材料科学基础课后习题答案7

合集下载

材料科学基础课后答案

材料科学基础课后答案

材料科学基础课后答案第九章烧结1、解释下列名词(1)烧结:粉料受压成型后在高温作用下而致密化的物理过程。

烧成:坯体经过高温处理成为制品的过程,烧成包括多种物理变化和化学变化。

烧成的含义包括的范围广,烧结只是烧成过程中的一个重要部分。

(2)晶粒生长:无应变的材料在热处理时,平均晶粒尺寸在不改变其分布的情况下,连续增大的过程。

二次再结晶:少数巨大晶粒在细晶消耗时成核长大过程。

(3)固相烧结:固态粉末在适当的温度、压力、气氛和时间条件下,通过物质与气孔之间的传质,变为坚硬、致密烧结体的过程。

液相烧结:有液相参加的烧结过程。

2、详细说明外加剂对烧结的影响?答:(1)外加剂与烧结主体形成固溶体使主晶格畸变,缺陷增加,有利结构基元移动而促进烧结;(2)外加剂与烧结主体形成液相,促进烧结;(3)外加剂与烧结主体形成化合物,促进烧结;(4)外加剂阻止多晶转变,促进烧结;(5)外加剂起扩大烧结范围的作用。

3、简述烧结过程的推动力是什么?答:能量差,压力差,空位差。

4、说明影响烧结的因素?答:(1)粉末的粒度。

细颗粒增加了烧结推动力,缩短原子扩散距离,提高颗粒在液相中的溶解度,从而导致烧结过程的加速;(2)外加剂的作用。

在固相烧结中,有少量外加剂可与主晶相形成固溶体,促进缺陷增加,在液相烧结中,外加剂改变液相的性质(如粘度,组成等),促进烧结。

(3)烧结温度:晶体中晶格能越大,离子结合也越牢固,离子扩散也越困难,烧结温度越高。

(4)保温时间:高温段以体积扩散为主,以短时间为好,低温段为表面扩散为主,低温时间越长,不仅不引起致密化,反而会因表面扩散,改变了气孔的形状而给制品性能带来损害,要尽可能快地从低温升到高温,以创造体积扩散条件。

(5)气氛的影响:氧化,还原,中性。

(6)成形压力影响:一般说成型压力越大颗粒间接触越紧密,对烧结越有利。

5、在扩散传质的烧结过程中,使坯体致密的推动力是什么?哪些方法可促进烧结?说明原因。

材料科学基础课后习题答案

材料科学基础课后习题答案

《材料科学基础》课后习题答案第一章材料结构的基本知识4. 简述一次键和二次键区别答:根据结合力的强弱可把结合键分成一次键和二次键两大类。

其中一次键的结合力较强,包括离子键、共价键和金属键。

一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。

二次键的结合力较弱,包括范德瓦耳斯键和氢键。

二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。

6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高?答:材料的密度与结合键类型有关。

一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。

相反,对于离子键或共价键结合的材料,原子排列不可能很致密。

共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。

9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。

答:单相组织,顾名思义是具有单一相的组织。

即所有晶粒的化学组成相同,晶体结构也相同。

两相组织是指具有两相的组织。

单相组织特征的主要有晶粒尺寸及形状。

晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。

单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。

等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。

对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。

如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。

如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。

武汉理工 材料科学基础 课后答案 _第七章

武汉理工    材料科学基础  课后答案  _第七章

第七章答案7-1略7-2浓度差会引起扩散,扩散是否总是从高浓度处向低浓度处进行?为什么?解:扩散是由于梯度差所引起的,而浓度差只是梯度差的一种。

当另外一种梯度差,比如应力差的影响大于浓度差,扩散则会从低浓度向高浓度进行。

7-3欲使Ca2+在CaO中的扩散直至CaO的熔点(2600℃)时都是非本质扩散,要求三价离子有什么样的浓度?试对你在计算中所做的各种特性值的估计作充分说明。

已知CaO肖特基缺陷形成能为6eV。

解:掺杂M3+引起V’’Ca的缺陷反应如下:当CaO在熔点时,肖特基缺陷的浓度为:所以欲使Ca2+在CaO中的扩散直至CaO的熔点(2600℃)时都是非本质扩散,M3+的浓度为,即7-4试根据图 7-32查取:(1)CaO在1145℃和1650℃的扩散系数值;(2)Al2O3在1393℃和1716℃的扩散系数值;并计算CaO和Al2O3中Ca2+和Al3+的扩散活化能和D0值。

解:由图可知CaO在1145℃和1650℃的扩散系数值分别为,Al2O3在1393℃和1716℃的扩散系数值分别为根据可得到CaO在1145℃和1650℃的扩散系数的比值为:,将值代入后可得,Al2O3的计算类推。

7-5已知氢和镍在面心立方铁中的扩散数据为cm2/s和cm2/s,试计算1000℃的扩散系数,并对其差别进行解释。

解:将T=1000℃代入上述方程中可得,同理可知。

原因:与镍原子相比氢原子小得多,更容易在面心立方的铁中通过空隙扩散。

7-6在制造硅半导体器体中,常使硼扩散到硅单晶中,若在1600K温度下,保持硼在硅单晶表面的浓度恒定(恒定源半无限扩散),要求距表面10-3cm深度处硼的浓度是表面浓度的一半,问需要多长时间(已知D1600℃=8×10-12cm2/s;当时,)?解:此模型可以看作是半无限棒的一维扩散问题,可用高斯误差函数求解。

其中=0,,所以有0.5=,即=0.5,把=10-3cm,D1600℃=8×10-12cm2/s代入得t=s。

材料科学基础课后作业答案

材料科学基础课后作业答案
沉淀强化和弥散强化:过饱和固溶体随温度下降或在长时间保温过程中(时效)发生脱 溶分解。时效过程往往很复杂,如铝合金在时效过程中先产生GP区,继而析出过度相(θ” 及θ’),最后形成热力学稳定的平衡相(θ)。细小的沉淀物分散于基体中,阻碍着位错运 动面产生强化作用,这就是“沉淀强化”或“时效强化”。
加工硬化:冷变形金属在塑性变形过程中形成大量位错,这些位错部分成为不可动位错, 从而导致其对可动位错的阻力增大,引起材料继续变形困难,形成加工硬化或形变强化。
6. MgO密度为3.58 g/cm3,其晶格常数为0.42 nm,试求每个 MgO单位晶胞内所含的Schottky缺陷数目。
解: 设缺陷数为 x个/晶胞
(4 x) ( AMg A0 )
a3N A
x 4 a3N A 4 3.58 (4.2108 )3 6.0231023 0.0369
不满足能量条件反应此反应满足几何条件但反应后反应前能量条件反应后反应前几何条件在钢棒的表面每20个铁的晶胞中有一个碳原子在离表面1mm处每30个铁的晶胞中有一个碳原子
1. 根据氢键理论,解释水结冰时出现的反常现象,即为何结冰后体积反而膨胀了。
解: 水冻结时结晶,非球形的水分子规整排列
时受氢键方向性和饱和性的更强限制,不能更 紧密地堆积,故密度变小,体积增大。
14、合金强化的途径有哪些?。 解: 通过合金化、塑形变形和热处理等手段提高金属材料强度的方法,称为材料的强化。 强化的基本方式有:固溶强化、加工硬化、沉淀强化和弥散强化、细化晶粒强化等。
这些强化方式总的来说是向晶体内引入大量晶体缺陷如位错、点缺陷、异类原子、晶界、 高度弥散的质点或不均匀性(如偏聚)等,这些缺陷阻碍位错运动,也会明显提高材料的强 度。
Direction A: xy z

无机材料科学基础课后习题答案7

无机材料科学基础课后习题答案7

7-1 分析说明:焊接、烧结、粘附接合和玻璃-金属封接的作用原理?7-2 MgO—Al2O3—SiO2系统的低共熔物放在Si3N4 陶瓷片上,在低共熔温度下,液相的表面张力为900×10-3N/m,液体与固体的界面能为600×10-3N/m,测得接触角为70.52°,⑴求Si3N4的表面张力。

⑵把Si3N4在低共熔温度下进行热处理,测试其热腐蚀的槽角60°,求Si3N4的晶界能?解:⑴已知γLV=900×10-3N/m γSL=600×10-3N/m θ=70.52°γSV=γSL+γLV COSθ=600×10-3+900×10-3×COS70.25=900.13×10-3N/m⑵已知φ=60°γSS=2γSV COSФ/2 =2×900×10-3×COS60/2 =1.559N/m7-3 氧化铝瓷件中需要被银,已知1000℃时γ(Al2O3(S))=1.0×10-3N/m,γ(Ag=0.92×10-3N/m, γ(Ag (L) /Al2O3(S))=1.77×10-3N/m,问液态银能否湿润(L))氧化铝瓷件表面?用什么方法改善它们之间的湿润性?解:由于γSV=γSL+γLV COSθ∴COSθ= -0.84 ∴θ= 147°﹥90°∴液态银不能湿润氧化铝瓷件表面,但可以通过降低γSL使其小于γSV,从而达到湿润的目的。

方法如下:加入一些金属降低γSL。

7-4 影响湿润的因素有那些?答:⑴固体表面粗糙度当真实接触角θ小于90°时,粗糙度越大,表面接触角越小,就越容易湿润;当θ大于90°,则粗糙度越大,越不利于湿润。

⑵吸附膜吸附膜的存在使接触角增大,起着阻碍作用。

7-5 说明吸附的本质?答:吸附是固体表面力场与吸附分子发出的力场相互作用的结果,它是发生在固体上的。

材料科学基础课后习题答案

材料科学基础课后习题答案

材料科学基础课后习题答案第一篇:材料科学基础课后习题答案第1章习题1-10 纯铁点阵常数0.286nm,体心立方结构,求1cm3中有多少铁原子。

解:体心立方结构单胞拥有两个原子,单胞的体积为V=(0.286×10-8)3 cm3,所以1cm3中铁原子的数目为nFe= 122⨯2=8.55⨯10(2.86⨯10-8)31-11 一个位错环能否各部分都是螺型位错,能否各部分都是刃型位错?为什么?解:螺型位错的柏氏矢量与位错线平行,一根位错只有一个柏氏矢量,而一个位错环不可能与一个方向处处平行,所以一个位错环不能各部分都是螺型位错。

刃位错的柏氏矢量与位错线垂直,如果柏氏矢量垂直位错环所在的平面,则位错环处处都是刃型位错。

这种位错的滑移面是位错环与柏氏矢量方向组成的棱柱面,这种位错又称棱柱位错。

1-15 有一正方形位错线,其柏氏矢量及位错线的方向如图1-51所示。

试指出图中各段位错线的性质,并指出刃型位错额外串原子面所处的位置。

D CA B解:由柏氏矢量与位错线的关系可以知道,DC是右螺型位错,BA是左螺型位错。

由右手法则,CB为正刃型位错,多余半原子面在纸面上方。

AD为负刃型位错,多余半原子面在纸面下方。

第二篇:会计学基础课后习题答案《会计学基础》(第五版)课后练习题答案第四章习题一1、借:银行存款400 000贷:实收资本——A企业400 0002、借:固定资产400 000贷:实收资本——B企业304 000资本公积——资本溢价0003、借:银行存款000贷:短期借款0004、借:短期借款000应付利息(不是财务费用,财务费用之前已经记过)000贷:银行存款0005、借:银行存款400 000贷:长期借款400 0006、借:长期借款000应付利息000贷:银行存款000习题二1、4月5日购入A材料的实际单位成本=(53 000+900)/980=55(元/公斤)4月10日购入A材料的实际单位成本=(89 000+1 000)/1 500=60(元)2、本月发出A材料的实际成本=(600×50+600×55)+(380×55+1 020×60)=63 000+82 100=145 100(元)3、月末结存A材料的实际成本=(600×50)+[(53 000+900)+(89 000+1 000)]-145 100=28 800(元)习题三1、借:生产成本——A产品000——B产品000贷:原材料——甲材料000——乙材料0002、借:生产成本——A产品000 ——B产品000制造费用000贷:应付职工薪酬0003、借:制造费用500贷:原材料——丙材料5004、借:制造费用000贷:银行存款0005、借:制造费用000贷:累计折旧0006、本月发生的制造费用总额=5 000+500+2 000+1 000=8 500(元)制造费用分配率=8 500/(20 000+10 000)×100%=28.33%A产品应负担的制造费用=20 000×28.33%=5 666(元)B产品应负担的制造费用=8 500-5 666=2 834(元)借:生产成本——A产品——B产品贷:制造费用7、借:库存商品——A产品贷:生产成本——A产品习题四1、借:银行存款贷:主营业务收入2、借:应收账款——Z公司贷:主营业务收入银行存款3、借:主营业务成本贷:库存商品——A产品——B产品4、借:营业税金及附加贷:应交税费——应交消费税5、借:营业税金及附加贷:应交税费6、借:销售费用贷:银行存款7、借:销售费用贷:银行存款8、借:银行存款贷:其他业务收入借:其他业务成本贷:原材料——乙材料9、借:管理费用贷:应付职工薪酬10、借:管理费用贷:累计折旧11、借:管理费用贷:库存现金12、借:财务费用贷:银行存款13、借:银行存款贷:营业外收入14、借:主营业务收入其他业务收入营业外收入666 2 834 500 47 666 47 666 80 000 80 000 201 000200 000 000 142 680 42 680000 14 000 14 000 1 400 400 3 000 000 1 000 000 4 000 000 3 000 000 4 560 560 2 000 000300300400400 3 000 000 280 000 4 000 3 000贷:本年利润287 000借:本年利润172 340贷:主营业务成本680其他业务成本000营业税金及附加400销售费用000管理费用860财务费用400 本月实现的利润总额=287 000-172 340=114 660(元)本月应交所得税=114 660×25%=28 665(元)本月实现净利润=114 660-28 665=85 995(元)习题五1、借:所得税费用贷:应交税费——应交所得税借:本年利润贷:所得税费用2、2007的净利润=6 000 000-1 500 000=4 500 000(元)借:本年利润贷:利润分配——未分配利润3、借:利润分配——提取法定盈余公积贷:盈余公积——法定盈余公积4、借:利润分配——应付现金股利贷:应付股利第五章习题一1、借:银行存款固定资产贷:实收资本——M公司——N公司2、借:原材料——A材料——B材料贷:银行存款3、借:应付账款——丙公司贷:银行存款4、借:银行存款贷:短期借款5、借:固定资产贷:银行存款6、借:生产成本——甲产品——乙产品贷:原材料——A材料——B材料 500 000500 000 1 500 000500 000 4 500 000 4 500 000450 000450 000 1 000 000 1 000 000 1 000 000 1 000 000 1 000 000 1 000 000 50 000 50 000000 50 000 50 000500 000500 000200 000200 000000 80 000000 80 0007、借:其他应收款——王军000贷:库存现金0008、借:制造费用000管理费用贷:原材料——A材料0009、借:管理费用500贷:库存现金50010、借:原材料——A材料000贷:应付账款00011、借:应付职工薪酬200 000贷:银行存款200 00012、借:银行存款320 000贷:主营业务收入——甲产品320 00013、借:应收账款250 000贷:主营业务收入——乙产品250 00014、借:短期借款200 000应付利息000财务费用000贷:银行存款209 00015、借:销售费用贷:银行存款00016、借:管理费用300贷:其他应收款——王军000库存现金30017、借:生产成本——甲产品000——乙产品000制造费用000管理费用000贷:应付职工薪酬200 00018、借:制造费用000管理费用000贷:累计折旧00019、借:生产成本——甲产品000——乙产品000制造费用000管理费用000贷:应付职工薪酬000 20、借:主营业务成本381 000贷:库存商品——甲产品196 000——乙产品185 00021、制造费用总额=5 000+10 000+35 000+1 000=51 000(元)制造费用分配率=51 000/(90 000+70 000)×100%=31.875% 甲产品应分配的制造费用=90 000×31.875%=28 687.5(元)乙产品应分配的制造费用=70 000×31.875%=22 312.5(元)借:生产成本——甲产品687.5——乙产品312.5贷:制造费用00022、甲产品的实际成本=120 000+150 000+90 000+9 000+28 687.5=397 687.5(元)借:库存商品——甲产品397 687.5贷:生产成本——甲产品397 687.523、借:主营业务收入——甲产品320 000——乙产品250 000贷:本年利润借:本年利润贷:主营业务成本管理费用销售费用财务费用24、本月利润总额=570 000-487 800=82 200(元)本月应交所得税=82 200×25%=20 550(元)借:所得税费用贷:应交税费——应交所得税借:本年利润贷:所得税费用25、本月净利润=82 200-20 550=61 650(元)提取法定盈余公积=61 650×10%=6 165(元)借:利润分配——提取法定盈余公积贷:盈余公积——法定盈余公积26、借:利润分配——应付现金股利贷:应付股利570 000 487 800381 000 53 800 50 000 000 20 550 20 550 20 550 20 550 6 165 165 30 825 30 825第三篇:《机械设计基础》课后习题答案模块八一、填空1、带传动的失效形式有打滑和疲劳破坏。

材料科学基础课后习题答案-西安交通大学-石德珂主编


2.26g
/ cm3
14-17不用看 18自己看
第四章
1.850 0C : C1 Aexp(EV kT1) 20 0C :C2 Aexp(EV kT2 )
C1 C2
exp EV k
1 ( T2
1 T1
)
exp
1.5 1018 1.38 1023
( 1 1 ) 293 1123
exp 274
ne N
Aexp EV kT
ln
3.6 1023 106 / cm3 5.351022 / cm3
8.31J
EV / mol 1073K
EV 106192J / mol
(110),(111),(121),(2 21),(210),[100],[111],[231],[120],[211]
2.11 0.77 6.69 0.77
100%
22.6%
Fe3CⅡ%(由 初中析出) 初 % 22.6%
59.36% 22.6% 13.41%
P% 初 % Fe3CⅡ% 59.36% 13.41% 45.95%
相组成物: Fe3C % 6.69 3.0 100% 55.17%
1.(1) (001) (111) [210]
(-3-22)
(-132)
[123] [111]
[236]
(1-10)
(2)
(3)
(-110)
2.
(2 6 3)
3.{111}
111
111
111
111
3.
N hk l
4 3! 2m n!
24 2m n!
{110}
110
101
011
110

材料科学基础课后习题答案


(3) cosφ
=
n3 ⋅ F | n3 || F
|
=
1 3
cosα
=
b⋅F |b || F
|
=
1 2
由 Schmid 定律,作用在新生位错滑移面上滑移方向的分切应力为:
τ 0 = σ cosϕ cos λ = 17.2 ×
1× 3
1 = 7.0 MPa 2
∴作用在单位长度位错线上的力为:
f = τb = aτ 0 = 10 − 3 N/m 2
滑移面上相向运动以后,在相遇处

(B

A、相互抵消
B、形成一排空位
C、形成一排间隙原子
7、位错受力运动方向处处垂直与位错线,在运动过程中是可变的,
晶体作相对滑动的方向

(C

A、亦随位错线运动方向而改变 B、始终是柏氏矢量方向 C、始
终是外力方向
8、两平行螺型位错,当柏氏矢量同向时,其相互作用力

(B
二、(15 分)有一单晶铝棒,棒轴为[123],今沿棒轴方向拉伸,请分析:
(1)初始滑移系统; (2)双滑移系统 (3)开始双滑移时的切变量 γ; (4)滑移过程中的转动规律和转轴; (5)试棒的最终取向(假定试棒在达到稳定取向前不断裂)。
三、(10
分)如图所示,某晶体滑移面上有一柏氏矢量为
v b
的圆环形位错环,并受到一均匀
14、固态金属原子的扩散可沿体扩散与晶体缺陷扩散,其中最慢的扩
散通道是:

(A)
A、体扩散
B、晶界扩散
C、表面扩散
15、高温回复阶段,金属中亚结构发生变化时,

(C)
A、位错密度增大 B、位错发生塞积 C、刃型位错通过攀移和滑移构

《材料科学基础》经典习题及答案

材料科学与基础习题集和答案第七章回复再结晶,还有相图的内容。

第一章1.作图表示立方晶体的()()()421,210,123晶面及[][][]346,112,021晶向。

2.在六方晶体中,绘出以下常见晶向[][][][][]0121,0211,0110,0112,0001等。

3.写出立方晶体中晶面族{100},{110},{111},{112}等所包括的等价晶面。

4.镁的原子堆积密度和所有hcp 金属一样,为0.74。

试求镁单位晶胞的体积。

已知Mg 的密度3Mg/m 74.1=mg ρ,相对原子质量为24.31,原子半径r=0.161nm 。

5.当CN=6时+Na 离子半径为0.097nm ,试问:1) 当CN=4时,其半径为多少?2) 当CN=8时,其半径为多少?6. 试问:在铜(fcc,a=0.361nm )的<100>方向及铁(bcc,a=0.286nm)的<100>方向,原子的线密度为多少?7.镍为面心立方结构,其原子半径为nm 1246.0=Ni r 。

试确定在镍的(100),(110)及(111)平面上12mm 中各有多少个原子。

8. 石英()2SiO 的密度为2.653Mg/m 。

试问: 1) 13m 中有多少个硅原子(与氧原子)?2) 当硅与氧的半径分别为0.038nm 与0.114nm 时,其堆积密度为多少(假设原子是球形的)?9.在800℃时1010个原子中有一个原子具有足够能量可在固体内移动,而在900℃时910个原子中则只有一个原子,试求其激活能(J/原子)。

10.若将一块铁加热至850℃,然后快速冷却到20℃。

试计算处理前后空位数应增加多少倍(设铁中形成一摩尔空位所需要的能量为104600J )。

11.设图1-18所示的立方晶体的滑移面ABCD 平行于晶体的上、下底面。

若该滑移面上有一正方形位错环,如果位错环的各段分别与滑移面各边平行,其柏氏矢量b ∥AB 。

材料科学基础(武汉理工大学,张联盟版)课后习题及答案 第七章

材料科学基础(武汉理工大学,张联盟版)课后习题及答案第七章第七章答案7-1略7-2浓度差会引起扩散,扩散是否总是从高浓度处向低浓度处进行?为什么?解:扩散是由于梯度差所引起的,而浓度差只是梯度差的一种。

当另外一种梯度差,比如应力差的影响大于浓度差,扩散则会从低浓度向高浓度进行。

7-3欲使Ca在CaO中的扩散直至CaO的熔点(2600℃)时都是非本质扩散,要求三价离子有什么样的浓度?试对你在计算中所做的各种特性值的估计作充分说明。

已知CaO肖特基缺陷形成能为6eV。

解:掺杂M引起V’’Ca的缺陷反应如下:当CaO在熔点时,肖特基缺陷的浓度为:3+2+所以欲使Ca在CaO中的扩散直至CaO的熔点(2600℃)时都是非本质扩散,M的浓度为,即2+3+7-4试根据图7-32查取:(1)CaO在1145℃和1650℃的扩散系数值;(2)Al2O3在1393℃2+3+和1716℃的扩散系数值;并计算CaO和Al2O3中Ca和Al的扩散活化能和D0值。

解:由图可知CaO在1145℃和1650℃的扩散系数值分别为,Al2O3在1393℃和1716℃的扩散系数值分别为根据可得到CaO在1145℃和1650℃的扩散系数的比值为:,将值代入后可得,Al2O3的计算类推。

7-5已知氢和镍在面心立方铁中的扩散数据为2cm/s和2cm/s,试计算1000℃的扩散系数,并对其差别进行解释。

解:将T=1000℃代入上述方程中可得。

,同理可知原因:与镍原子相比氢原子小得多,更容易在面心立方的铁中通过空隙扩散。

7-6在制造硅半导体器体中,常使硼扩散到硅单晶中,若在1600K温度下,保持硼在硅单晶-3表面的浓度恒定(恒定源半无限扩散),要求距表面10cm深度处硼的浓度是表面浓度的一半,问需要多长时间(已知D1600℃=8×10-12cm/s;当2时,)?解:此模型可以看作是半无限棒的一维扩散问题,可用高斯误差函数求解。

其中-122=0,,所以有0.5=s。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SOLUTION FOR CHAPTER 71. FIND: Label the phase fields in Figure HP7-1.SOLUTION: There are two regions of single phase equilibrium separated by a region of two-phase equilibrium. The line separating the single phase liquid from the two phaseliquid and solid region is called the liquidus, and the line separating the two phase liquid and solid from the single phase solid is called the solidus.SKETCH:2. FIND: The name given to the type of equilibrium diagram shown in Fig. HP7-1.SOLUTION: The diagram is termed isomorphous. Above the liquidus there is only one phase, namely the liquid, and it has the same structure regardless of composition. Below the solidus is the solid phase, and as well it has the same structure regardless ofcomposition.3. FIND: What is the crystal structure of component B, why?SOLUTION: There are no phase boundaries below the solidus consequently the phase and therefore the structure must be the same. If A is FCC, then B and all compositionsbetween A and B must be the same phase and hence same structure. If A is FCC, then B must also be FCC.4. FIND: Sketch equilibrium cooling curves for alloy X o and pure component B. Explainwhy they have different shapes.SOLUTION: The slope of the temperature versus time behavior for the alloy in thesingle phase region is controlled by the cooling rate and the heat transferred from theliquid. At the liquidus temperature a small amount of solid is formed, releasing anamount of latent heat of fusion related to the volume of solid transformed. Hence, at the liquidus temperature there will be a change in slope. Since heat is being generated theslope will be less than that above the liquidus. As the temperature is reduced through the two-phase region a small amount of solid is formed and a corresponding heat released;once the solidus temperature is reached no additional transformation takes place and there is again a change in slope. The slope is greater as the solid cools than as the liquid andsolid cooled. For the pure component, solid and liquid are in equilibrium at T B, and hence,a horizontal line when liquid transforms to solid at T B.SKETCH:5. FIND: The liquidus temperature and the solidus temperature of alloy X oSOLUTION: From figure HP7-1 the liquidus temperature is approximately 1110o C and the solidus temperature is approximately 1070o C.6. FIND: Determine compositions and phase fractions of each phase in equilibrium at1100o C for alloy X o.SOLUTION: At equilibrium, the temperature of two phases must be the same, and thecomposition of the solid is found where the tie line intersects the solidus and the liquid is at the intersection of the tie line with the liquidus. From the phase diagram thecomposition of solid is 0.35B and that of the liquid is 0.55B. Using the lever rule thefraction of liquid, f L, and fraction of solid, f s is determined.7. FIND: Sketch f L and f S for alloy X o as the alloy is cooled under equilibrium conditionsfrom 1200o C to room temperature.SOLUTION: At the liquidus temperature the amount of liquid is almost 100% with onlya very small amount of solid. Conversely at the solidus temperature, the amount of solidis almost 100% with only a very small amount of liquid. In a two-phase field:f L + f s = 1.8. FIND: Changes in the compositions of the liquid and solid phases during quilibriumcooling of alloy X o through the two-phase field.SOLUTION: At the liquidus temperature, the composition of the solid is approximately0.30B. As equilibrium solidification progresses, the composition of the solid increases to0.5 B, the maximum value it can reach. The liquid on the other hand is initially thecomposition of the alloy X o, and as equilibrium solidification progresses the composition increases in B to the maximum composition in the liquid of approximately 0.7 B.9. FIND:From the following data construct a plausible equilibrium phase diagram.Component A melts at 800︒C and B melts at 1000︒C; A and B are completely soluble in one another at room temperature; and if solid α containing 0.3 B is heated underequilibrium conditions, the solid transforms to liquid having the same composition at500︒C.GIVEN: Melting temperatures for the two components, congruent melting temperature and composition.SOLUTION: The sketch shown below satisfies all of the requirements stated in theproblem. The melting temperature of pure A is 800︒C and that for pure B is 1000︒C. The congruent melting temperature is at 500︒C at a composition containing 0.3 B. Below the congruent melting temperature there is a continuous α solid solution.10. FIND: For alloys containing 10, 22, 25, 27, and 40 wt% Ni, determine the number ofphases present and the composition of the phases in equilibrium at 1200o C.11. FIND: Beginning with a statement of mass balance, derive the lever rule in a two-phasesystem.SOLUTION: In a two phase field for an alloy of some over all composition X o, thesolute is distributed in the two phases: x o = fα xα + fβ xβ where the compositions areexpressed in terms of one of the components, fα + fβ = 1. Then, fα= 1 - fβ. Substituting:x o = (1 - fβ) xα + fβ xβx o = xα - xα fβ + xβfβx o - xα = (xβ - xα) fβ12. FIND: Discuss each of the factors that permit the Cu-Ni system to be isomorphous overthe temperature range 350-1000o C.SOLUTION: The empirical rules of Hume-Rothery identify the characteristics that two elements must have in common for extensive solubility. This should require thata. the two components must have the same crystal structureb. the atomic radii of the two atoms must be similarc. the two components have the comparable electro negativities, andd. the two components have the similar valence.13. FIND: What does the temperature 322O C represent in Figure HP7-2?SOLUTION: 322o C is called the critical temperature. At the critical temperature there is a corresponding critical composition. For an alloy of this composition, cooling under equilibrium conditions from above the critical temperature to below this temperatureresults in the formation of two phases from one phase of the critical composition. Ascooling continues the two phases that form have different compositions.14. FIND: In Figure HP7-2, are α1 and α2 different crystal structures?SOLUTION: α1 and α2 are two phases having the same structure but differentcompositions. The composition of the two phases are determined as in any two phasesystem by using the tie-line. Where the tie-line at the equilibrium temperature intersects the phase boundaries determines the composition of the two phase in equilibrium.15. FIND: Location of the equilibrium phase boundary at temperature T.GIVEN: Alloy 1 containing 30%B and alloy 2 containing 50% B, when equilibrated at temperature T are in the same two-phase (L + S) region. The fraction of liquid in alloy 1 is 0.8 and the fraction of liquid in alloy 2 is 0.4.SKETCH:SOLUTION: Since the fraction of liquid in alloy 1 is greater than that of solid, theliquidus is to the left of 0.3, and since the fraction of solid in alloy 2 is greater than that of liquid, the solidus must lie to the right of alloy 2. Using the lever rule:for alloy 1for alloy 20.8X L - 0.8X s = X s - 0.30.4X L - 0.4X s = X s - 0.5Solve for X s and X L,0.8X s - 0.8X L = X s - 0.30.8X s - 0.8X L = 2X s - 1.0____________________0 = -X s + 0.7, orX s = 0.7BTo find X L, substitute X s into one of the equations:0.4 - 0.56 = -0.8X L-0.16 = -0.8X L, orX L = 0.2BAs a check, use the other equation to calculate the fraction of liquid from thecompositions.16. FIND: Label all regions of the phase diagram and the boundaries of monovariantequilibrium for the diagram shown in Figure HP7-3.SKETCH/SOLUTION:17. FIND: Sketch an equilibrium cooling curve from above the eutectic to roomtemperature for an alloy of eutectic composition.SKETCH/SOLUTION:18. FIND: Explain why the equilibrium cooling curves for alloys on either side of theeutectic composition will be different than the equilibrium cooling curve for a eutecticalloy.SOLUTION: At the eutectic temperature, liquid of composition X E is in equilibriumwith two solids, Xα and Xβ . For a hypoeutectic alloy (composition to the left of theeutectic), the first phase to form at the liquidus temperature of the alloy is α. When the eutectic temperature is reached the liquid of the eutectic composition is in equilibriumwith the two solids, one of composition Xα and the other Xβ. Consequently, depending upon composition, the closer the overall composition of the alloy is to X E, the lessproeutectic α and the more eutectic. Similarly, for alloys to the right, proeutectic β will form. In terms of the phase rule at constant pressure, for the eutectic reactionF = C - P + 1 = 2 - 3 + 1 = 0. The eutectic is invariant, and solidifies under equilibriumconditions at one temperature, T E. For alloys on either side of the eutectic composition but between Xα and Xβ, the proeutectic phase forms and cooling occurs as it does in any two-phase s-l region. Once the eutectic isotherm is reached, the remaining liquid ofeutectic composition solidifies isothermally.19. FIND: The maximum solid solubility of B in A and of A in B in Figure HP7-3.SOLUTION: The maximum solubility of B in A occurs at 0.15 B and the maximumsolubility of A in B is 0.1 A.20. FIND: For an alloy of eutectic composition in Figure HP7-3, determine the compositionof the solid phases in equilibrium with the liquid.SOLUTION: The composition of the two solid phase α and β in equilibrium with liquid at T_ occurs at 0.15 B and 0.9 B.21. FIND: Plot f L, fα, and fβ as a function of temperature for the equilibrium cooling of analloy of eutectic composition.SOLUTION: At just above the eutectic temperature, the microstructure consists of allliquid of composition X E. (Determined from the phase diagram to be approximately0.63B.) Just below the eutectic temperature, the microstructure is a mixture of twophases, α and β. From the phase diagram, Xα ~ 0.15B and Xβ ~ 0.9B. To determine the fractions of α and β at temperatures below T E, use the lever-rule. Tabulated below arecompositions of the phases in equilibrium at several temperatures estimated from thephase diagram. These compositions are then used to calculate the amount of each phase present.Fraction of phases:At 600: f L = 1.0, fα = fβ = 0At 500: f L = 0Instal l Equa tion E ditor a nd do uble-click h ere to view equat ion.Instal l Equa tion E ditor a nd do uble-click h ere to view equat ion.At 400: f L = 0Instal l Equa tion E ditor a nd do uble-click h ere to view equat ion.Instal l Equa tion E ditor a nd do uble-click h ere to view equat ion.At 300: f L = 0Instal l Equa tion E ditor a nd do uble-click h ere to view equat ion.Instal l Equa tion E ditor a nd do uble-click h ere to view equat ion.22. FIND: For alloy X o (in Figure HP7-3), calculate the fraction of α that forms as primary αand the fraction of α that forms by eutectic decomposition when the alloy is cooled from 850o C to room temperature under equilibrium conditions.SOLUTIONS: The fraction of proeutectic α that forms under equilibrium conditionspresent in alloy X o cooled from 850o C to just above the eutectic is:Then the fraction of liquid which is of eutectic composition is:f L = 1 - fα = 1. - 0.69 = 0.31.The fraction of α that forms from liquid of eutectic composition, fα,E is :fα,E = (fraction of α formed from eutectic) (0.31)To check these results, the sum of proeutectic α plus that which forms from the eutectic =0.69 + 0.11 = 0.8. That amount should be the same as if we calculated directly fα that would be present just below the eutectic for alloy of composition X o.23. FIND: The total fraction of α at room temperature for alloy X o in Figure HP7-3.SOLUTION: Solubility of B in α at room temperature is approximately 0.02 A and the solubility of A in β is approximately 0.04 A (in terms of B 0.96 B).24. FIND: Equilibrium phase diagram given the information below.GIVEN: Component A melts at 900o C; component B melts at 1000o C; and there is aninvariant reaction at 600o C. The solubility of B in α is known to increase from almost nil at room temperature to a maximum of 10%. When an alloy containing 30% B is cooled under equilibrium conditions just above 600o C, a two-phase mixture is present, 50% αand 50% liquid. When the alloy is cooled just below 600o C, the alloy contains two solid phases, α and β. The fraction of α is 0.75. After cooling under equilibrium conditions to room temperature, the amount of α in the α + β mixture decreases to 68%.SOLUTION: At just above the invariant temperature there is a region of two phaseequilibrium, a mixture of 50% α and 50% L. Consequently if the overall composition is 50%β, and α is located at 10%β, then the liquid must be at ˜50% B. Just below theinvariant reaction, two solid phases are present, αat ˜10%B and β at some composition, Xβ. If fα = 0.75, then:At room temperature, if fα = 0.68, and the solubility of B in α is nil, thenThe invariant reaction is L _ α + β, a eutectic, hence the diagram shown below fits allconditions.25. FIND: A binary phase diagram consistent with the information given below.GIVEN: The binary system A-B with T B > T A is known to contain two invariantreactions of the type: L _ α + β at T1, and L _ β + γ at T2 where T1 < T A and T2 > T A ,and β (0.5 B) is a congruently melting phase at a temperature higher than T B.SKETCH/SOLUTION: Given T B > T A, and T1 < T2 and T2 > T A, then at the congruent temperature, solid transforms to liquid at the same composition, hence for the threephases, α, β and γ with some solubility, is shown below along with a similar phasediagram in which there is limited solubility of B in A and A in B and the congruent phase appears as a line compound.26. FIND: Which phase diagram in Figure HP7-4 is MgO-NiO and which is NiO-CaO?Label the regions on the diagram and identify the invariant reaction.SOLUTION: To determine whether the isomorphous system is NiO-MgO or NiO-CaO, one needs to know the ionic radii of the three cations. r(Ni2+) = 0.078 nm, r(Mg2+) =0.078 nm, and r(Ca2+) = 0.106 nm. Therefore, based upon size of the ions occupying thecation sublattice we would expect the NiO-MgO system to be the isomorphous system.27. FIND: What is the maximum solid solubility of Ag in Pt?GIVEN: Phase diagram in Figure HP7-5.SOLUTION: Maximum solid solubility of Ag in Pt is 10.5 wt% Ag.28. FIND: For an alloy of peritectic composition, what is the composition of the last liquidto solidify at 1186o C?SOLUTION: The composition of the last liquid to solidify is 66.3% Ag (the peritiectic composition is 42.4% Ag).29. FIND: What is the range of alloy compositions that will peritectically transform duringequilibrium cooling?SOLUTION: Compositions between 10.5 and 66.3 wt % Ag.30. FIND: Plot the fraction of liquid, f L, the fraction of α, fα, and the fraction of β, fβ, as afunction of temperature during equilibrium cooling from 1800 to 400o C. For an alloy of peritectic composition.SOLUTION: First, you must determine the compositions of the phase(s) that is (are) in equilibrium. If, at a particular temperature the alloy is in a single phase then thecomposition of the phase is the composition of the alloy and the microstructure contains 100% of that phase. When the alloy is in a two phase field, the compositions aredetermined in using the tie-lines, and the phase fractions are determined using the lever.If, however, the microstructure is equilibrated at an invariant temperature and thecomposition lies along the invariant line, then only the composition of the phases can be determined, not their relative amounts. For an alloy of 42.4% Ag cooled underequilibrium conditions the approximate compositions of the phases in equilibrium atseveral temperatures are summarized in the following table.Fractions of phases at 1400:At 1300:At 1200At 1100At 1000At 900At 800At 700 At 600At 500At 400Fraction of phases as a function of temperature are plotted below.31. FIND: Sketch a possible diagram given the information below.GIVEN: The two component system A-B with T A > T B contains two invariant reactions of the type L + α _ β at T1, and L _ β + γ at T2 (<T1).SKETCH/SOLUTION: Reaction at T1 is a peritectic, reaction at T2 a eutectic, T A > T B and T1 > T2.In the above figure some B is soluble in A and likewise some A is soluble in B. Thephase that melts incongruently at T1 has a change in solubility with temperature.Alternatively, we can construct a diagram where the solubility of the end members are nil and the incongruently melting phase, X, is a line compound. That diagram wouldresemble the diagram shown below.32. FIND: Label all phase fields and identify the invariant reactions in the Ag-Al Phasediagram shown in figure HP7-6.SKETCH/SOLUTION:33. FIND: Label the phase fields and identify the invariant reactions in the V2O5 - NiOphase diagram.SKETCH/SOLUTION:34. FIND: Apply the 1-2-1...rule to the V2O5 - NiO diagram at 600o C.SOLUTION: At 600o C the single-phase regions are V2O5, N-V, 2N-V, 3N-V and NiO.These narrow single-phase fields define the regions of two-phase equilibrium. Also, itshould be recalled that at a fixed temperature the composition of each phase in a two-phase field is constant. All that varies is the relative amount of each phase (i.e. the lever-rule).35. FIND: Label all phase fields and identify the invariant reactions in the V2O5 - Cr2O3system.SKETCH/SOLUTION:36. FIND: For compositions X and Y, plot the fraction of phases present as a function oftemperature.SOLUTION: From the phase diagram in Figure HP7-8 the relevant we find:Composition of alloy X ~ 0.47BComposition of alloy Y ~ 0.55BComposition of the liquid at the peritectic isotherm ~ 0.44BComposition of the eutectic ~ 0.21BLiquidus temperature of X ~ 1100o CLiquidus temperature of Y ~ 1400o CPeritectic temperature ~ 900o CEutectic temperature ~ 700o CFor alloy X, in the temperature range from the liquidus (1100o C) to just above theperitectic isotherm, f L , decreases from 1.0 to:while the fraction of the oxide increases from 0 to (1 - 0.95) = 0.05. In the temperature range just below the peritectic isotherm to just above the eutectic isotherm, the phase fractions change from:andtoandjust above the eutectic temperature.In the temperature range below the eutectic isotherm, the Instal l Equa tion E ditor a nd do uble -click h ere to view equat ion.areconstant and from the lever rule are:Similarly for alloy Y:In the temperature range from the liquidus temperature (1400o C) to just above theperitectic isotherm the fraction of liquid decreases from f L = 1 towhile the fraction of Cr 2O 3 increasing from 0 toBelow the eutectic isotherm the amount of Cr 2O 3⋅V 2O 5 and Cr 2O 3 are constant.37.FIND: Identify the invariant reactions occurring in the Cu-Pb system.SOLUTION: There are two invariant reactions in the Cu - Pb system, a monotectic at 955o C and a eutectic at 326o C. For a complete illustration examine how the reduction in solubility of the components in each other effect the monotectic systems shown in Figure 7.6-1.38.FIND: Phase diagram HP7-9 indicates no mutual solid solubility of Cu in Pb or Pb in Cu. Explain why this is not strictly true.SOLUTION: Although the phase diagram appears to indicate no solubility of Cu in Pb or Pb in Cu, as pointed out on page 274 of the text, the free energy of a pure component can always be reduced by small additions of a second component since the presence of the second component increases the randomness of the system. It then is a competition between the enthalpy and the entropy terms as to how much is added, since:∆G = ∆H - T ∆S39.FIND: If an alloy containing 63 wt% Pb is cooled under equilibrium conditions from 1100o C to room temperature, plot the fraction of phases present as a function of temperature.SKETCH/SOLUTION: When an alloy containing 63% Pb, is cooled from 1100o C to room temperature under equilibrium conditions the following phases form. Below 991o C and just above the monotectic isotherm, liquid phase separation occurs. The composition of the two liquids follow the liquidus boundary, and the amount is calculated by the lever-rule. Below the monotectic isotherm to just above the eutectic isotherm two phases are present, Cu with essentially no soluble Pb and liquid rich in Pb, the composition of which follows the liquidus. Below the eutectic isotherm there is a two-phase mixture of essentially pure Cu and pure Pb. At 991o C the microstructure is essentially all liquid containing 63% Pb. At 975o C the microstructure has separated into two liquids, one (L I ) containing approximately 80% Pb and the second (L II ) containing approximately 43% Pb.Just above the monotectic isotherm.Below the monotectic isotherm, the fraction of liquid decreases, while the fraction ofsolid Cu increases. Just below 955o CAt 900o CAt 800o CThere is so little solubility of Cu in the liquid that once the temperature drops below 600o C, the system is essentially solid Cu with liquid essentially composed of Pb. Below 326o C the microstructure is a mixture of solid copper and lead. The phase diagramsuggests that there is no measurable change in solubility of the components. Then,40. FIND: Most alloying elements used in commercial titanium alloys can be classified aseither alpha stabilizers or beta stabilizers. Figure HP7.10 contains the Ti-Al and Ti-Vequilibrium phase diagrams. Which alloying element would most likely be consideredthe alpha stabilizer? Explain.GIVEN: The Ti-Al and Ti-V phase diagrams.SOLUTION: Solid titanium exists in two crystal forms. β, the high temperatureallotrope which is bcc, and α, the low temperature form which is hcp. At 882 ︒C thesetwo phases are in equilibrium at 1 atm pressure for pure titanium. When alloyingelements are added the relative stability of the phases may change. For the Ti-Al system, adding aluminum to pure titanium increases the temperature at which α begins to form.Thus, aluminum is said toIn the Ti-V system, thetemperature at which the αphases formsdecrease with increasing V,said to be a βthus V is41. FIND: In the Ti-Al system, identify a phase and its composition that melts congruently.Estimate the congruent melting temperature from the phase diagram.GIVEN: The Ti-Al phase diagram and the definition of a congruently melting phase. A phase melts congruently, when the composition of the solid and the composition of theliquid for an alloy are the same.SOLUTION: Examination of the Ti-Al phase diagram shows that the composition near5 weight % ( ~ 10 atomic %) melts congruently at approximately 1730 ︒C.42.FIND: Label all the two-phase fields on the Ti-Al phase diagram.GIVEN: The Ti-Al phase diagram with all the single phase fields labeled.SOLUTION: To complete this problem, we need only recognize that in a binary system, phases appear across the diagram alternating 1-2-1-2-...-1. Included below is the Al-Ti phase diagram with all phase fields labeled.α + Ti Al 33Ti Al + TiAl TiAl + TiAl 2α + Ti Al 3β + TiAlβ + Lα + TiAlTiAl + LTiAl + δTiAl + δ2α700900110013001500T e m p e r a t u r e , °C23TiAl + βTiAl 23TiAl + αTiAl 3αTiAl + Al 3βTiAl + Al Allotropic phaseL + δα + β3δ + βTiAl 3βTiAl + L 170043. FIND: Label all the invariant reactions occurring in the Ti-Al system.GIVEN: The Ti-Al phase diagram.SOLUTION:See the sketch of the Ti-Al diagram below.44. FIND: From the phase diagram, estimate the temperature at which Ti3Al congruentlytransforms to α Ti.GIVEN: The Ti-Al phase diagram.SOLUTION: The phase Ti3Al transforms the α Ti of the same composition atapproximately 1200︒C and a composition of approximately 21 wt % Al (33 atomic % Al).45. FIND: When the line compound β TiAl3 is heated, what is the composition of the firstliquid that forms in equilibrium with β TiAl3? Does this compound melt congruently?Explain.GIVEN: The Ti-Al phase diagram.SOLUTION: TiAl3 appears as a line compound on the phase diagram. Atapproximately 1375︒C TiAl3 undergoes a peritectic reaction on heating underequilibrium conditions. The composition of the liquid in equilibrium with TiAl3 is notthe composition of TiAl3 and hence the phase does not melt congruently, but meltsincongruently. The composition of the liquid is approximately 63 wt % Al. Theperitectic reaction written on heating is:TiAl3→ liquid (63 wt % Al) + δ Ti.46. FIND: The presence of Ti3Al in Ti-Al alloys has a detrimental effect on the ductility. Tocontrol this problem, the amount of aluminum needs to be less than 6 wt. %.Consequently, all of the products that you are producing contain a maximum of 6 wt. %of aluminum. You have been told that additions of tin, zirconium, and oxygen (oftenpresent as an impurity) are all known to be alpha stabilizers. If there is a possibility thatsmall additions of oxygen may enter the system as your alloy is melted, should youreduce the amount of aluminum in your alloy or not worry about it if ductility is animportant property for your product? Explain your reasoning.GIVEN: The Ti-Al phase diagram.SOLUTION: Since both aluminum and oxygen are α stabilizers, a judicious choicewould be to reduce the amount of aluminum in your alloy. This would be a particularlywise choice since the critical amount is just at 6 % Al, the addition of any alloyingelement that might affect the amount of Ti3Al should be avoided. Therefore reducing the amount of Al should be reduced.47. FIND: Label all the two-phase fields in the Ti-V system.GIVEN: The Ti-V phase diagram with all the single phase fields labeled.SOLUTION: To complete this problem, we need only recognize that in a binary system, phase fields appear across the diagram alternating 1-2-1-2-...-1. Included below is asketch of the Al-V phase diagram with all phase fields labeled.48. FIND: Identify the invariant reaction that is occurring at 675︒C in the Ti-V system.GIVEN: The Ti-V phase diagram.SOLUTION: The invariant reaction that is occurring at 675︒C is a monotectoid reaction and can be written symbolically as:β1→α + β2.from 900︒C down to 500︒C, plot the fraction of phases present as a function of temperature.GIVEN: The Ti-V phase diagram.SOLUTION: The compositions and the fraction of each phase from the phase diagram are shown in the table below. From the table the sketch given below illustrates the relative fraction of phases present as a function of temperature.50.FIND: Consider an alloy containing 52 wt. % V. Describe the phases present and their compositions as the alloy is cooled under equilibrium conditions from 900︒C to 500︒C. GIVEN: The Al-V phase diagram.SOLUTION: An alloy containing 52 wt. % V at 900︒C is in the β Ti,V single phase field. When the alloy is cooled it passes through the critical temperature of a monotectoid at 850︒C. Cooling below this temperature results in the formation of a two phase mixture of V-poor and V-rich solids that have the β Ti,V structure. Decreasing the temperature results in two solid phases whose compositions continuously change. The composition of the two solids follow the solid-solid miscibility boundary as shown in the sketch below. Cooling to 675︒C results in the invariant monotectoid reaction at that temperature. Symbolically that reaction can be written as β1 → α + β2. Cooling below themonotectoid temperature results in the disappearance of the β1 phase. Since the relative solubilities of V in Ti and Ti in V decrease with temperature, cooling to 500︒C changes the compositions of the α and β2 phases following the solvus boundaries as shown in the sketch.51.FIND: If a titanium alloy containing 5 wt. % V is cooled under equilibrium conditions from 900︒C down to 500︒C, plot the fraction of phases present as a function of temperature. Which phase is richer in vanadium, α or β? GIVEN: The Ti-V phase diagram.SOLUTION: The β phase is richer in vanadium than the α phase.L + β ( Ti, V )β ( Ti, V ) + α ( Ti )β1β2+Comp. of β decreases in V along phase boundary12Comp. of β increases in V along phase boundaryMonotectoid isotherm。

相关文档
最新文档