教师资格考试初中数学说课教案-平行线的判定

合集下载

平行线的判定 教案

平行线的判定 教案

平行线的判定教案教案标题:平行线的判定教案目标:1. 理解平行线的定义和性质。

2. 学会使用不同方法判定平行线。

3. 运用所学知识解决与平行线相关的问题。

教学重点:1. 平行线的定义和性质。

2. 平行线的判定方法。

教学难点:1. 运用所学知识解决与平行线相关的问题。

教学准备:1. 平行线的定义和性质的课件或教材。

2. 平行线判定的示意图或实物。

教学过程:一、导入(5分钟)1. 引入平行线的概念,让学生回顾并复习平行线的定义。

2. 提问:如何判断两条线段是平行的?二、知识讲解(15分钟)1. 讲解平行线的性质:平行线在同一平面内,永不相交,且任意一条直线与平行线的交线与另一条平行线的交线平行。

2. 介绍平行线的判定方法:a. 判定法一:同位角相等法。

当两条直线被一条横截线所切割时,同位角相等,则这两条直线平行。

b. 判定法二:内错角相等法。

当两条直线被一条横截线所切割时,内错角相等,则这两条直线平行。

c. 判定法三:平行线定理。

若两条直线分别与第三条直线相交,且同侧内角或同侧外角相等,则这两条直线平行。

三、示例演练(20分钟)1. 通过示意图或实物展示不同判定方法的应用。

2. 以具体的例题进行练习,引导学生运用不同的判定方法判断线段是否平行。

四、巩固练习(15分钟)1. 分发练习题,让学生独立完成。

2. 针对练习题进行讲解和答疑。

五、拓展延伸(10分钟)1. 提出一些与平行线相关的拓展问题,让学生思考并解答。

2. 鼓励学生探索和发现更多关于平行线的性质和判定方法。

六、总结归纳(5分钟)1. 总结平行线的定义和性质。

2. 归纳不同的平行线判定方法。

教学反思:本节课通过引入平行线的概念,讲解平行线的性质和判定方法,以及示例演练和练习题的训练,使学生能够熟练运用不同的判定方法判断线段是否平行。

同时,通过拓展延伸和总结归纳,培养学生的思维能力和归纳总结能力。

在教学过程中,要注重引导学生思考和解决问题的能力,提高学生的学习兴趣和主动性。

数学教案-平行线的判定

数学教案-平行线的判定

数学教案-平行线的判定一、教学目标1.了解推理、证明的格式,理解判定定理的证法. 2.把握平行线的其次个判定定理,会用判定公理及定理进行简洁的推理论证. 3.通过其次个判定定理的推导,培育同学分析问题、进行推理的力量. 4.使同学了解学问来源于实践,又服务于实践,只有学好文化学问,才有解决实际问题的本事,从而对同学进行学习目的的教育. 二、学法引导1.老师教法:启发式引导发觉法. 2.同学学法:乐观参加、主动发觉、进展思维. 三、重点难点及解决方法(一)重点判定定理的推导和例题的解答. (二)难点使用符号语言进行推理. (三)解决方法1.通过老师正确引导,同学乐观思维,发觉定理,解决重点. 2.通过老师指导,同学自行完成推理过程,解决难点及疑点. 四、课时支配1课时五、教具学具预备三角板、投影仪、自制胶片. 六、师生互动活动设计1.通过设计练习,复习基础,制造情境,引入新课. 2.通过老师指导,同学探究新知,练习巩固,完成新授. 3.通过同学自己总结完成小结. 七、教学步骤(一)明确目标把握平行线的其次个定理的推理,并能运用其进行简洁的证明,培育同学的规律思维力量. (二)整体感知以情境创设,设计悬念,引出课题,以引导同学的思维,发觉新知,以变式训练巩固新知. (三)教学过程创设情境,复习引入师:上节课我们学习了平行线的判定公理和一种判定方法,依据所学看下面的问题(出示投影). 1.如图1所示,直线、被直线所截,假如,那么,为什么?2.如图2,假如,那么,为什么?图2 3.如图3,直线、被直线所截.(1)假如,那么,为什么?(2)假如,那么,为什么?4.如图4,一个弯形管道的拐角,,这时管道、平行吗?图4 同学活动:同学口答第1、2题. 师:你能说出有什么条件,就可以判定两条直线平行呢?同学活动:由第l、2题,同学思索分析,只要有同位角相等或内错角相等,就可以判定两条直线平行. 老师将第3题图形画在黑板上. 同学活动:同学口答理由,同角的补角相等. 师:要求同学写出符号推理过程,并板书. [板书]∵ (已知),(邻补角定义),∵ (同角的补角相等). (以备后面推导判定定理使用.)【教法说明】本节课是前一节课的连续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使同学明确,只要有同位角相等或内错角相等,就可以判定两条直线平行.第3题是为推导本节到定定理做铺垫,即假如同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点. 师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?同学活动:同分内角. 师:它们有什么关系. 同学活动:互补. 师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要讨论的问题. [板书]2.5 平行线的判定(2)师:请同学们看复习提问中的第3题,我们知道了与互补,那么,由此你还可以推出什么?依据什么?同学活动:同学思索、回答,还可以推出,这个推理的全过程就是:∵ (已知),(邻补角定义),∵ (同角的补角相等). ∵ (同位角相等,两直线平行.)(老师再加上这一步即可). 由此你能得到什么结论?同学活动:同学思考后回答出,两条直线被第三条直线所截,假如同旁内角互补,那么这两条直线平行(同学语言不规范,留意订正). 师:也就是说,我们又得到了一种平行线的判定方法,我们把它简洁说成:[板书]同旁内角互补,两直线平行. 【教法说明】由于复习引入第3题为定理的推导做好了铺垫,所以同学并不难接受推理过程,放手由同学总结出判定方法,留意培育同学的归纳总结力量,另外在叙述判定方法时,训练同学用精确、规范的几何语言. 师:请同学们思索,刚才我们由同旁内角互补,推导两条直线平行,除了上面的推理过程,有没有其他途径?怎样写推理格式?同学活动:同学思索,对比复习提问第3题的第2问很快地找到另一种途径,并在练习本上写出推理格式,找一个同学在原来黑板上的板书基础上完成. 【教法说明】通过使用不同种方法的推理,不仅开拓同学思维,同时也能够让同学尽可能地使用推理,从而使同学把握推理格式的书写. 尝试反过,巩固练习师:有了这种判定方法,我们就可以由同旁内角互补,直接判定两条直线平行了,让我们回到复习提问的第4题,管道、平行吗?为什么?同学活动:平行,由于同旁内角互补,两直线平行. 【教法说明】不仅解决了前面遗留的问题,同时巩固了所学新学问. 师:下面我们一起应用这种判定方法再来讨论一些题目(出示投影). 练习:1.如图1,量得,,可以判定,它的依据是什么?图2 2.如图2,已知,与互补,可以判定哪两条直线平行?与哪个角互补,可以判定直线?【教法说明】这组练习进一步对判定方法加以巩固,第2题的第2问是依据给出的结果,找它成立的条件,是执果索因,同学应当没有什么困难,老师不必多讲,但要留意第2问中消失答与互补这类错误时,要结合图形让同学弄清是哪两条直线被哪两条直线所截. 例题讲解师:我们学习了三种平行线的判定方法,在详细题目中如何选择应用它们来解决问题呢?下面我们看例题(出示投影). 例两条直线垂直于同一条直线,这两条直线平行吗?为什么?师:这个题目相当于文字题,解答时应依据题意画出图形(如图3),同时为了叙述便利,还要在图形上标出需要的字母或符号.同学活动:同学分析题意,按所说画出相应的图形. 师:我们要判定两条直线是否平行,应先想什么?可以争论. 同学活动:争论后答出,先想学过哪些判定平行线的方法. 师:再看已知条件与哪一种方法的条件相同或有关,思索时留意图形,按老师所标直角符号,回答问题. 同学活动:同学仔细观看,乐观思索后,踊跃回答. 老师给出规范的板书,答:垂直于同一条直线的两条直线平行. 理由:如图3,,. ∵ ,(已知),∵ (垂直的定义). ∵ (同位角相等,两直线平行). 师:这是两步推理,两个“∵”之间省略的一个“∵”,是什么内容?同学活动:∵ (已证). 【教法说明】老师在讲解时,留意后发同学,引导同学形成正确的思维,从而学会分析问题,提高解题力量. 师:想一想,能不能利用内错角相等,或者同旁内角互补,来说明呢?图形中的符号怎样改动?仿照例题说出理由同学活动:同学思索,并在练习本上写出理由,请两名同学到黑板上去做,形成板书:理由:如图4,,. ∵ ,(已知),∵ (垂直的定义). ∵ (内错角相等,两直线平行). 理由:如图5,,. ∵ ,(已知),∵ (垂直的定义). ∵ (同旁内角互补,两直线平行). 【教法说明】一题多解既巩固所学学问,同时培育了同学的发散思维,提高了同学的解题力量. 变式训练,培育力量练习(出示投影):1.如图6,木工师傅用角尺画出工件边缘的两条垂线,这两条垂线平行吗?为什么?2.如图7,如何推断这块玻璃板的上下两边平行?图7 同学活动:同学思索,给出第1题的答案为两条垂线平行.由于画出的两条线都垂直于工件边缘,也就是说,相交成直角,依据同位角相等(或内错角相等或同旁内角互补),两直线平行;对于第2题需要添出截线,然后有三种方法来推断. 【教法说明】这两个题目都是实际问题,培育同学应用所学学问解决实际问题的力量尤其是第2题,我们判定两条直线是否平行,必需依据被第三条直线截出的三种位置的关系角的大小来判定,通过此题,让同学进一步理解平行线的三种判定方法及应用. (四)总结、扩展师:我们学习了几种判定两条直线平行的方法. 同学活动:同学自己总结归纳完成下表.判定文字叙述符号语言图形第一种同位角相等,两直线平行∵ (已知),∵ ( ).其次种内错角相等,两直线平行∵ (已知),∵ ( ).第三种同旁内角互补,两直线平行∵(已知,)∵ ( ). 八、布置作业课本第97~98页A组第6(3)、7、8题. 作业答案6.(3)可判定.依据同旁内角互补,两直线平行. 7.(1)同位角相等,两直线平行. (2)内错角相等,两直线平行. (3)同旁内角互补,两直线平行. 8.(1)同位角相等,两直线平行. (2)内错角相等,两直线平行. (3)内错角相等,两直线平行. (4)内错角相等,两直线平行. (5)同旁内角互补,两直线平行.。

七年级数学下册《平行线的判定》教案、教学设计

七年级数学下册《平行线的判定》教案、教学设计
(二)过程与方法
1.提高观察能力,学会从几何图形中发现规律,总结性质。
2.培养逻辑思维能力,学会运用已知条件推导出结论。
3.学会运用画图、列表等方法整理、分析问题,提高解决问题的策略。
4.学会与同学合作交流,分享学习心得,提高合作能力。
(三)情感态度与价值观
1.培养学生严谨、认真的学习态度,对待数学问题要有耐心和毅力。
1.必做题:
a.请从生活中找到三个平行线的例子,并简要说明其应用。
b.根ቤተ መጻሕፍቲ ባይዱ平行线的判定方法,完成以下练习题:
-判断以下直线是否平行,并说明理由:
① a ∥ b, b ∥ c,求证:a ∥ c。
②在ΔABC中,AB ∥ CD,求证:∠BAC = ∠DCE。
-填空题:
①如果两条直线上的同位角相等,那么这两条直线()。
3.作业完成后,请认真检查,确保答案正确,提高作业质量。
4.作业提交时间:下节课前。
三、教学重难点和教学设想
(一)教学重点
1.理解并掌握平行线的定义及判定方法,包括同位角相等、内错角相等、同旁内角互补。
2.能够运用直尺、圆规等工具准确画出平行线。
3.熟练运用平行线的性质解决实际问题。
(二)教学难点
1.对平行线判定方法的灵活运用,尤其是同位角、内错角、同旁内角在实际问题中的应用。
2.画平行线时,学生对工具的使用不够熟练,需要加强实践操作。
1.设计具有层次性的练习题,让学生运用平行线的判定方法解题。
2.练习题包括:
a.判断题:判断哪些直线是平行线,并说明理由。
b.填空题:补充完整平行线的判定条件。
c.应用题:运用平行线性质解决实际问题。
3.学生独立完成练习题,教师巡回指导,解答学生疑问。

初中数学教案:平行线的性质与判定

初中数学教案:平行线的性质与判定

初中数学教案:平行线的性质与判定一、平行线的性质平行线是在同一个平面上,永远不会相交的直线。

在初中数学中,平行线是一个重要的概念,学生需要掌握平行线的性质和判定方法。

1. 平行线的定义平行线是指在同一个平面上,永远不会相交的两条直线。

在几何中,我们用符号 "∥" 表示两条平行线,例如 AB ∥ CD 表示线段 AB 和线段 CD 是平行的。

2. 平行线的性质(1)平行线上的任意一对对应角相等。

例如,若 AB ∥ CD,则∠A = ∠C,∠B = ∠D。

(2)平行线上的内对顶角相等。

例如,若 AB ∥ CD,则∠ABC = ∠DCB,∠ACB = ∠DBA。

(3)平行线上的同旁内角互补。

例如,若 AB ∥ CD,则∠ABC + ∠DCB = 180°, ∠ACB + ∠DBA = 180°。

(4)平行线上的同旁外角相等。

例如,若 AB ∥ CD,则∠ABD = ∠CDA,∠ADC = ∠BAC。

3. 利用平行线性质解题在解题过程中,我们可以利用平行线的性质来推导或证明一些几何问题。

例如,当我们需要证明两条线段平行时,可以利用平行线上的性质,通过角的等式来推导出结论。

二、平行线的判定方法判定两条直线是否平行是初中数学中的一个重要内容,学生需要熟练掌握几种常用的判定方法。

1. 直线的判定两条直线平行的判定方法之一是直线的判定。

如果两条直线上分别有一对对应角相等,那么这两条直线一定是平行的。

例如,若∠A = ∠C, ∠B = ∠D,则可判定 AB ∥ CD。

2. 平行线的判定除了直线的判定方法,我们还可以利用平行线的判定方法来判断两条直线是否平行。

(1)同旁内角判定法:若一条直线与另外两条平行线相交,那么它与其中一条平行线上的同旁内角相等,则这两条直线平行。

(2)同旁外角判定法:若一条直线与另外两条平行线相交,那么它与其中一条平行线上的同旁外角相等,则这两条直线平行。

平行线的判定(试讲案例)

平行线的判定(试讲案例)

平行线的判定(试讲案例)一、教学内容本节课的教学内容选自人教版初中数学八年级上册第四章“平行线的判定”部分。

具体包括:1. 了解平行线的概念,掌握平行线的性质;2. 学习判定两条直线平行的方法;3. 能够运用平行线的性质和判定方法解决实际问题。

二、教学目标1. 学生能够理解平行线的概念,掌握平行线的性质;2. 学生能够掌握判定两条直线平行的方法,并能够运用到实际问题中;3. 学生能够通过小组合作、探究学习,提高自己的合作能力和解决问题的能力。

三、教学难点与重点1. 教学难点:理解并掌握平行线的判定方法,能够灵活运用到实际问题中;2. 教学重点:平行线的性质和判定方法的运用。

四、教具与学具准备1. 教具:黑板、粉笔、直尺、三角板;2. 学具:每人一本教材、一份课堂练习册、一支笔、一把尺子。

五、教学过程1. 实践情景引入:让学生观察教室里的直线和线段,引导学生发现并描述出平行线的现象;2. 概念讲解:通过示例和讲解,让学生理解平行线的概念,掌握平行线的性质;4. 例题讲解:讲解几个判定平行线的例题,让学生通过随堂练习巩固所学知识;5. 课堂练习:让学生独立完成课堂练习册上的练习题,教师进行个别辅导;6. 板书设计:将判定平行线的方法和性质进行板书,方便学生理解和记忆;7. 作业设计:布置一道运用平行线性质和判定方法的课后作业题,要求学生独立完成并提交;8. 课后反思及拓展延伸:让学生在课后反思本节课的学习内容,对所学知识进行拓展延伸。

六、板书设计板书设计如下:平行线的性质:1. 同一平面内,不相交的两条直线叫做平行线;2. 平行线之间的距离相等;3. 平行线上的对应角相等。

平行线的判定方法:1. 同一平面内,两条直线都与第三条直线平行,则这两条直线平行;2. 同一平面内,一条直线与另外两条直线都相交,且交角相等,则这两条直线平行;3. 同一平面内,一条直线与另外两条直线都垂直,则这两条直线平行。

七、作业设计作业题目:1. 判断题:(1) 如果两条直线在同一平面内不相交,那么它们一定是平行线。

数学教案-平行线的判定

数学教案-平行线的判定

数学教案-平行线的判定一、教学目标1.知识目标:掌握平行线的概念和判定方法。

2.能力目标:能够通过定理和性质判定两条直线是否平行。

3.情感目标:培养学生的逻辑思维能力和解决问题的能力。

二、教学重点与难点1.教学重点:平行线的判定方法。

2.教学难点:通过性质和定理判定两条直线是否平行的方法。

三、教学准备1.教材:数学教科书、教学PPT。

2.工具:黑板、彩色粉笔、直尺。

四、教学过程步骤一:导入新知(5分钟)1.教师提出问题:“什么是平行线?如何判断两条直线是否平行?”2.通过让学生讨论来回答这个问题,并引导学生了解平行线的概念。

步骤二:引入判定平行线的定理和性质(10分钟)1.教师通过演示和讲解,引入平行线的判定定理和性质。

2.第一种判断方法是“同位角相等定理”,通过同位角相等来判定直线是否平行。

3.第二种判断方法是“内错角相等定理”,通过内错角相等来判定直线是否平行。

4.第三种判断方法是“平行线的性质”,通过直线和平行线之间的性质来判定直线是否平行。

步骤三:举例演练(30分钟)1.教师通过示意图和具体例子,演示和讲解判定平行线的方法。

2.学生根据教师的引导,进行课堂练习。

步骤四:学习体会(10分钟)1.教师引导学生进行总结:通过本节课学习,你们学到了什么?你们能够独立解决什么问题?2.学生积极发言,分享自己的学习体会和解决问题的思路。

五、课堂作业1.预习下一节课的内容。

2.完成课堂练习题。

六、板书设计- 平行线的判定方法- 同位角相等定理- 内错角相等定理- 平行线的性质七、教学反思通过本节课的教学,学生对平行线的判定方法有了初步的了解,能够通过定理和性质判定两条直线是否平行。

在教学过程中,学生参与度较高,积极思考问题并提出自己的解决方法。

然而,我也注意到部分学生在练习过程中还存在一些困难,应该在下节课中给予更多的帮助和指导。

八年级数学上册《平行线的判定》教案、教学设计

5.教师点评:强调平行线知识在实际生活中的应用,激发学生学习数学的兴趣和热情。
五、作业布置
为了巩固本节课所学内容,培养学生的几何思维和解决问题的能力,特布置以下作业:
1.基础巩固题:完成课本第56页的练习题1、2、3,重点在于运用平行线的判定方法解决问题。
要求:学生在完成作业时,注意理解题意,规范作图,仔细计算,确保答案正确。
三、教学重难点和教学设想
(一)教学重难点
1.重点:平行线的定义及其判定方法,包括同位角相等、内错角相等、同旁内角互补等。
2.难点:理解平行线性质的推理过程,以及在实际问题中的应用。
(二)教学设想
1.采用情境教学法,引入生活中的实际案例,让学生感知平行线在实际中的应用,激发学生学习兴趣。
例:在建筑工地,工人师傅如何保证两条直线平行?引导学生思考平行线在实际生活中的重要性。
二、学情分析
八年级学生已经具备了一定的几何基础,掌握了直线、射线、角等基本概念,能够进行简单的几何推理。在此基础上,学习平行线的判定,对于学生来说是一个新的挑战。他们需要将已知的几何知识进行拓展,运用逻辑推理和空间想象能力来探索平行线的性质和判定方法。考虑到学生的认知发展水平,他们可能在学习过程中遇到以下困难:对平行线性质的理解不够深入,判定方法的选择和应用存在困惑,以及在实际问题中运用平行线知识解决问题的能力不足。因此,在教学过程中,教师应关注学生的个体差异,提供适当的引导和帮助,鼓励学生积极参与讨论,培养他们的几何思维和解决问题的能力。同时,通过实际案例的引入,激发学生的学习兴趣,增强他们对数学知识实用性的认识。
(2)针对学生的疑惑,给予耐心解答,帮助他们克服学习难点。
(3)课后辅导,针对学生的薄弱环节,进行有针对性的辅导。
6.评价方式多样化,关注学生的全面发展。

数学教案:平行线的判定

数学教案:平行线的判定一、教学目标:1. 让学生理解平行线的概念,掌握平行线的判定方法。

2. 培养学生观察、分析、推理的能力。

3. 培养学生合作学习、交流表达的能力。

二、教学内容:1. 平行线的概念:在同一平面内,不相交的两条直线叫做平行线。

2. 平行线的判定方法:(1)同位角相等,两直线平行。

(2)内错角相等,两直线平行。

(3)同旁内角互补,两直线平行。

三、教学重点与难点:1. 教学重点:平行线的判定方法。

2. 教学难点:平行线的判定方法的灵活运用。

四、教学方法:1. 采用问题驱动法,引导学生探究平行线的判定方法。

2. 利用几何画板软件,动态展示平行线的判定过程。

3. 采用小组讨论法,培养学生的合作学习能力。

五、教学步骤:1. 导入新课:通过生活中的实例,引导学生认识平行线。

2. 探究平行线的判定方法:(1)同位角相等,两直线平行。

(2)内错角相等,两直线平行。

(3)同旁内角互补,两直线平行。

3. 巩固练习:出示练习题,让学生运用所学知识解决问题。

4. 拓展延伸:探讨平行线的其他判定方法。

5. 总结归纳:对本节课的内容进行总结,加深学生对平行线判定方法的理解。

6. 布置作业:布置课后练习,巩固所学知识。

六、教学评价:1. 评价目标:本节课结束后,学生能熟练掌握平行线的判定方法,并能够运用到实际问题中。

2. 评价方法:(1)课堂练习:观察学生在课堂练习中的表现,判断其对平行线判定方法的掌握程度。

(2)课后作业:检查学生课后作业的完成情况,评估其对课堂所学知识的巩固程度。

(3)小组讨论:评价学生在小组讨论中的参与程度,以及合作交流的能力。

七、教学反思:1. 反思内容:(1)教学方法的适用性:回顾本节课的教学方法,思考是否适合学生的学习需求,是否有助于学生的理解和掌握。

(2)学生参与度:分析学生在课堂上的参与情况,寻找提高学生积极性的方法。

(3)教学效果:评估本节课的教学效果,为下一步的教学提供参考。

(初中数学教案)平行线的判定初中数学教案

平行线的判定学校数学教案教学建议1、教材分析(1)学问结构:由平行线的画法,引出平行线的判定公理〔同位角相等,两直线平行〕.由公理推出:内错角相等,两直线平行.同旁内角互补,两条直线平行,这两个定理.(2)重点、难点分析:本节的重点是:平行线的判定公理及两个判定定理.一般的定义与第一个判定定理是等价的.都可以做判定的方法.但平行线的定义不好用来判定两直线相交还是不相交.这样,有必要借助两条直线被第三条直线截成的角来判定.因此,这一个判定公理和两个判定定理就显得尤为重要了.它们是推断两直线平行的依据,也为下一节,学习平行线的性质打下了根底.本节内容的难点是:理解由判定公理推出判定定理的证明过程.同学刚刚接触用演绎推理方法证明几何定理或图形的性质,对几何证明的意义还不太理解.有些同学甚至认为从直观图形即可识别出的性质,没必要再进行证明.这些都使几何的入门教学困难重重.因此,教学中既要有直观的演示和操作,也要有严格推理证明的板书示范.创设情境,不断渗透,使同学初步理解证明的步骤和根本方法,能依据所学学问在括号内填上恰当的公理或定理.2、教学建议在平行线判定公理的教学中,应充分表达一条主线索:“充分试验—认真观看—形成猜想—实践检验—明确条件和结论.〞老师可演示教材中所示的教具,还可以让每个同学都用三角板和直尺画出平行线.在此过程中,留意角的变化状况.事实充分,同学可以理解,假犹如位角相等,那么两直线肯定会平行.平行线的判定公理后,有些同学可能会意识到“内错角相等,两直线也会平行〞.老师可组织同学按所给图形进行争辩.如何利用和几何的公理、定理来证明这个明显成立的事实.也可多叫几个同学进行重复.逐步使同学观赏到数学证明的严谨性.另一个定理的发觉与证明过程也与此类似.教学设计例如1一、教学目标1.了解推理、证明的格式,把握平行线判定公理和第一个判定定理.2.会用判定公理及第一个判定定理进行简洁的推理论证.3.通过模型演示,即“运动—变化〞的数学思想方法的运用,培育同学的“观看—分析〞和“归纳—总结〞的力量.二、学法引导1.老师教法:启发式引导发觉法.2.同学学法:独立思考,主动发觉.三、重点·难点及解决方法〔一〕重点在观看试验的根底上进行公理的概括与定理的推导.〔二〕难点判定定理的形成过程中规律推理及书写格式.〔三〕解决方法1.通过观看试验,奇妙设问,解决重点.2.通过引导正确思维,严格呈现推理书写格式,明确方法来解决难点、疑点.四、课时支配l课时五、教具学具预备三角板、投影胶片、投影仪、计算机.六、师生互动活动设计1.通过两组题,复习旧知,引入新知.2.通过试验观看,引导思维,概括出公理及定理的推导,并以练习进行稳固.3.通过老师提问,同学答复完成归纳小结.七、教学步骤〔-〕明确目标教学建议1、教材分析(1)学问结构:由平行线的画法,引出平行线的判定公理〔同位角相等,两直线平行〕.由公理推出:内错角相等,两直线平行.同旁内角互补,两条直线平行,这两个定理.(2)重点、难点分析:本节的重点是:平行线的判定公理及两个判定定理.一般的定义与第一个判定定理是等价的.都可以做判定的方法.但平行线的定义不好用来判定两直线相交还是不相交.这样,有必要借助两条直线被第三条直线截成的角来判定.因此,这一个判定公理和两个判定定理就显得尤为重要了.它们是推断两直线平行的依据,也为下一节,学习平行线的性质打下了根底.本节内容的难点是:理解由判定公理推出判定定理的证明过程.同学刚刚接触用演绎推理方法证明几何定理或图形的性质,对几何证明的意义还不太理解.有些同学甚至认为从直观图形即可识别出的性质,没必要再进行证明.这些都使几何的入门教学困难重重.因此,教学中既要有直观的演示和操作,也要有严格推理证明的板书示范.创设情境,不断渗透,使同学初步理解证明的步骤和根本方法,能依据所学学问在括号内填上恰当的公理或定理.2、教学建议在平行线判定公理的教学中,应充分表达一条主线索:“充分试验—认真观看—形成猜想—实践检验—明确条件和结论.〞老师可演示教材中所示的教具,还可以让每个同学都用三角板和直尺画出平行线.在此过程中,留意角的变化状况.事实充分,同学可以理解,假犹如位角相等,那么两直线肯定会平行.平行线的判定公理后,有些同学可能会意识到“内错角相等,两直线也会平行〞.老师可组织同学按所给图形进行争辩.如何利用和几何的公理、定理来证明这个明显成立的事实.也可多叫几个同学进行重复.逐步使同学观赏到数学证明的严谨性.另一个定理的发觉与证明过程也与此类似.教学设计例如1一、教学目标1.了解推理、证明的格式,把握平行线判定公理和第一个判定定理.2.会用判定公理及第一个判定定理进行简洁的推理论证.3.通过模型演示,即“运动—变化〞的数学思想方法的运用,培育同学的“观看—分析〞和“归纳—总结〞的力量.二、学法引导1.老师教法:启发式引导发觉法.2.同学学法:独立思考,主动发觉.三、重点·难点及解决方法〔一〕重点在观看试验的根底上进行公理的概括与定理的推导.〔二〕难点判定定理的形成过程中规律推理及书写格式.〔三〕解决方法1.通过观看试验,奇妙设问,解决重点.2.通过引导正确思维,严格呈现推理书写格式,明确方法来解决难点、疑点.四、课时支配l课时五、教具学具预备三角板、投影胶片、投影仪、计算机.六、师生互动活动设计1.通过两组题,复习旧知,引入新知.2.通过试验观看,引导思维,概括出公理及定理的推导,并以练习进行稳固.3.通过老师提问,同学答复完成归纳小结.七、教学步骤〔-〕明确目标把握平行线判定公理和第一个判定定理及运用其进行简洁的推理论证.〔二〕整体感知以情境设计,引出课题,以模型演示,引导同学观看,、分析、总结,讲授新知,以变式训练稳固新知,在整节课中,较充分地表达了规律推理.〔三〕教学过程创设情境,引出课题师:上节课我们学习了平行线、平行公理及推论,请同学们推断以下语句是否正确,并说明理由〔出示投影〕.1.两条直线不相交,就叫平行线.2.与一条直线平行的直线只有一条.3.假如直线、都和平行,那么、就平行.同学活动:同学口答上述三个问题.【教法说明】通过三个推断题,使同学回忆上节所学学问,第1题在于强化平行线定义的前提条件“在同一平面内〞,第2题不仅回忆平行公理,同时使同学生疏学习几何,语言肯定要精确、标准,同一问题在不同条件下,就有不同的结论,第3题复习稳固平行公理推论的同时提示同学,它也是判定两条直线平行的方法.师:测得两条直线相交,所成角中的一个是直角,能判定这两条直线垂直吗依据什么同学:能判定垂直,依据垂直的定义.师:在同一平面内不相交的两条直线是平行线,你有方法测定两条直线是平行线吗同学活动:同学思考,如何测定两条直线是否平行老师在同学思考未得结论的状况下,指出不能直接利用手行线的定义来测定两条直线是否平行,必需找其他可以测定的方法,有什么方法呢同学活动:同学思考,在前面复习平行公理推论的状况下,有的同学会提出,再作一条直线,让。

数学教案:平行线的判定

数学教案:平行线的判定教学目标:1. 理解平行线的定义及性质;2. 掌握平行线的判定方法;3. 能够运用平行线的判定解决实际问题。

教学内容:一、平行线的定义及性质1. 引入平行线的概念,通过实例演示平行线的特征;2. 讲解平行线的性质,如同位角相等、内错角相等、同旁内角互补等;二、平行线的判定方法1. 引入平行线的判定方法,引导学生思考如何判断两条直线是否平行;2. 讲解平行线的判定方法,如同位角相等、内错角相等、同旁内角互补等;3. 通过实例演示,让学生学会运用平行线的判定方法判断两条直线是否平行。

三、运用平行线的判定解决实际问题1. 给出实际问题,让学生运用平行线的判定方法进行解答;2. 引导学生思考如何将实际问题转化为平行线的问题;四、巩固练习1. 设计练习题,让学生独立完成,巩固对平行线的定义、性质和判定方法的理解;2. 引导学生思考如何运用平行线的判定方法解决实际问题;3. 给予学生反馈,解答学生的疑问。

2. 强调平行线在实际生活中的应用,激发学生学习数学的兴趣;3. 对学生的学习情况进行评价,鼓励学生的进步。

教学资源:1. 教学PPT;2. 实例图形;3. 练习题。

教学建议:1. 在教学过程中,注重引导学生通过观察图形,发现平行线的性质和判定方法;2. 结合实际问题,让学生学会运用平行线的判定方法解决问题;3. 设计适量练习,让学生巩固所学知识,提高解题能力。

六、平行线的判定:利用同位角相等1. 通过图形展示,让学生观察并理解同位角的定义;2. 讲解同位角相等是平行线的判定条件之一;3. 引导学生运用同位角相等的方法判断两直线是否平行。

七、平行线的判定:利用内错角相等1. 介绍内错角的定义,并通过图形演示内错角的特点;2. 讲解内错角相等也是平行线的判定条件之一;3. 让学生练习运用内错角相等的方法判断两直线是否平行。

八、平行线的判定:利用同旁内角互补1. 解释同旁内角互补的概念,并展示图形为例;2. 说明同旁内角互补也是平行线的判定方法之一;3. 学生通过实例练习,掌握运用同旁内角互补判断直线平行的技巧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教师资格考试初中数学说课教案:平行线的判定
《平行线的判定》说课稿
今天我说课的内容是新教材浙教版八年级上册《平行线的判定》的第二课时。

下面,我将从“教学内容”、“教学目标”、“教学方法及手段”和“教学过程”这四个部分来汇报对本节课的设计。

一、教学内容
“平行线”是我们在日常生活中都经常接触到的。

它是学生学习几何的重要基础之一,也是学习其他学科知识的重要基础。

在七(上)的第七章,学生已经学习了平行线的概念,知道平行线的表示方法,以及过直线外一点画一条直线与已知直线平行的画法。

在前一节课,学生接触了“三线八角”,了解同位角、内错角、同旁内角等概念,掌握“同位角相等,两直线平行”的判定方法。

经过直线外一点画一条直线与已知直线平行——这种画法的依据其实就是我们刚学过的平行线的判定方法:“同位角相等,两直线平行” 。

因此,这一节课将在学生这样的知识基础上继续学习判定两直线平行的另两种方法:“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。

在老教材中,平行线的判定是作为公理出现的,在新教材中却至始至终没有出现“公理”二字,只是作为一种方法出现。

它是学生在已学知识的基础上通过合作、探究得到的判定两直线平行的方法,这里更注重学生的观察、分析、概括能力的培养。

在七年级的学习中,学生已经初步接触了简单的说理过程。

因此本节学习时,将在直观认识的基础上,继续加强培养学生这方面的能力。

二、教学目标
基于上述内容、学情的分析,在新课程的理念下,数学教学应以学生的发展为本,以学生的能力培养为重。

由此确定本节课的教学目标为:
1、让学生通过直观认识,掌握平行线的判定方法;
2、会根据判定方法进行简单的推理并能写出简单的说理过程;
3、运用“转化”的数学思想,培养学生“观察——分析”和“归纳——概括”的能力。

同时确定本节课的重难点:
重点:在观察实验的基础上进行判定方法的概括与推导.
难点:方法的归纳、提炼;
例2教学中的辅助线的添加。

三、教学方法及手段
布鲁纳说过:“发现包括用自己的头脑来获得知识的一切形成。

”所以根据本节课的教学内容特点,同时基于八年级学生的形象思维,遵循“教为主导,学为主体,练为主线”的教育思想,从实例出发,让学生亲历观察、发现、探究、归纳等一系列过程,再现了知识的发生、发现及发展的过程。

在新知识学习和例题的教学中,教师始终以引导者的形象出现并在适当的时候对学生适当的启发。

所以在本节课中我采取的教学方法是启发式引导发现法.让学生合作、探究,主动发现.
教学手段上,一开始借用道具“纸带”引出问题,从而围绕着这一问题进行探索,教师边启发引导,边巡视,随时收集与评定学生的学习情况,进行反馈调节。

同时使用多媒体辅助教学,可以形象生动地直观展示教学内容,不但提高了学习效率和质量,而且容易加法学生的学习兴趣和积极性。

四、教学过程
1、复习旧知,承前启后
如图,直线L1与直线L2、L3相交,指出图中所有的同位角、内错角、同旁内角;
在学生回答完问题后继续提问:如果∠1=∠5,直线L1与L3又有何位置关系?
此问题旨在复习原来的知识,从而为新知识作好铺垫。

2、创设情境、合作探究
问题是数学的心脏,而一个好的问题的提出,将会使学生产生求知欲,引发教学高潮。

因此在复习好旧的知识后马上提出新问题。

问题:如何判断一条纸带的边沿是否平行?
要求:1、小组合作(每组4人,确定组长、纪录员、汇报员等进行明确分工);
2、对工具使用不做限制。

对于要求一进行明确的分工是希望可以照顾各个层面的学生,希望每个学生都能得到参与,而在最后当汇报员进行总结的时候,可以由组内其他成员进行补充。

而在要求二中明确了对工具不做任何限制,这样可以激发学生的创造性和积极性,从而会使我们的方法多样。

最后可以对学生的方法进行罗列,问其根据,由学生自己进行讲解。

总结学生的各种方法,可能会有以下几种情况:一推二画三折。

⑴.推平行线法。

经过下边沿的一点作上边沿的平行线,若所画平行线与下边沿重
合,则可判断上下两边沿平行;
其实我们知道这种画法的依据就是利用同位角相等,两直线平行。

而除这样的推法外学生也会想到用画同位角的方法来说明。

就比如第2种情况中。

⑵将纸带画在练习本上,作一条直线相交于两边,如图所示,用量角器量出∠1,∠2,利用同位角相等,来判定纸带上下边缘平行;
而有些学生可能想到直接在纸带上画,直接在纸带上作一条相交于两边缘的直线,因为纸带局限了作图,因而可以利用的只有∠2、∠3、∠4。

用量角器度量学生会发现∠3=∠2,∠4+∠2=1800。

⑶折的方法。

经过这样一系列的演示和归纳,学生就对平行线的新的两种判定方法有了自己直观的认识。

这时候可以请学生模仿平行线判定方法一的形式请学生给出总结。

应该说这时候学生的情绪会很高,通过自己的动手发现了平行线判定的其他方法,此时教师可结合多媒体利用动态再来演示这两种判定方法。

同时在黑板上给出板书。

在多媒体课件里可以是一句完整的表达,而在板书时,为更易于学生理解和掌握,只简单地记为:
内错角相等,两条直线平行。

同旁内角互补,两直线平行。

其实在教材中对这两种判定方法的编排里,它是先从“内错角相等,两直线平行”进行教学,然后再经过例题教学让学生对这种方法巩固加深,然后再从开始的引题里让学生寻找同旁内角的关系,从而引出“同旁内角互补,两直线平行”这种判定方法。

而我在对这节课的处理上则是直接利用“纸带问题”引导学生先得到这两种方法,而后再是对这两种方法进行巩固、应用。

3、初步应用,熟悉新知
“学数学而不练,犹如入宝山而空返。

“适当的巩固性、应用性练习是学习新知识、巩固新知识所必不可少的。

为了促进学生对新知识的理解和掌握,给出以下两个小练习,意在对平行线的两种判定方法的理解。

找一找,说一说:
1.课本练习:如图,直线a,b被直线l所截,
⑴若∠1=750,∠2=750 ,则a与b平行吗?根据什么?
⑵若∠2=750,∠3=1050 ,则a与b平行吗?根据什么?
2.根据下列条件,找出图中的平行线,并说明理由:
图(1)∠1=1210,∠2=1200,∠3=1200;
图(2)∠1=1200,∠2=600,∠3=620。

对这2个练习可直接由学生抢答,并说明理由,因为题目简单又由这样抢答的方式,学生感到意犹未尽,此时马上推出范例教学。

例2、如图∠C+∠A=∠AEC,判断AB和CD是否平行?并说明理由。

确定例题是难点,基于以下两点考虑:
1、根据已有的条件与图形,无法解决问题时,要添加辅助线。

2、将推理过程由口述转化为书面表达形式,这也会让学生感到一定困难。

因此在本例题的教学中要充分体现教师引导者的地位,启发学生思考当遇到要我们说明两直线平行的时候,应该要从已知和图形中寻找什么?这时学生会总结学过的三种判定方法,然后再要求学生在本题中是否存在满足这三种判定方法的条件?当找不到解决问题的方法时,引导学生是否可以在没有防碍题目的前提下对图形做适当的改变,然后自然而然的引出作辅助线。

4.练习反馈,巩固新知。

说一说,写一写:
1. 如图,∠1=∠2=∠3。

填空:
⑴ ∵ ∠1=∠2()
∴ ∥ ()
⑵ ∵∠2=∠3()
∴ ∥ ()
2.如图,已知直线L1、L2被直线L3所截,∠1+∠2=1800。

请说明L1与L2平行的理由。

练习的安排遵循了由浅入深的原则,让学生在观察后再动手。

说明:练习1由学生个别回答,其他学生更正,教师作注意点补充;练习2由3名学生板演,其余学生同练,对于个别基础差的学生在巡视时可做提示,最后集体批阅。

因为我所面向的是乡镇中学的学生,学生总体的素养相比较市直属学校的学生来说是有一定的距离的,所以我在对练习的选取上都是按照教材上的课内练习,我想教材之所以为教材总是有他一定的科学性和可取性。

当然对于好的学校或者是学有余力的学生,可以给学生做适当的提高,数学原本就是来源于生活,而又高于生活,反过来它又可以帮我们解决
很多的实际问题。

因此在编排题目的时候我也特意找了关于这方面的题目,让学生在一种实际的背景中去应用所学的知识。

那么对这两道题我们可以根据自己授课的情况随机来定,课内有时间,可以让同桌进行讨论,共同完成;假使时间不够的话可以留给学生在课后思索,但是不作强制要求。

附加题:
⑴小明和小刚分别在河两岸,每人手中各有两根表杠和一个侧角仪,他们应该怎样判断两岸是否平行(设河岸是两条直线)?你能帮他们想想办法吗?
⑵一个合格的弯行管道,当∠C=600,∠B= 时,才能在经历两次拐弯后保持平行(AB∥CD)。

请写出理由。

5.知识整理,归纳小结
用问题的形式引发学生思索本节课的收获
提醒学生在这两方面思考:
⑴在实验、合作、探究的过程中我们的收获……
⑵如果要判定两直线平行时,我们可以联想到……
6.布置作业:
结合教材上的课外练习与浙教版作业本,选择适当的作业题,避免重复。

相关文档
最新文档