了解研究。
在中学多少研究中,数形结合的思想具有重要的作用,教师在教学中应用数形结合思想,能够将多少图形用代数的形式表示,并利用代数方式解决多少问题。
例如,按照多少性质,建立只限于平面的代数方程,或是按照代数方程,确定点、线、面三者之间干系。
数形结合将多少图形与代数公式密切的联系在一同,利用代数语言将多少问题简化,使学生更容易解决问题,是多少教学中的核心机想办法。
化归思想是数学中普遍运用的一种思想,在中学几何教学中,教师常运用这一思想,基本的运用方法就是将几何问题转化为代数问题,利用代数知识将问题解决后,再返回到几何中。
或是在对空间曲面进行研究时,将复杂的空间几何图形转化为学生熟悉的平面曲线,便于学生理解和解决。
【真题】2019年湖北省特岗教师初中数学学科专业知识试卷全解析版

A.4,3
B.6,3
C.3,4
D.6,5
11.二次函数 y=ax2+bx+c(a≠0)图象如图,下列结论:①abc>0;②2a+b=
0;③当 m≠1 时,a+b>am2+bm;④a﹣b+c>0;⑤若 ax12+bx1=ax22+bx2,且 x1≠x2,则 x1+x2=2.其中正确的有( )
A.①②③
(1)若商场预计进货款为 3500 元,则这两种台灯各购进多少盏? ( 2 )若商场规定 B 型台灯的进货数量不超过 A 型台灯数量的 3 倍,应怎样进货 才能使商场在销售完这批台灯时获利最多?此时利润为多少元?
22.已知,如图,AB 是⊙O 的直径,点 C 为⊙O 上一点,OF⊥BC 于点 F,交⊙O
测得国旗旗杆在地面上的影长为 9.6m。则国旗旗杆的长为( )
A.10m
B.12m
C.14m
D.16m
二、填空题
16.如图,OA、OC 是⊙O 的半径,点 B 在⊙O 上,连接 AB、BC,若∠
ABC=40°,则∠AOC=
度.
【答案】80. 【解析】 试题分析:∵∠ABC 与 AOC 是同弧所对的圆周角与圆心角,∠ABC=40°,∴∠ AOC=2∠ABC=80°.故答案为 80. 考点:圆周角定理. 17.如图,已知 M(3,3),⊙M 的半径为 2,四边形 ABCD 是⊙M 的内接正方 形,E 为 AB 中点,当正方形 ABCD 绕圆心 M 转动时,△OME 的面积最大值为 ________.
6.江西省足协 2019 年第三次主席办公会在南昌召开,某学校为了激发学生对
体育的热情,选拔了 23 名学生作为校足球队成员,其中足球队 23 名队员的年
2019年湖南特岗教师招考试题及答案-2019湖南特岗真题

2010年湖南特岗教师招考题一、单项选择题(本大题共28道小题,每小题1分,共28分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
请将正确选项前的字母填在题后的括号内)1. 最早提出经典性条件反射的人是( )。
A. 杜威B. 巴甫洛夫C. 华生D. 斯金纳2. 终身教育思潮的主要代表人物是( )。
A. 保罗·朗格朗B. 罗杰斯C. 索尔蒂斯D. 布鲁纳3. 苏格拉底法又称为( )。
A. 问答法B. 发现法C. 讲授法D. 雄辩术4. 皮亚杰的认知发展观属于()。
A. 人本主义B. 行为主义C. 建构主义D. 新行为主义5. 联结学习理论认为,学习就是在刺激和反应之间建立直接联结的过程,其中起重要作用的是( )。
A. 练习B. 学习C. 强化D. 巩固6. ( )是学校教育的中心环节。
A. 上课B. 教学C. 工作D. 交往7. 大学英语等级考试是一种()测验。
A. 常模参照性B. 标准参照性C. 总结性D. 发展性8. 实验法的主要特点是()。
A. 在真实的情境中进行B. 探讨因果关系C. 严格控制自变量D. 简便易行9. 程序教学的基础是( )心理学。
A. 构造主义B. 认知主义C. 行为主义D. 实用主义10. ( )发明了发现学习法。
A. 夸美纽斯B. 赫尔巴特C. 凯洛夫D. 布鲁纳11. 马克思主义教育学在教育起源问题上坚持( )。
A. 劳动起源论B. 生物起源论C. 心理起源论D. 生物进化论12. 智力可以分解为多种因素,下列哪种因素是智力的核心?( )A. 观察力B. 想象力C. 思维力D. 创造力13. 除数是小数的除法课上,某老师把学生回答的关于分12个馒头的计算板书出来:12÷3=4(人),12÷2=6(人),12÷1=12(人),12÷0.5=24(人),这一做法体现了( )。
A. 巩固性原则B. 直观性原则C. 理论联系实际原则D.因材施教原则14. ( )反映一个国家配合政治、经济、科技体制而确定下来的学校办学形式、层次结构、组织管理等相对稳定的运行模式和规定。
初中数学特岗教师考试真题及答案

初中数学特岗教师考试真题及答案篇一:哎呀呀,我只是个小学生,初中数学特岗教师考试真题及答案对我来说太难懂啦!我都还没上初中呢,哪里知道这些呀!不过我想,那些准备参加初中数学特岗教师考试的大哥哥大姐姐们,面对这些真题的时候,是不是就像我们在期末考试前紧张地复习一样呢?他们是不是也会抓耳挠腮,绞尽脑汁地思考那些难题呀?我猜真题里肯定有各种各样奇怪的数学题,什么函数啦,几何图形啦,还有一堆让人头疼的算式。
说不定有这样的题目:“如果一个三角形的三条边分别是3 厘米、4 厘米和5 厘米,那它是直角三角形吗?” 这得多难想啊!还有答案,那些正确的答案就像是一把把神秘的钥匙,只有找到了才能打开难题的大门。
可是要找到这些钥匙可不容易,得费好大的劲儿呢!大哥哥大姐姐们在准备考试的时候,是不是每天都泡在书堆里,不停地做题、背诵公式?他们是不是会互相讨论,“哎呀,这道题你会做吗?”“这道题的答案到底是什么呀?”我觉得他们就像在知识的海洋里拼命游泳的人,努力地朝着岸边游去。
这考试真题和答案,就是他们前进路上的风浪和灯塔。
不管怎么样,我希望参加考试的大哥哥大姐姐们都能顺利通过,拿到好成绩,成为优秀的老师,以后教我们更多有趣的知识!篇二:哎呀呀,我是个小学生,对初中数学特岗教师考试真题及答案可不懂呀!初中数学对我来说就像天上的星星,遥远又神秘。
我现在每天还在和加减乘除打交道呢,什么一元一次方程都觉得好难好难啦!初中数学特岗教师考试的真题,那得是多高深的知识呀?我就好奇,初中数学特岗教师得懂多少东西才能通过考试呀?是不是要像孙悟空一样,有七十二变的本事,啥数学难题都能轻松解决?说不定他们考试的时候,题目比我们的数学作业难上一百倍!比如说,让他们在很短的时间内算出超级复杂的几何图形的面积和周长,这难道不是在考验他们的大脑是不是超级计算机吗?还有啊,如果让他们证明那些让人头疼的数学定理,那不是像要他们在数学的迷宫里找出正确的出口吗?要是问他们怎么教像我这样对数学有点头疼的小学生,那他们是不是得有像魔法师一样的魔力,让我们一下子就爱上数学?我真想问问那些参加考试的老师,面对这些真题,他们心里会不会也像揣了只小兔子,紧张得不行?反正我觉得,能去参加初中数学特岗教师考试的人都好厉害!他们一定是超级热爱数学,也特别有耐心和智慧,才能去挑战这样的考试。
湖南省教师公开招聘考试(中学数学)历年真题试卷汇编14(题后含答

湖南省教师公开招聘考试(中学数学)历年真题试卷汇编14(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.若z==( )A.一2-iB.一2+iC.2-iD.2+i正确答案:D解析:z==2+i.2.某空间几何体的正视图是三角形,则该几何体不可能是( )A.圆柱B.圆锥C.四面体D.三棱柱正确答案:A解析:圆柱的正视图是矩形,则该几何体不可能是圆柱.3.等差数列{an}的前n项和为Sn,若a1=2,S3=12,则a6等于( ) A.8B.10C.12D.14正确答案:C解析:设等差数列{an}的公差为d,则S3=3a1+3d,所以12=3×2+3d,解得d=2,所以a6=a1+5d=2+5×2=12,故选C.4.若函数y=logax(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是( )A.B.C.D.正确答案:B解析:因为函数y=logax过点(3,1),所以1=loga3,解得a=3,所以y=3-x 不可能过点(1,3),排除A;y=(一x)3=一x3不可能过点(1,1),排除C;y=log3(一x)不可能过点(一3,一1),排除D,故选B.5.阅读右图所示的程序框图,运行相应的程序,输出的S的值等于( ) A.18B.20C.21D.40正确答案:B解析:S=0,n=1,S=0+21+1=3,n=2,因为3≥15不成立,执行循环:S=3+22+2=9,n=3,因为9≥15不成立,执行循环:S=9+23+3=20,n=4,因为20≥15成立,停止循环,输出S的值等于20,故选B.6.在区间[一1,1]上随机取一个数k,使直线y=k(x+2)与圆x2+y2=1相交的概率为( )A.B.C.D.正确答案:C解析:圆x2+y2=1的圆心为(0,0),圆心到直线y=k(x+2)的距离为,要使直线y=k(x+2)与圆x2+y2=1相交,则,∴在区间[一1,1]上随机取一个数k,使直线y=k(x+2)与圆x2+y2=1有公共点的概率为P=,故选C.7.在某次体育测试中,九年级三班6位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.96,2.10,2.31,则这组数据的众数和极差分别是( )A.1.85和0.21B.2.11和0.46C.1.85和0.60D.2.31和0.60正确答案:C解析:在该组数据中只有1.85出现了两次,其它的数据都只出现了一次,因此本组数据的众数是1.85;极差就是极大值和极小值之差,在本组数据中,最大值是2.31,最小值是1.71,因此极差是2.31—1.71=0.60;综上所述:本组数据中的众数和极差分别是1.85和0.60.8.l1、l2、l3是空间三条不同的直线,则下列命题正确的是( )A.l1⊥l2,l2⊥l3l1//l3B.l1⊥l2,l2//l3l1⊥l3C.l1//l2//l3l1,l2,l3共面D.l1,l2,l3l1,l2,l3共面正确答案:B解析:由l1⊥l2,l2//l3,根据异面直线所成角可知l1与l3所成角为90°,选B.9.已知双曲线=1(a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( ) A.(1,2]B.(1,2)C.[2,+∞)D.(2,+∞)正确答案:C解析:已知双曲线=1(a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,∴≥4,∴e≥2,故选C.10.中心在原点O的椭圆左焦点为F(一1,0),上顶点为(0,),P1,P2,P3是椭圆上任意三个不同点,且∠P1FP2=∠P2FP3=∠P3FP1,则=( ) A.2B.3C.1D.一1正确答案:A解析:设椭圆方程为=1,从而求得c=1,b=,从而求得a=2,故所求得的椭圆方程为=1,设椭圆的右顶点为A,并设∠AFPi=αi(i=1,2,3),不失一般性,假设0≤α1<,设点Pi在左准线l上的射影为Qi,因椭圆离心率e=,填空题11.i为虚数单位,设复数z1,z2在复平面内对应的点关于原点对称,若z1=2-3i,则z2=_________.正确答案:一2+3i解析:由复数的几何意义知,z1,z2的实部,虚部均互为相反数,故z2=一2+3i.12.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(1)平均命中环数为_________;(2)命中环数的标准差为_________.正确答案:7,2解析:(1)由公式知,平均数为(7+8+7+9+5+4+9+10+7+4)=7;(2)由公式知,s2=(0+1+0+4+4+9+4+9+0+9)=4s=2.13.若展开式中的常数项为60,则常数a的值为_________.正确答案:4解析:二项式展开式的通项公式是Tr+1=C6rx6-r,当r=2时,Tr+1为常数项,即常数项是C62a,根据已知C62A=60,解得a=4.14.不等式一x≤1的解集是________.正确答案:[0,2]解析:原不等式,∴不等式的解集为[0,2].15.在区间[一2,4]上随机地取一个数x,若x满足|x|≤m的概率为,则m=________.正确答案:3解析:由几何概型知:m=3.解答题设数列{an}满足:a1=1,an+1=3an,n∈N*.16.求{an}的通项公式及前n项和Sn;正确答案:由题设知{an}是首项为1,公比为3的等比数列,所以an=3n-1,Sn=(3n-1).17.已知{bn}是等差数列,Tn为其前n项和,且b1=a2,b3=a1+a2+a3,求T20.正确答案:b1=a2=3,b3=a1+a2+a3=1+3+9=13,b3一b1=10=2d,所以数列{bn}的公差d=5.故T20=20×3+×5=1010.某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.18.求从甲、乙两组各抽取的人数;正确答案:由于甲组有10名工人,乙组有5名工人,根据分层抽样原理,若从甲、乙两组中共抽取3名工人进行技术考核,则从甲组抽取2名工人,乙组抽取1名工人.19.求从甲组抽取的工人恰有1名女工人的概率;正确答案:记A表示事件:从甲组抽取的工人中恰有1名女工人,则P(A)=.20.记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.正确答案:ξ的可能取值为0,1,2,3.Ai表示事件:从甲组抽取的2名工人中恰有i名男工人,i=0,1,2.B表示事件:从乙组抽取的是1名男工人.Ai 与B独立,i=0,1,2.故ξ的分布列为:期望值为:Eξ=0×P(ξ=0)+1×P(ξ=1)+2×P(ξ=2)+3×P(ξ=3)=.设Sn为数列{an}的前n项和,已知a1≠0,2an一a1=S1·Sn,n∈N*.21.求a1,a2,并求数列{an}的通项公式;正确答案:令n=1,得2a1一a1=a12,即a1=a12.因为a1≠0,所以a1=1.令n=2,得2a2—1=S2=1+a2,解得a2=2.当n≥2时,由2an一1=Sn,2an-1—1=Sn -1,两式相减得2an一2an-1=an,且an=2an-1.于是数列{an}是首项为1,公比为2的等比数列,因此,an=2n-1.所以数列{an}的通项公式为an=2n-1.22.求数列{nan}的前n项和.正确答案:由上问可知,nan=n.2n-1.记数列{n.2n-1}的前n项和为Bn,于是Bn=1+2×2+3×22+…+n×2n-1①,2Bn=1×2+2×22+3×23+…+n×2n②.①一②得=Bn=1+2+22+…+2n-1一n.2n=2n一1一n.2n.从而Bn=1+(n 一1).2n.已知椭圆=1,两焦点之间的距离为4.23.求椭圆的标准方程;正确答案:由,故b2=a2一c2=12.所以所求椭圆的标准方程为=1.24.过椭圆的右顶点作直线交抛物线y2=4x于A、B两点,①求证:OA⊥OB;②设OA、OB分别与椭圆相交于点D、E,过原点D作直线加的垂线伽,垂足为M,证明|OM|为定值.正确答案:①证明:设过椭圆的右顶点(4,0)的直线AB的方程为x=my+4.代入抛物线方程y2=4x,得y2一4my一16=0.设A(x1,y1)、B(x2,y2),则=x1x2+y1y2=(my1+4)(my2+4)+y1y2=(1+m2)y1y2+4m(y1+y2)+16=0.∴OA⊥O B.②解:设D(x3,y3),E(x4,y4),直线DE的方程为x=ty+λ,代入=1,得(3t2+4)y2+6tλy+3λ2一48=0.于是y3+y4=.从而x3x4=(ty3+λ)(ty4+λ)=.∵OD⊥OE,∴x3x4+y3y4=0.代入,整理得7λ2=48(t2+1).∴原点到直线DE的距离d=为定值.设a>0,b>0,已知函数f(x)=.25.当a≠b时,讨论函数f(x)的单调性;正确答案:f(x)的定义域为(一∞,一1)∪(一1,+∞),f’(x)=.当a>b时,f’(x)>0,函数f(x)在(一∞,一1),(一1,+∞)上单调递增;当0<b时,f’(x)<0,函数f(x)在(一∞,一1),(一1,+∞)上单调递减.26.当x>0时,称f(x)为a,b关于x的加权平均数.①判断f(1),;②a、b的几何平均数记为G,称为a、b的调和平均数,记为H,若H≤f(x)≤G,求x 的取值范围.正确答案:。
特岗教师中学数学试题及答案

一、单项选择题(在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的代号填入题后括号内.本大题共10小题,每小题2分,共20分)1。
已知f(x)=2007,x1 0,x=1 2007,x1,则关于limx→1f(x)的结论,正确的是()。
A. 存在,且等于0B。
存在,且等于—2007C. 存在,且等于2007D. 不存在2。
在欧氏平面几何中,一个平面正多边形的每一个外角都等于72°,则这个多边形是()。
A. 正六边形B。
正五边形C. 正方形D. 正三角形3。
下列各式计算正确的是()。
A. x6÷x3=x2B. (x—1)2=x2—1C. x4+x4=x8 D。
(x-1)2=x2—2x+14。
已知limΔx→0f(x0+2Δx)-f(x0)3Δx=1,则导数f′(x0)等于().A. —1 B。
3 C。
23 D。
325.极限limx→∞sin xx等于()。
A。
0 B. 1 C。
2 D. ∞6.在13,24,π6这三个实数中,分数共有()。
A。
0个B。
1个 C. 2个D。
3个7.计算不定积分∫xdx=()。
A。
x22 B。
x2 C。
x22+C(C为常数) D. x2+C(C为常数)8.在下面给出的三个不等式:(1)2007≥2007;(2)5≤6;(3)4—3≥6—5中,正确的不等式共有()。
A。
0个B。
1个 C. 2个D。
3个9。
假设一次“迎全运”知识竞赛中共有20道题,对于每一道题,答对了得10分,答错了或不答扣5分,如果某位选手至少要答对x道题,其得分才会不少于95分,那么x等于()。
A。
14 B. 13 C。
12 D。
1110。
如图(图形略),在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,若∠DBA的正切值等于15,则AD的长为()。
A。
2 B. 2 C. 1 D. 22二、填空题(本大题共4个小题,每小题3分,共12分)11. 4的算术平方根等于。
2019下半年全国教师资格《初中数学》教师资格证试题【含解析】

2019年下半年中小学教师资格考试初中数学试题【附解析】2019下半年全国教师资格《初中数学》教师资格证试题(2)2019下半年全国教师资格《初中数学》教师资格证试题(3)来源:网络时间:2019-11-0510:42:292019下半年全国教师资格《初中数学》答案解析2019年下半年中小学教师资格考试《初中数学学科知识与能力》参考答案及解析12.参考答案:(1)函数与方程的思想方法:函数思想是指用函数的概念和性质去分析问题、转化问题和解决问题;方程思想是从问题的数量关系入手,应用数学语言将问题中的条件转化为数学模型(方程(组)、不等式(组)),然后通过解方程或不等式来解决问题。
(2)数形结合思想:所谓数形结合思想,就是在研究问题时把数和形结合考虑,把问题的数量关系转化为图形性质,或把图形性质转化为数量关系,从而使复杂问题简单化,抽象问题具体化。
解题中的数形结合,是指对问题既进行几何直观的呈现,又进行代数抽象的揭示,两个方面相辅相成,而不是简单地代数问题用几何方法或几何问题用代数方法,两方面有机结合才是完整的数形结合。
如:在解应用题中常常借助线段图的直观帮助分析数量关系。
(3)转换化归的思想方法:由数学结论呈现的公理化结构,使得数学上任何一个正确的结论都可以按照需要和可能而成为推断其他结论的依据,于是,任何一个待解决的问题只需通过某种转化过程,归结到一类已经解决或比较容易解决的问题上,即可获得原有问题的解决,这就是转换化归的思想方法。
它是一种极具数学特征的思想方法。
简言之,就是指在求解数学问题时,如果对当前的问题感到生疏困惑,可以把它进行变换转化,化繁为简、化难为易、化生为熟,从而使问题得以解决。
这种思想是科学研究与数学学习中常用的方法,它是解决问题获得新知的重要思想。
数学问题解决中的模式识别、分类讨论、消元、降次等策略或方法,都明显体现了转换化归的思想方法。
13.参考答案:课堂上学生能否自主参与学习活动是学生能否成为学习的主人的明显标志。
2019年下半年初中教师资格考试试题(统考)及解析—数学

2019年下半年中小学教师资格考试初中数学试题2019年下半年中小学教师资格考试初中数学试题(封面)初中数学试题附:2019年下半年中小学教师资格考试《初中数学学科知识与能力》参考答案及解析2019年下半年中小学教师资格考试《初中数学学科知识与能力》参考答案及解析12.参考答案:(1)函数与方程的思想方法:函数思想是指用函数的概念和性质去分析问题、转化问题和解决问题;方程思想是从问题的数量关系入手,应用数学语言将问题中的条件转化为数学模型(方程(组)、不等式(组)),然后通过解方程或不等式来解决问题。
(2)数形结合思想:所谓数形结合思想,就是在研究问题时把数和形结合考虑,把问题的数量关系转化为图形性质,或把图形性质转化为数量关系,从而使复杂问题简单化,抽象问题具体化。
解题中的数形结合,是指对问题既进行几何直观的呈现,又进行代数抽象的揭示,两个方面相辅相成,而不是简单地代数问题用几何方法或几何问题用代数方法,两方面有机结合才是完整的数形结合。
如:在解应用题中常常借助线段图的直观帮助分析数量关系。
(3)转换化归的思想方法:由数学结论呈现的公理化结构,使得数学上任何一个正确的结论都可以按照需要和可能而成为推断其他结论的依据,于是,任何一个待解决的问题只需通过某种转化过程,归结到一类已经解决或比较容易解决的问题上,即可获得原有问题的解决,这就是转换化归的思想方法。
它是一种极具数学特征的思想方法。
简言之,就是指在求解数学问题时,如果对当前的问题感到生疏困惑,可以把它进行变换转化,化繁为简、化难为易、化生为熟,从而使问题得以解决。
这种思想是科学研究与数学学习中常用的方法,它是解决问题获得新知的重要思想。
数学问题解决中的模式识别、分类讨论、消元、降次等策略或方法,都明显体现了转换化归的思想方法。
13.参考答案:课堂上学生能否自主参与学习活动是学生能否成为学习的主人的明显标志。
只有学生在情感、思维、动作等方面自主参与了教学活动,学生学习的主体性才能体现,才能使他们以最大的热情、最佳的精神状态投入到数学学习中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2019年全国特岗教师招聘初中数学真题卷
温馨提示:本套试卷收录2016-2019特岗教师招聘考试中最具有代表性的初中数学真题,包含了四川省、辽宁省、河北省、河南省、海南省、江西省、黑龙江省、安徽省、云南省、甘肃省等主要招考省份,内容详实,覆盖面广,有利于考生把握当前命题趋势,了解考试题型,洞悉考点变化,达到及时有效复习的目的。
2020年度,全国特岗教师招聘计划分配名额表如下:
以下为试题,参考解析附后
一、单选题
1.如图是由四个相同的小正方形组成的立体图形,它的俯视图为( )
A .
B .
C .
D .
2.平面直角坐标系中,点P 的坐标为(3,3),将抛物线21232y x x =-++沿水平方向或竖直方向平移,使其经过点P ,则平移的最短距离为( ).
A .1
B .32
C .5
D .3
3.如图,平行四边形ABCD 中,E ,F 分别在CD 、BC 的延长线上,AE ∥BD ,EF ⊥BC ,tan ∠ABC=34
,EF=,则AB 的长为( )
A .533
B .536
C .1
D .172
4.如图是一个底面为正方形的几何体的实物图,则其俯视图为( )
A .
B .
C .
D .
5.不等式2x+3>3x+2的解集在数轴上表示正确的是( )
A .
B .
C .
D .
6.已知点A(1,m)与点B(3,n)都在反比例函数y=k x
(k>0)的图象上,那么m与n的关系是()
A.m n
<B.m n
>C.m n
=D.不能确定7.《算法统宗》是一本通俗实用的数学书,也是将数字入诗的代表作,这本书由明代程大位花了近20年完成,他原本是一位商人,经商之便搜集各地算书和文字方面的书籍,编成首首的歌谣口诀,将枯燥的数学问题化成美妙的诗歌,读来朗朗上口,程大位还有一首类似二元一次方程组的饮酒数学诗:“肆中饮客乱纷纷,薄酒名脑厚酒醇.醇酒一瓶醉三客,薄酒三瓶醉一人,共同饮了一十九,三十三客醉颜生,试问高明能算士,几多酵酒几多醇?”这首诗是说,好酒一瓶,可以醉倒3位客人;薄酒三瓶,可以醉倒一位客人,如果33位客人醉倒了,他们总共饮下19瓶酒.试问:其中好酒、薄酒分别是多少瓶?设有好酒x瓶,薄酒y瓶.根据题意,可列方程组为()
A.
19
3333
x y
x y
+=
⎧
⎨
+=
⎩
B.
19
333
3
x y
x
y
+=
⎧
⎪
⎨
+=
⎪⎩
C.
19
333
3
x y
y
x
+=
⎧
⎪
⎨
+=
⎪⎩
D.
19
333
x y
x y
+=
⎧
⎨
+=
⎩
8.如果一个正多边形的内角和是这个正多边形外角和的2倍,那么这个正多边形是( )
A.等边三角形B.正四边形C.正六边形D.正八边形
9.如图,已知⊙O的直径AE=10cm,∠B=∠EAC,则AC的长为()
A.5cm B.2cm C.3D.6cm
10.下列运算正确的是()
A.a2•a3=a6B.(a2)3=a6C.a6÷a2=a3D.2﹣3=﹣6 11.如图,∠AOB=45°,OC是∠AOB的角平分线,PM⊥OB,垂足为点M,PN∥OB,PN与OA相交于点N,那么
PM
PN
的值等于()。