2014北京石景山中考一模数学(含解析)
2014北京石景山中考一模数学(含解析)

2014年北京石景山中考一模数学试卷一、选择题(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.23-的相反数是( ).A .32-B .32C .23-D .232.清明小长假本市150家景区接待游客约5245000人,数字5245000用科学记数法表示为( ). A .35.24510⨯ B .65.24510⨯ C .70.524510⨯ D .3524510⨯3.正五边形的每个内角等于( ).A .72︒B .108︒C .54︒D .36︒4.为了解居民用水情况,晓娜在某小区随机抽查了10户家庭的月用水量,结果如下表:则这10户家庭的月用水量的平均数和众数分别是( ).A .7.8,9B .7.8,3C .4.5,9D .4.5,35.将二次函数2281y x x =--化成2()y a x h k =-+的形式,结果为( ). A .22(2)1y x =-- B .22(4)32y x =-+ C .22(2)9y x =-- D .22(4)33y x =--6.如图,ABC △内接于⊙O ,BA BC =,25ACB ∠=︒,AD 为⊙O 的直径,则DAC ∠的度数是( ).A .25︒B .30︒C .40︒D .50︒7.转盘上有六个全等的区域,颜色分布如图所示,若指针固定不动,转动转盘,当转盘停止后,则指针对准红色区域的概率是( ). A .12 B .13C .14D .168.如图,边长为1的正方形ABCD 中有两个动点P 、Q ,点P 从点B 出发沿BD 作匀速运动,到达点D 后停止;同时点Q 从点B 出发,沿折线BC CD →作匀速运动,P 、Q 两个点的速度都为每秒1个单位,如果其中一点停止运动,则另一点也停止运动.设P 、Q 两点的运动时间为x 秒,月用水量(吨)5 6 7 89 10 户数 1 1 2 2 31第6题图 第7题图红 黄 蓝 红 蓝蓝 O DC B Ay O x 1 2 y O x 12 y O x 1 2 y O x 1 2 A . B . C . D .两点之间的距离为y ,下列图象中,能表示y 与x 的函数关系的图象大致是( ).二、填空题(本题共16分,每小题4分) 9.分解因式:316=ax ax -__________________.10.如图,AB CD ∥,AC 与BD 相交于点O ,3AB =,若:1:3B O B D =,则CD等于________________.11.如图所示,小明同学在距离某建筑物6米的点A 处测得条幅两端B 点、C 点的仰角分别为60︒和30︒,则条幅的高度BC 为 米(结果可以保留根号).12.在平面直角坐标系xOy 中,已知直线l :y x =,作1(1,0)A 关于y x =的对称点1B ,将点1B 向右水平平移2个单位得到点2A ;再作2A 关于y x =的对称点2B ,将点2B 向右水平平移2个单位得到点3A ;…….请继续操作并探究:点3A 的坐标是 ,点2014B 的坐标是 .三、解答题(本题共30分,每小题5分) 13.计算:011253tan302014--+︒-().第8题图Q PC DA B ABDC6米第11题图OCD BA第10题图xyA B O 14.解方程:33155x x x-+=--.15.如图,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,点C 在DE 上. 求证:(1)ABD ACE ≅△△;(2)BDA ADC ∠=∠.16.已知:32x y =,求代数式4923x yx y -+的值.17.如图,一次函数12y kx =+的图象与x 轴交于点(2,0)B -,与函数2my x=(0x >)的图象交于点(1,)A a . (1)求k 和m 的值; (2)将函数2my x=(0x >)的图象沿A 轴向下平移3个单位后交x 轴于点C .若点D 是平移后函数图象上一点,且BCD △的面积是3,直接写出点D 的坐标.ECBADCB AD 18.某公司决定从厂家购进甲、乙两种不同型号的显示器共50台,购进显示器的总金额不超过77000元,已知甲、乙型号的显示器价格分别为1000元/台、2000元/台. (1)求该公司至少购买甲型显示器多少台?(2)若要求甲型显示器的台数不超过乙型显示器的台数,问有哪些购买方案?四、解答题(本题共20分,每小题5分)19.如图,在四边形ABCD 中,2AB =,60A C ∠=∠=︒,DB AB ⊥于点B ,45DBC ∠=︒,求BC的长.20.为响应推进中小学生素质教育的号召,某校决定在下午15点至16点开设以下选修课:音乐史、管乐、篮球、健美操、油画.为了解同学们的选课情况,某班数学兴趣小组从全校三个年级中各调查一个班级,根据相关数据,绘制如下统计图.三个班级参加选修课的 初二(5)班参加各类选修课的人数统计图 人数分布统计图人数音乐史 管乐 篮球 健美操油画 课程10 9 8 7 6 5 4 3 2 1(1)请根据以上信息,直接补全条形统计图和扇形统计图;(2)若初一年级有180人,请估算初一年级中有多少学生选修音乐史?(3)若该校共有学生540人,请估算全校有多少学生选修篮球课?21.如图,⊙O 是ABC △的外接圆,AB AC =,连结CO 并延长交⊙O 的切线AP 于点P . (1)求证:APC BCP ∠=∠;(2)若3sin 5APC ∠=,4BC =,求AP 的长.22.实验操作(1)如图1,在平面直角坐标系xOy 中,ABC △的顶点的横、纵坐标都是整数,若将ABC △以点()1,1P -为旋转中心,按顺时针方向旋转90︒得到DEF △,请在坐标系中画出点P 及DEF △; (2)如图2,在菱形网格图(最小的菱形的边长为1,且有一个内角为60︒)中有一个等边ABC △,它的顶点A 、B 、C 都落在格点上,若将ABC △以点P 为旋转中心,按顺时针方向旋转60︒得到A B C '''△,请在菱形网格图中画出A B C '''△.其中,点A 旋转到点A '所经过的路线长为________.BPCO A∠°PCAB 图1 图2xy–5–4–3–2–112345–5–4–3–2–112345CBAO五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.已知关于x 的方程22(1)10mx m x m +-+-=有两个实数根,且m 为非负整数. (1)求m 的值;(2)将抛物线1C :22(1)1y mx m x m =+-+-向右平移a 个单位,再向上平移b 个单位得到抛物线2C ,若抛物线2C 过点(2,)A b 和点(4,21)B b +,求抛物线2C 的表达式; (3)将抛物线2C 绕点(1,)n n +旋转180︒得到抛物线3C ,若抛物线3C 与直线112y x =+有两个交点且交点在其对称轴两侧,求n 的取值范围.24.在矩形ABCD 中,12AD =,8AB =,点F 是AD 边上一点,过点F 作AFE DFC ∠=∠,交射线AB 于点E ,交射线CB 于点G . (1)若82FG =,则CFG ∠=_________︒;(2)当以F 、G 、C 为顶点的三角形是等边三角形时,画出图形并求GB 的长;(3)过点E 作EH CF ∥交射线CB 于点H ,请探究:当GB 为何值时,以F 、H 、E 、C 为顶点的四边形是平行四边形.DABC备用图G E DA B CF25.在平面直角坐标系xOy 中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义:“水平底”a :任意两点横坐标差的最大值,“铅垂高”h :任意两点纵坐标差的最大值,则“矩面积”S ah =. 例如:三点坐标分别为(1,2)A ,(3,1)B -,(2,2)C -,则“水平底”5a =,“铅垂高”4h =,“矩面积”20S ah ==.(1)已知点(1,2)A ,(3,1)B -,(0,)P t .①若A 、B 、P 三点的“矩面积”为12,求点P 的坐标; ②直接写出A 、B 、P 三点的“矩面积”的最小值. (2)已知点(4,0)E ,(0,2)F ,(,4)M m m ,16(,)N n n,其中0m >,0n >. ①若E 、F 、M 三点的“矩面积”为8,求m 的取值范围;②直接写出E 、F 、N 三点的“矩面积”的最小值及对应n 的取值范围.2014年北京石景山中考一模数学试卷答案一、选择题(本题共8道小题,每小题4分,共32分)题 号 1 2 3 4 5 6 7 8 答 案DBBACCBA二、填空题(本题共4道小题,每小题4分,共16分)9.(4)(4)ax x x +-; 10.6; 11.43; 12.(3,2),(2013,2014).三、解答题(本题共30分,每小题5分) 13.解:011253tan302014--+︒-() 3=235313-+⨯- =336-.14. 解:方程两边同乘以(5)x -,得,3(5)3x x -+-=-.解得,52x =. 经检验:52x =是原分式方程的解.所以52x =是原方程的解.15.证明:(1)∵BAC DAE ∠=∠,∴BAC DAC DAE DAC ∠-∠=∠-∠. ∴BAD CAE ∠=∠. 在ABD △和ACE △中,∵AB ACBAD EAC AD AE =⎧⎪∠=∠⎨⎪=⎩, ∴ABD ACE ≅△△. (2)∵ABD ACE ≅△△,∴ADB AEC ∠=∠, AD AE =.∴ ADC AEC ∠=∠. ∴ BDA ADC ∠=∠.16.解:由已知得:23x y =, ∴原式6933y yy y-=+12=-.17.解:(1)根据题意,将点(2,0)B -代入12y kx =+, ∴022k =-+. ∴1k =. ∴(1,3)A .将其代入2my x=,可得:3m = (2)3(,2)5或(3,2)-.18.解:(1)设该公司购进甲型显示器x 台, 则购进乙型显示器(50)x -台.依题意可列不等式:10002000(50x)7700x +-≤; 解得:23x ≥ ,∴该公司至少购进甲型显示器23台. (2)依题意可列不等式:50x x -≤, 解得:25x ≤ , ∵23x ≥,∴x 为23,24,25. 答:购买方案有:①甲型显示器23台,乙型显示器27台;②甲型显示器24台,乙型显示器26台; ③甲型显示器25台,乙型显示器25台.四、解答题(本题共20分,每小题5分) 19. 解:过点D 作DE BC ⊥于点. ∵DB AB ⊥,2AB =,60A ∠=︒, ∴tan 6023BD AB =⨯︒=. ∵45DBC ∠=︒,DE BC ⊥, ∴sin 45=6BE DE BD ==⨯︒ ∵60C A ∠=∠=︒,90DEC ∠=︒, ∴ 2tan60DECE ==︒.∴26BC =+.20.解:(1)条形统计图补充数据:6(图略). 扇形统计图补充数据:20.(2)81804830⨯=(人). (3)()84(6630)3030302015++⨯÷++=.454014415⨯=(人). 21.(1)证明:连结AO 并延长交BC 于D ,交弧BC 于E .ECBAD∵AP 切⊙O 于点A , ∴EA PA ⊥. ∵AB AC =, ∴AE BC ⊥, ∴BC AP ∥,∴APC BCP ∠=∠ .(2)解:∵AE BC ⊥,∴122CD BC ==.∵3sin 5AO APC PO ∠==, ∴设3OA k =,5OP k =,则3OC OA k ==.∵BC AP ∥ ,∴PAO CDO ∽△△ ,∴PA POCD CO =, ∴523PA kk=, ∴103PA = .22. 解:(1)画出点P ,画出DEF △(2)∠°A'C'B'PCA CBA 旋转到点A '所经过的路线长为43l π=.五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.解:(1)∵方程22(1)10mx m x m +-+-=有两个实数根, ∴0m ≠且0∆≥,x y –5–4–3–2–112345–5–4–3–2–112345PF E D C B A OBPCO AE DEG DAB CF则有24(1)-4(1)0m m m --≥且0m ≠ ∴1m ≤且0m ≠又∵m 为非负整数, ∴1m =.(2)抛物线1C :2y x =平移后,得到抛物线2C :2()y x a b =-+, ∵抛物线2C 过点(2,)A b ,2(2)b a b =-+,可得2a =, 同理:221(4)b a b +=-+,可得3b =,∴2C :()223y x =-+或 2(47)y x x =-+ .(3)将抛物线2C :2(2)3y x =-+绕点(1,)n n +旋转180︒后得到的抛物线3C 顶点为(2,23)n n -, 当2x n =时,12112y n n =⨯+=+,由题意,231n n ->+,即:4n >.24.解:(1)90︒; (2)正确画图 ;∵四边形ABCD 是矩形, ∴90D ∠=︒.∵FGC △是等边三角形,∴60GFC ∠=︒. ∵DFC AFE ∠=∠, ∴60DFC ∠=︒ . ∵8DC =,∴163sin 603DC FC ==︒. ∵FGC △是等边三角形,∴1633GC FC ==. ∵12BC AD ==, ∴163123GB =-. (3)过点F 作FK BC ⊥于点K , ∵四边形ABCD 是矩形,∴90ABC ∠=︒,AD BC ∥,∴DFC KCF ∠=∠,AFG KGF ∠=∠. ∵DFC AFG ∠=∠ ∴KCF KGF ∠=∠ ∴FG FC =∴GK CK =∵四边形FHEC 是平行四边形 ∴FG EG =∵FGK EGB ∠=∠,90FKG EBG ∠=∠=︒,∴FGK EGB ≅△△ ∴1243BG GK KC ====.25.解:(1)由题意:4a =.①当2t >时,1h t =-,则4(1)12t -=,可得4t =,故点P 的坐标为(0,4); 当1t <时,2h t =-,则4(2)12t -=,可得1t =-,故点P 的坐标为(0,1)-.②A 、B 、P 三点的“矩面积”的最小值为4. (2)①∵E 、F 、M 三点的“矩面积”的最小值为8, ∴04042m m ≤≤⎧⎨≤≤⎩.∴102m ≤≤. ∵0m >,∴102m <≤. ②E 、F 、N 三点的“矩面积”的最小值为16, n 的取值范围为48n ≤≤.K H EGDAB CF FE2014年北京石景山中考一模数学试卷部分解析一、选择题 1. 【答案】D【解析】23-的相反数是23,故选D .2. 【答案】B【解析】5245000用科学记数法表示应为65.24510⨯,故选B .3. 【答案】B【解析】正五边形的内角和为360︒,每个内角等于3601801085︒︒-=︒,或者正五边形的内角和为(52)180540-⨯︒=︒,每个内角等于540=1085︒︒,故选B .4. 【答案】A【解析】这组数据中的平均数是7.8,众数是9,故选A .5. 【答案】C【解析】二次函数22222812(44)92(2)9y x x x x x =--=-+-=--,故选C .6. 【答案】C【解析】∵BA BC =,∴25BCA BAC ∠=∠=︒,∵AD 为的直径,∴90ABD ∠=︒,25D C BAC ∠=∠=∠=︒,65DAB ∠=︒,40DAC ∠=︒,故选C .7. 【答案】B【解析】六个全等的区域红色占了两个,指针对准红色区域的概率是21=63,故选B .8. 【答案】A【解析】当01x ≤≤时,2222(x)(x x)2222y x =+-=-,是单调递增的一次函数; 当12x <≤时,22222(1)(21)(22)2222y x x x x x =-+--+=--+. 故选A .二、填空题9. 【答案】(4)(4)ax x x +-【解析】分解因式:3216(16)(4)(4)ax ax ax x ax x x -=-=+-. 故答案为:(4)(4)ax x x +-.10. 【答案】6【解析】∵AB CD ∥,∴=AB OB CD OD ,∵13BO BD =,12BO OD =,3AB =,6CD =. 故答案为:6.11. 【答案】43【解析】依题可知,63BD =,6233CD ==,43BC BD CD =-=.故答案为:43.12. 【答案】(3,2),(2013,2014)【解析】依题可知,关于y x =对称,点的横纵坐标相互交换.∴1(0,1)B ,2(2,1)A ,2(1,2)B ,3(3,2)A ,3(2,3)B …… 依规律可知,(-1,)n B n n ,2014(2013,2014)B .故答案为:(3,2),(2013,2014).。
2014年北京市石景山区高考一模数学试卷(理科)【解析版】

2014年北京市石景山区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)已知全集U=R,集合A={x|x2﹣2x<0},B={x|x﹣1≥0},那么A∩∁U B=()A.{x|0<x<1}B.{x|x<0}C.{x|x>2}D.{x|1<x<2} 2.(5分)下列函数中,在(0,+∞)内单调递减,并且是偶函数的是()A.y=x2B.y=x+1C.y=﹣lg|x|D.y=2x3.(5分)在的展开式中,x的系数为()A.10B.﹣10C.20D.﹣204.(5分)已知Rt△ABC中,∠C=90°,AB=5,BC=4,以BC为直径的圆交AB于D,则BD的长为()A.4B.C.D.5.(5分)在平面直角坐标系xOy中,抛物线x2=2py(p>0)上纵坐标为1的点到焦点的距离为3,则焦点到准线的距离为()A.2B.8C.D.46.(5分)已知某个三棱锥的三视图如图所示,其中正视图是等边三角形,侧视图是直角三角形,俯视图是等腰直角三角形,则此三棱锥的体积等于()A.B.C.D.7.(5分)阅读如图的程序框图,运行相应的程序,输出的结果为()A.﹣2B.C.﹣1D.28.(5分)已知动点P(x,y)在椭圆C:=1上,F为椭圆C的右焦点,若点M满足||=1且=0,则||的最小值为()A.B.3C.D.1二、填空题共6小题,每小题5分,共30分.9.(5分)已知命题p:∃x∈R,e x<0,则¬p是.10.(5分)在等比数列{a n}中,a1=2,a4=16,则数列{a n}的通项公式a n=,设b n=log2a n,则数列{b n}的前n项和S n=.11.(5分)已知圆C的极坐标方程为ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,则圆C的直角坐标方程为,若直线l:kx+y+3=0与圆C相切,则实数k的值为.12.(5分)已知变量x,y满足约束条件,则的取值范围是.13.(5分)各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生有种不同的填报专业志愿的方法(用数字作答).14.(5分)若存在实常数k和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.已知函数f(x)=x2﹣1和函数g(x)=2lnx,那么函数f(x)和函数g(x)的隔离直线方程为.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)在△ABC中,角A,B,C的对边分别为a,b,c,且a<b<c,a=2b sin A.(Ⅰ)求角B的大小;(Ⅱ)若a=2,b=,求c边的长和△ABC的面积.16.(13分)经调查发现,人们长期食用含高浓度甲基汞的鱼类会引起汞中毒,其中罗非鱼体内汞含量比其它鱼偏高.现从一批数量很大的罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前的数字为茎,小数点后一位数字为叶)如图.《中华人民共和国环境保护法》规定食品的汞含量不得超过1.0ppm.(Ⅰ)检查人员从这15条鱼中,随机抽出3条,求3条中恰有1条汞含量超标的概率;(Ⅱ)若从这批数量很大的鱼中任选3条鱼,记ξ表示抽到的汞含量超标的鱼的条数.以此15条鱼的样本数据来估计这批数量很大的鱼的总体数据,求ξ的分布列及数学期望Eξ.17.(14分)如图,正三棱柱ABC﹣A1B1C1的底面边长是2,侧棱长是,D是AC的中点.(Ⅰ)求证:B1C∥平面A1BD;(Ⅱ)求二面角A1﹣BD﹣A的大小;(Ⅲ)在线段AA1上是否存在一点E,使得平面B1C1E⊥平面A1BD,若存在,求出AE的长;若不存在,说明理由.18.(13分)设函数f(x)=x2+ax﹣lnx(a∈R).(Ⅰ)若a=1,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在区间(0,1]上是减函数,求实数a的取值范围;(Ⅲ)过坐标原点O作曲线y=f(x)的切线,证明:切点的横坐标为1.19.(14分)给定椭圆C:=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.(Ⅰ)求椭圆C的方程和其“准圆”方程;(Ⅱ)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(ⅰ)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程并证明l1⊥l2;(ⅱ)求证:线段MN的长为定值.20.(13分)对于数列{a n},把a1作为新数列{b n}的第一项,把a i或﹣a i(i=2,3,4,…,n)作为新数列{b n}的第i项,数列{b n}称为数列{a n}的一个生成数列.例如,数列1,2,3,4,5的一个生成数列是1,﹣2,﹣3,4,5.已知数列{b n}为数列{}(n∈N*)的生成数列,S n为数列{b n}的前n项和.(Ⅰ)写出S3的所有可能值;(Ⅱ)若生成数列{b n}满足S3n=(1﹣),求数列{b n}的通项公式;(Ⅲ)证明:对于给定的n∈N*,S n的所有可能值组成的集合为{x|x=,k∈N*,k≤2n﹣1}.2014年北京市石景山区高考数学一模试卷(理科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)已知全集U=R,集合A={x|x2﹣2x<0},B={x|x﹣1≥0},那么A∩∁U B=()A.{x|0<x<1}B.{x|x<0}C.{x|x>2}D.{x|1<x<2}【解答】解:由A中的不等式变形得:x(x﹣2)<0,解得:0<x<2,即A={x|0<x<2},由B中的不等式解得:x≥1,即B={x|x≥1},∵全集U=R,∴∁U B={x|x<1},则A∩(∁U B)={x|0<x<1}.故选:A.2.(5分)下列函数中,在(0,+∞)内单调递减,并且是偶函数的是()A.y=x2B.y=x+1C.y=﹣lg|x|D.y=2x【解答】解:A.y=x2在(0,+∞)内单调递增,是偶函数,不满足条件,故A 不选;B.y=x+1在(0,+∞)内单调递增,不是偶函数,不满足条件,故B不选;C.y=﹣lg|x|在(0,+∞)内单调递减,是偶函数,满足条件,故C选;D.y=2x在(0,+∞)内单调递增,不是偶函数,不满足条件,故D不选,故选:C.3.(5分)在的展开式中,x的系数为()A.10B.﹣10C.20D.﹣20【解答】解:的二项展开式的通项为T r+1=•=•(﹣1)r x10﹣3r,令10﹣3r=1,得r=3,故x项的系数为•(﹣1)3=﹣10,故选:B.4.(5分)已知Rt△ABC中,∠C=90°,AB=5,BC=4,以BC为直径的圆交AB于D,则BD的长为()A.4B.C.D.【解答】解:Rt△ABC中,∵∠C=90°,AB=5,BC=4,∴AC==3,∵以BC为直径的圆交AB于D,∴AC是圆的切线,∴AC2=AD•AB,∴AD==,∴BD=5﹣=.故选:D.5.(5分)在平面直角坐标系xOy中,抛物线x2=2py(p>0)上纵坐标为1的点到焦点的距离为3,则焦点到准线的距离为()A.2B.8C.D.4【解答】解:∵抛物线x2=2py(p>0)的准线方程为:y=﹣,∴由抛物线的定义得:1﹣(﹣)=3,解得:p=4.即焦点到准线的距离为4,故选:D.6.(5分)已知某个三棱锥的三视图如图所示,其中正视图是等边三角形,侧视图是直角三角形,俯视图是等腰直角三角形,则此三棱锥的体积等于()A.B.C.D.【解答】解:由三视图知几何体是一个侧面与底面垂直的三棱锥,底面是斜边上的高是1的直角三角形,则两条直角边是,斜边是2,∴底面的面积是=1,与底面垂直的侧面是一个边长为2的正三角形,∴三棱锥的高是,∴三棱锥的体积是故选:B.7.(5分)阅读如图的程序框图,运行相应的程序,输出的结果为()A.﹣2B.C.﹣1D.2【解答】解:根据题意,程序框图运行的程序为,i=0,A=2,i=1,A=1﹣=,i=2,A=1﹣2=﹣1;i=3,A=1﹣(﹣1)=2,i=4,A=1﹣=,…根据规律,总结得A值是2、、﹣1,并且以3为周期的关于i的函数∵i=2015,∴A=﹣1,i=2015>2014,输出A:﹣1;故选:C.8.(5分)已知动点P(x,y)在椭圆C:=1上,F为椭圆C的右焦点,若点M满足||=1且=0,则||的最小值为()A.B.3C.D.1【解答】解:依题意知,点M在以F(3,0)为圆心,1为半径的圆上,PM为圆的切线,∴|PM|2=|PF|2﹣|MF|2,而|MF|=1,∴当PF最小时,切线长PM 最小.由图知,当点P为右顶点(5,0)时,|PF|最小,最小值为:5﹣3=2.此时|PM|==.故选:A.二、填空题共6小题,每小题5分,共30分.9.(5分)已知命题p:∃x∈R,e x<0,则¬p是∀x∈R,e x≥0.【解答】解:∵命题p:∃x∈R,e x<0是特称命题,∴¬p:∀x∈R,e x≥0,故答案为:∀x∈R,e x≥010.(5分)在等比数列{a n}中,a1=2,a4=16,则数列{a n}的通项公式a n=2n,设b n=log2a n,则数列{b n}的前n项和S n=.【解答】解:设等比数列{a n}的公比q,则q3===8,解得q=2,∴a n=a1q n﹣1=2×2n﹣1=2n,∴b n=log2a n=log22n=n,∴b1=1,∵b n=n是首项为1,公差为1的等差数列,∴S n==故答案为:2n;11.(5分)已知圆C的极坐标方程为ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,则圆C的直角坐标方程为x2+y2=4,若直线l:kx+y+3=0与圆C相切,则实数k的值为.【解答】解:以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,根据ρ2=x2+y2,则圆C的直角坐标方程为x2+y2=4.又因为直线l:kx+y+3=0与圆C相切,则圆心(0,0)到直线kx+y+3=0的距离d==2=r,解得:.故应填:x2+y2=4;.12.(5分)已知变量x,y满足约束条件,则的取值范围是.【解答】解:满足约束条件的可行域,如下图所示:又∵表示的是可行域内一点与原点连线的斜率当x=,y=时,有最小值;当x=1,y=6时,有最大值6故答案为:13.(5分)各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生有180种不同的填报专业志愿的方法(用数字作答).【解答】解:甲、乙都不选时,有=60种;甲、乙两个专业选1个时,有=120种,根据分类计数原理,可得共有60+120=180种不同的填报专业志愿的方法.故答案为:180.14.(5分)若存在实常数k和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.已知函数f(x)=x2﹣1和函数g(x)=2lnx,那么函数f(x)和函数g(x)的隔离直线方程为y=2x﹣2.【解答】解:作出函数f(x)=x2﹣1和函数g(x)=2lnx的图象,由图象可知,两个函数的交点坐标为(1,0),要使f(x)≥kx+b和g(x)≤kx+b,则y=kx+b,必须是两个函数在(1,0)处的公共切线,即k+b=0,解得b=﹣k,函数f′(x)=2x,即k=f′(1)=2,∴b=﹣2,即隔离直线方程为y=2x﹣2,故答案为:y=2x﹣2三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)在△ABC中,角A,B,C的对边分别为a,b,c,且a<b<c,a=2b sin A.(Ⅰ)求角B的大小;(Ⅱ)若a=2,b=,求c边的长和△ABC的面积.【解答】解:(Ⅰ)∵a=2b sin A,∴sin A=2sin A sin B,∵0<A<π,∴sin A≠0,∴sin B=,∵0<B<π,且a<b<c,∴B=60°;(Ⅱ)∵a=2,b=,cos B=,∴由余弦定理得:()2=22+c2﹣2×2×c×,即c2﹣2c﹣3=0,解得:c=3或c=﹣1(舍),∴c=3,=ac sin B=×2×3×=.则S△ABC16.(13分)经调查发现,人们长期食用含高浓度甲基汞的鱼类会引起汞中毒,其中罗非鱼体内汞含量比其它鱼偏高.现从一批数量很大的罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前的数字为茎,小数点后一位数字为叶)如图.《中华人民共和国环境保护法》规定食品的汞含量不得超过1.0ppm.(Ⅰ)检查人员从这15条鱼中,随机抽出3条,求3条中恰有1条汞含量超标的概率;(Ⅱ)若从这批数量很大的鱼中任选3条鱼,记ξ表示抽到的汞含量超标的鱼的条数.以此15条鱼的样本数据来估计这批数量很大的鱼的总体数据,求ξ的分布列及数学期望Eξ.【解答】(本小题满分13分)解:(Ⅰ)记“15条鱼中任选3条恰好有1条鱼汞含量超标”为事件A,则,∴15条鱼中任选3条恰好有1条鱼汞含量超标的概率为.…(4分)(Ⅱ)依题意可知,这批罗非鱼中汞含量超标的鱼的概率,…(5分)ξ可能取0,1,2,3.…(6分)则,,,.…(10分)∴ξ的分布列如下:…(12分)∴.…(13分)17.(14分)如图,正三棱柱ABC﹣A1B1C1的底面边长是2,侧棱长是,D是AC的中点.(Ⅰ)求证:B1C∥平面A1BD;(Ⅱ)求二面角A1﹣BD﹣A的大小;(Ⅲ)在线段AA1上是否存在一点E,使得平面B1C1E⊥平面A1BD,若存在,求出AE的长;若不存在,说明理由.【解答】(本小题满分14分)(Ⅰ)证明:连结AB1交A1B于M,连结B1C,DM,因为三棱柱ABC﹣A1B1C1是正三棱柱,所以四边形AA1B1B是矩形,所以M为A1B的中点.因为D是AC的中点,所以MD是三角形AB1C的中位线,…(2分)所以MD∥B1C.…(3分)因为MD⊂平面A1BD,B1C⊄平面A1BD,所以B1C∥平面A1BD.…(4分)(Ⅱ)解:作CO⊥AB于O,所以CO⊥平面ABB1A1,所以在正三棱柱ABC﹣A1B1C1中,如图建立空间直角坐标系O﹣xyz.因为AB=2,,D是AC的中点.所以A(1,0,0),B(﹣1,0,0),,,…(5分)所以,,.设是平面A 1BD的法向量,所以即令,则y=2,z=3,所以是平面A 1BD的一个法向量.…(6分)由题意可知是平面ABD的一个法向量,…(7分)所以.…(8分)所以二面角A1﹣BD﹣A的大小为.…(9分)(Ⅲ)解:设E(1,x,0),则,设平面B1C1E的法向量,所以即令,则x 1=3,,,…(12分)又,即,解得,所以存在点E,使得平面B1C1E⊥平面A1BD且.…(14分)18.(13分)设函数f(x)=x2+ax﹣lnx(a∈R).(Ⅰ)若a=1,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在区间(0,1]上是减函数,求实数a的取值范围;(Ⅲ)过坐标原点O作曲线y=f(x)的切线,证明:切点的横坐标为1.【解答】解:(Ⅰ)当a=1时,f(x)=x2+x﹣lnx(x>0),∴,当,∴f(x)的单调递减区间为,单调递增区间.(Ⅱ),∵f(x)在区间(0,1]上是减函数,∴f'(x)≤0对任意x∈(0,1]恒成立,即对任意x∈(0,1]恒成立,∴对任意x∈(0,1]恒成立,令,∴a≤g(x)min,易知g(x)在(0,1]单调递减,∴g(x)min=g(1)=﹣1.∴a≤﹣1.(Ⅲ)设切点为M(t,f(t)),,切线的斜率,又切线过原点,,即:t2+at﹣lnt=2t2+at﹣1,∴t2﹣1+lnt=0,令g(t)=t2﹣1+lnt,,∴g(t)在(0,+∞)上单调递增,又g(1)=0,所以方程t2﹣1+lnt=0有唯一解t=1.综上,切点的横坐标为1.19.(14分)给定椭圆C:=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.(Ⅰ)求椭圆C的方程和其“准圆”方程;(Ⅱ)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(ⅰ)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程并证明l1⊥l2;(ⅱ)求证:线段MN的长为定值.【解答】(Ⅰ)解:∵椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.∴,,∴=1,∴椭圆方程为,∴准圆方程为x2+y2=4.(Ⅱ)证明:(ⅰ)∵准圆x2+y2=4与y轴正半轴的交点为P(0,2),设过点P(0,2)且与椭圆相切的直线为y=kx+2,联立得(1+3k2)x2+12kx+9=0.∵直线y=kx+2与椭圆相切,∴△=144k2﹣4×9(1+3k2)=0,解得k=±1,∴l1,l2方程为y=x+2,y=﹣x+2.∵,∴l1⊥l2.(ⅱ)①当直线l1,l2中有一条斜率不存在时,不妨设直线l1斜率不存在,则l1:,当l1:时,l1与准圆交于点,此时l2为y=1(或y=﹣1),显然直线l1,l2垂直;同理可证当l1:时,直线l1,l2垂直.②当l1,l2斜率存在时,设点P(x0,y0),其中.设经过点P(x0,y0)与椭圆相切的直线为y=t(x﹣x0)+y0,∴由得.由△=0化简整理得,∵,∴有.设l1,l2的斜率分别为t1,t2,∵l1,l2与椭圆相切,∴t1,t2满足上述方程,∴t1•t2=﹣1,即l1,l2垂直.综合①②知:∵l1,l2经过点P(x0,y0),又分别交其准圆于点M,N,且l1,l2垂直.∴线段MN为准圆x2+y2=4的直径,|MN|=4,∴线段MN的长为定值.20.(13分)对于数列{a n},把a1作为新数列{b n}的第一项,把a i或﹣a i(i=2,3,4,…,n)作为新数列{b n}的第i项,数列{b n}称为数列{a n}的一个生成数列.例如,数列1,2,3,4,5的一个生成数列是1,﹣2,﹣3,4,5.已知数列{b n}为数列{}(n∈N*)的生成数列,S n为数列{b n}的前n项和.(Ⅰ)写出S3的所有可能值;(Ⅱ)若生成数列{b n}满足S3n=(1﹣),求数列{b n}的通项公式;(Ⅲ)证明:对于给定的n∈N*,S n的所有可能值组成的集合为{x|x=,k∈N*,k≤2n﹣1}.【解答】解:(Ⅰ)由已知,,,∴,由于,∴S3可能值为.…(3分)(Ⅱ)∵,当n=1时,,当n≥2时,,∴,n∈N*,…(5分)∵{b n}是的生成数列,∴;;;∴,在以上各种组合中,当且仅当时,才成立.∴.…(8分)(Ⅲ)证明:共有2n﹣1种情形.,即,又,分子必是奇数,满足条件的奇数x共有2n﹣1个.…(10分)设数列{a n}与数列{b n}为两个生成数列,数列{a n}的前n项和为S n,数列{b n}的前n项和为T n,从第二项开始比较两个数列,设第一个不相等的项为第k项.由于,不妨设a k>0,b k<0,则=,所以,只有当数列{a n}与数列{b n}的前n项完全相同时,才有S n=T n.…(12分)∴共有2n﹣1种情形,其值各不相同.∴S n可能值必恰为,共2n﹣1个.即S n所有可能值集合为.…(13分)。
2014北京市石景山区高三(一模)数学(理)

20.( 13 分)对于数列 {a n} ,把 a1 作为新数列 {b n} 的第一项,把 ai 或﹣ ai ( i=2 , 3,4,…, n)作为新数列 {b n } 的第
4 / 15
i 项,数列 {b n} 称为数列 {a n} 的一个生成数列.例如,数列 1,2,3,4,5 的一个生成数列是 1,﹣ 2,﹣ 3,4,5.已 知数列 {b n} 为数列 { } ( n∈N* )的生成数列, Sn 为数列 {b n} 的前 n 项和.
x 分别满足: f ( x)≥ kx+b f ( x)=x 2﹣ 1 和函数 g( x)
=2lnx ,那么函数 f ( x)和函数 g( x)的隔离直线方程为
.
三、解答题共 6 小题,共 80 分.解答应写出文字说明,演算步骤或证明过程.
15.( 13 分)在△ ABC中,角 A, B, C的对边分别为 a, b, c,且 a< b< c, a=2bsinA .
7 个专业中,选择 3 个作为
自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生有
种不同的填报专业志愿的方法
(用数字作答) .
14.( 5 分)若存在实常数 k 和 b,使得函数 f ( x)和 g( x)对其定义域上的任意实数 和 g( x)≤ kx+b ,则称直线 l : y=kx+b 为 f ( x)和 g( x)的“隔离直线”.已知函数
2014 北京市石景山区高三(一模)数
学(理)
一、选择题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,选出符合题目要求的一项.
1.( 5 分)已知全集 U=R,集合 A={x|x 2﹣2x< 0} ,B={x|x ﹣1≥ 0} ,那么 A∩ ?UB=(
2014年北京市各城区中考一模数学——几何综合题24题汇总

ABCEDFGH CHFG EPBDA2014年北京市各城区中考一模数学——几何综合题汇总1、(2014年丰台门头沟一模)24.已知:在△ABC 中,∠ABC =∠ACB =α,点D 是AB 边上任意一点,将射线DC 绕点D 逆时针旋转α与过点A 且平行于BC 边的直线交于点E . (1)如图12-1,当α=60°时,请直接写出线段BD 与AE 之间的数量关系;____ _ (2)如图12-2,当α=45°时,判断线段BD 与AE 之间的数量关系,并进行证明; (3)如图12-3,当α为任意锐角时,依题意补全图形,请直接写出线段BD 与AE 之间的数量关系:_______________________.(用含α的式子表示,其中090a <<)2、(2014年丰台一模)24.在等腰直角△ABC 中,∠BAC=90°,AB=AC , (1)如图1,点D 、E 分别是AB 、AC 边的中点,AF ⊥BE 交BC 于点F ,连结EF 、CD 交于点H.求证,EF ⊥CD ;(2)如图2,AD=AE ,AF ⊥BE 于点G 交BC 于点F ,过F 作FP ⊥CD 交BE 的延长线于点P ,试探究线段BP,FP,AF 之间的数量关系,并说明理由。
B图12-1B图12-2图12-33、(2014年平谷一模)24.(1)如图1,点E 、F 分别是正方形ABCD 的边BC 、CD 上的点,∠EAF =45°,连接EF ,则EF 、BE 、FD 之间的数量关系是:EF =BE +FD .连结BD ,交AE 、AF 于点M 、N ,且MN 、BM 、DN 满足222DN BM MN +=,请证明这个等量关系;(2)在△ABC 中, AB =AC ,点D 、E 分别为BC 边上的两点.①如图2,当∠BAC =60°,∠DAE =30°时,BD 、DE 、EC 应满足的等量关系是_________________; ②如图3,当∠BAC =α,(0°<α<90°),∠DAE =α21时,BD 、DE 、EC 应满足的等量关系是_____________.【参考:1cos sin 22=+αα】A B CEF 图1B CDE 图2AD图3AMN4、(2014年顺义一模)24.已知:如图,MNQ △中,MQ NQ ≠.(1)请你以MN 为一边,在MN 的同侧构造一个 与MNQ △全等的三角形,画出图形,并简要说明构造的方法;(2)参考(1)中构造全等三角形的方法解决下 面问题: 如图,在四边形ABCD 中,180ACB CAD ∠+∠=︒,B D ∠=∠. 求证:CD=AB .QNMDCBA5、(2014年石景山一模)24.在矩形ABCD 中,AD =12,AB =8,点F 是AD 边上一点,过点F 作∠A F E =∠D F C ,交射线A B 于点E ,交射线C B 于点G . (1)若FG =_____CFG ∠=︒;(2) 当以F ,G ,C 为顶点的三角形是等边三角形时,画出图形并求GB 的长; (3)过点E 作EH//CF 交射线CB 于点H ,请探究:当GB 为何值时,以F ,H ,E ,C为顶点的四边形是平行四边形.6、(2014年海淀一模)24.在△ABC 中,AB=AC ,将线段AC 绕着点C 逆时针旋转得到线段CD ,旋转角为α,且0180α<<,连接AD 、BD .(1)如图1,当∠BAC =100°,60α=时,∠CBD 的大小为_________; (2)如图2,当∠BAC =100°,20α=时,求∠CBD 的大小;(3)已知∠BAC 的大小为m (60120m <<),若∠CBD 的大小与(2)中的结果相同,请直接写出α的大小.DCBAABC备用图7、(2014年西城一模)24. 四边形ABCD 是正方形,BEF ∆是等腰直角三角形,90BEF ∠=︒,BE EF =,连接DF ,G 为DF 的中点,连接EG ,CG ,EC 。
2014北京市石景山区高三(一模)数 学(理)

2014北京市石景山区高三(一模)数学(理)一、选择题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)已知全集U=R,集合A={x|x2﹣2x<0},B={x|x﹣1≥0},那么A∩∁U B=()A.{x|0<x<1} B.{x|x<0} C.{x|x>2} D.{x|1<x<2}2.(5分)下列函数中,在(0,+∞)内单调递减,并且是偶函数的是()A.y=x2B.y=x+1 C.y=﹣lg|x| D.y=2x3.(5分)在的展开式中,x的系数为()A.10 B.﹣10 C.20 D.﹣204.(5分)已知Rt△ABC中,∠C=90°,AB=5,BC=4,以BC为直径的圆交AB于D,则BD的长为()A.4 B.C.D.5.(5分)在平面直角坐标系xOy中,抛物线x2=2py(p>0)上纵坐标为1的点到焦点的距离为3,则焦点到准线的距离为()A.2 B.8 C.D.46.(5分)已知某个三棱锥的三视图如图所示,其中正视图是等边三角形,侧视图是直角三角形,俯视图是等腰直角三角形,则此三棱锥的体积等于()A.B.C.D.7.(5分)阅读如图的程序框图,运行相应的程序,输出的结果为()A.﹣2 B.C.﹣1 D.28.(5分)已知动点P(x,y)在椭圆C:=1上,F为椭圆C的右焦点,若点M满足||=1且=0,则||的最小值为()A.B.3 C.D.1二、填空题共6小题,每小题5分,共30分.9.(5分)已知命题p:∃x∈R,e x<0,则¬p是.10.(5分)在等比数列{a n}中,a1=2,a4=16,则数列{a n}的通项公式a n= ,设b n=log2a n,则数列{b n}的前n项和S n= .11.(5分)已知圆C的极坐标方程为ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,则圆C的直角坐标方程为,若直线l:kx+y+3=0与圆C相切,则实数k的值为.12.(5分)已知变量x,y满足约束条件,则的取值范围是.13.(5分)各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生有种不同的填报专业志愿的方法(用数字作答).14.(5分)若存在实常数k和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足:f(x)≥kx+b 和g(x)≤kx+b,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.已知函数f(x)=x2﹣1和函数g(x)=2lnx,那么函数f(x)和函数g(x)的隔离直线方程为.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)在△ABC中,角A,B,C的对边分别为a,b,c,且a<b<c,a=2bsinA.(Ⅰ)求角B的大小;(Ⅱ)若a=2,b=,求c边的长和△ABC的面积.16.(13分)经调查发现,人们长期食用含高浓度甲基汞的鱼类会引起汞中毒,其中罗非鱼体内汞含量比其它鱼偏高.现从一批数量很大的罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前的数字为茎,小数点后一位数字为叶)如图.《中华人民共和国环境保护法》规定食品的汞含量不得超过1.0ppm.(Ⅰ)检查人员从这15条鱼中,随机抽出3条,求3条中恰有1条汞含量超标的概率;(Ⅱ)若从这批数量很大的鱼中任选3条鱼,记ξ表示抽到的汞含量超标的鱼的条数.以此15条鱼的样本数据来估计这批数量很大的鱼的总体数据,求ξ的分布列及数学期望Eξ.17.(14分)如图,正三棱柱ABC﹣A1B1C1的底面边长是2,侧棱长是,D是AC的中点.(Ⅰ)求证:B1C∥平面A1BD;(Ⅱ)求二面角A1﹣BD﹣A的大小;(Ⅲ)在线段AA1上是否存在一点E,使得平面B1C1E⊥平面A1BD,若存在,求出AE的长;若不存在,说明理由.18.(13分)设函数f(x)=x2+ax﹣lnx(a∈R).(Ⅰ)若a=1,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在区间(0,1]上是减函数,求实数a的取值范围;(Ⅲ)过坐标原点O作曲线y=f(x)的切线,证明:切点的横坐标为1.19.(14分)给定椭圆C:=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.(Ⅰ)求椭圆C的方程和其“准圆”方程;(Ⅱ)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(ⅰ)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程并证明l1⊥l2;(ⅱ)求证:线段MN的长为定值.20.(13分)对于数列{a n},把a1作为新数列{b n}的第一项,把a i或﹣a i(i=2,3,4,…,n)作为新数列{b n}的第i项,数列{b n}称为数列{a n}的一个生成数列.例如,数列1,2,3,4,5的一个生成数列是1,﹣2,﹣3,4,5.已知数列{b n}为数列{}(n∈N*)的生成数列,S n为数列{b n}的前n项和.(Ⅰ)写出S3的所有可能值;(Ⅱ)若生成数列{b n}满足S3n=(1﹣),求数列{b n}的通项公式;(Ⅲ)证明:对于给定的n∈N*,S n的所有可能值组成的集合为{x|x=,k∈N*,k≤2n﹣1}.数学试题答案一、选择题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.【解答】由A中的不等式变形得:x(x﹣2)<0,解得:0<x<2,即A={x|0<x<2},由B中的不等式解得:x≥1,即B={x|x≥1},∵全集U=R,∴∁U B={x|x<1},则A∩(∁U B)={x|0<x<1}.故选:A.2.【解答】A.y=x2在(0,+∞)内单调递增,是偶函数,不满足条件,故A不选;B.y=x+1在(0,+∞)内单调递增,不是偶函数,不满足条件,故B不选;C.y=﹣lg|x|在(0,+∞)内单调递减,是偶函数,满足条件,故C选;D.y=2x在(0,+∞)内单调递增,不是偶函数,不满足条件,故D不选,故选:C.3.【解答】的二项展开式的通项为T r+1=•=•(﹣1)r x10﹣3r,令10﹣3r=1,得r=3,故x项的系数为•(﹣1)3=﹣10,故选:B.4.【解答】Rt△ABC中,∵∠C=90°,AB=5,BC=4,∴AC==3,∵以BC为直径的圆交AB于D,∴AC是圆的切线,∴AC2=AD•AB,∴AD==,∴BD=5﹣=.故选:D.5.【解答】∵抛物线x2=2py(p>0)的准线方程为:y=﹣,∴由抛物线的定义得:1﹣(﹣)=3,解得:p=4.即焦点到准线的距离为4,故选:D.6.【解答】由三视图知几何体是一个侧面与底面垂直的三棱锥,底面是斜边上的高是1的直角三角形,则两条直角边是,斜边是2,∴底面的面积是=1,与底面垂直的侧面是一个边长为2的正三角形,∴三棱锥的高是,∴三棱锥的体积是故选B.7.【解答】根据题意,程序框图运行的程序为,i=0,A=2,i=1,A=1﹣=,i=2,A=1﹣2=﹣1;i=3,A=1﹣(﹣1)=2,i=4,A=1﹣=,…根据规律,总结得A值是2、、﹣1,并且以3为周期的关于i的函数∵i=2015,∴A=﹣1,i=2015>2014,输出A:﹣1;故选:C.8.【解答】依题意知,点M在以F(3,0)为圆心,1为半径的圆上,PM为圆的切线,∴|PM|2=|PF|2﹣|MF|2,而|MF|=1,∴当PF最小时,切线长PM最小.由图知,当点P为右顶点(5,0)时,|PF|最小,最小值为:5﹣3=2.此时|PM|==.故选:A.二、填空题共6小题,每小题5分,共30分.9.【解答】∵命题p:∃x∈R,e x<0是特称命题,∴¬p:∀x∈R,e x≥0,故答案为:∀x∈R,e x≥010.【解答】设等比数列{a n}的公比q,则q3===8,解得q=2,∴a n=a1q n﹣1=2×2n﹣1=2n,∴b n=log2a n=log22n=n,∴b1=1,∵b n=n是首项为1,公差为1的等差数列,∴S n==故答案为:2n;11.【解答】以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,根据ρ2=x2+y2,则圆C的直角坐标方程为x2+y2=4.又因为直线l:kx+y+3=0与圆C相切,则圆心(0,0)到直线kx+y+3=0的距离d==2=r,解得:.故应填:x2+y2=4;.12.【解答】满足约束条件的可行域,如下图所示:又∵表示的是可行域内一点与原点连线的斜率当x=,y=时,有最小值;当x=1,y=6时,有最大值6故答案为:13.【解答】甲、乙都不选时,有=60种;甲、乙两个专业选1个时,有=120种,根据分类计数原理,可得共有60+120=180种不同的填报专业志愿的方法.故答案为:180.14.【解答】作出函数f(x)=x2﹣1和函数g(x)=2lnx的图象,由图象可知,两个函数的交点坐标为(1,0),要使f(x)≥kx+b和g(x)≤kx+b,则y=kx+b,必须是两个函数在(1,0)处的公共切线,即k+b=0,解得b=﹣k,函数f′(x)=2x,即k=f′(1)=2,∴b=﹣2,即隔离直线方程为y=2x﹣2,故答案为:y=2x﹣2三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.【解答】(Ⅰ)∵a=2bsinA,∴sinA=2sinAsinB,∵0<A<π,∴sinA≠0,∴sinB=,∵0<B<π,且a<b<c,∴B=60°;(Ⅱ)∵a=2,b=,cosB=,∴由余弦定理得:()2=22+c2﹣2×2×c×,即c2﹣2c﹣3=0,解得:c=3或c=﹣1(舍),∴c=3,则S△ABC=acsinB=×2×3×=.16.【解答】(Ⅰ)记“15条鱼中任选3条恰好有1条鱼汞含量超标”为事件A,则,∴15条鱼中任选3条恰好有1条鱼汞含量超标的概率为.…(4分)(Ⅱ)依题意可知,这批罗非鱼中汞含量超标的鱼的概率,…(5分)ξ可能取0,1,2,3.…(6分)则,,,.…(10分)∴ξ的分布列如下:ξ0 1 2 3P…(12分)∴.…(13分)17.【解答】(Ⅰ)证明:连结AB1交A1B于M,连结B1C,DM,因为三棱柱ABC﹣A1B1C1是正三棱柱,所以四边形AA1B1B是矩形,所以M为A1B的中点.因为D是AC的中点,所以MD是三角形AB1C的中位线,…(2分)所以MD∥B1C.…(3分)因为MD⊂平面A1BD,B1C⊄平面A1BD,所以B1C∥平面A1BD.…(4分)(Ⅱ)解:作CO⊥AB于O,所以CO⊥平面ABB1A1,所以在正三棱柱ABC﹣A1B1C1中,如图建立空间直角坐标系O﹣xyz.因为AB=2,,D是AC的中点.所以A(1,0,0),B(﹣1,0,0),,,…(5分)所以,,.设是平面A1BD的法向量,所以即令,则y=2,z=3,所以是平面A1BD的一个法向量.…(6分)由题意可知是平面ABD的一个法向量,…(7分)所以.…(8分)所以二面角A1﹣BD﹣A的大小为.…(9分)(Ⅲ)解:设E(1,x,0),则,设平面B1C1E的法向量,所以即令,则x 1=3,,,…(12分)又,即,解得,所以存在点E,使得平面B1C1E⊥平面A1BD且.…(14分)18.【解答】(Ⅰ)当a=1时,f(x)=x2+x﹣lnx(x>0),∴,当,∴f(x)的单调递减区间为,单调递增区间.(Ⅱ),∵f(x)在区间(0,1]上是减函数,∴f'(x)≤0对任意x∈(0,1]恒成立,即对任意x∈(0,1]恒成立,∴对任意x∈(0,1]恒成立,令,∴a≤g(x)min,易知g(x)在(0,1]单调递减,∴g(x)min=g(1)=﹣1.∴a≤﹣1.(Ⅲ)设切点为M(t,f(t)),,切线的斜率,又切线过原点,,即:t2+at﹣lnt=2t2+at﹣1,∴t2﹣1+lnt=0,令g(t)=t2﹣1+lnt,,∴g(t)在(0,+∞)上单调递增,又g(1)=0,所以方程t2﹣1+lnt=0有唯一解t=1.综上,切点的横坐标为1.19.【解答】(Ⅰ)解:∵椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.∴,,∴=1,∴椭圆方程为,∴准圆方程为x2+y2=4.(Ⅱ)证明:(ⅰ)∵准圆x2+y2=4与y轴正半轴的交点为P(0,2),设过点P(0,2)且与椭圆相切的直线为y=kx+2,联立得(1+3k2)x2+12kx+9=0.∵直线y=kx+2与椭圆相切,∴△=144k2﹣4×9(1+3k2)=0,解得k=±1,∴l1,l2方程为y=x+2,y=﹣x+2.∵,∴l1⊥l2.(ⅱ)①当直线l1,l2中有一条斜率不存在时,不妨设直线l1斜率不存在,则l1:,当l1:时,l1与准圆交于点,此时l2为y=1(或y=﹣1),显然直线l1,l2垂直;同理可证当l1:时,直线l1,l2垂直.②当l1,l2斜率存在时,设点P(x0,y0),其中.设经过点P(x0,y0)与椭圆相切的直线为y=t(x﹣x0)+y0,∴由得.由△=0化简整理得,∵,∴有.设l1,l2的斜率分别为t1,t2,∵l1,l2与椭圆相切,∴t1,t2满足上述方程,∴t1•t2=﹣1,即l1,l2垂直.综合①②知:∵l1,l2经过点P(x0,y0),又分别交其准圆于点M,N,且l1,l2垂直.∴线段MN为准圆x2+y2=4的直径,|MN|=4,∴线段MN的长为定值.20.【解答】(Ⅰ)由已知,,,∴,由于,∴S3可能值为.…(3分)(Ⅱ)∵,当n=1时,,当n≥2时,,∴,n∈N*,…(5分)∵{b n}是的生成数列,∴;;;∴,在以上各种组合中,当且仅当时,才成立.∴.…(8分)(Ⅲ)证明:共有2n﹣1种情形.,即,又,分子必是奇数,满足条件的奇数x共有2n﹣1个.…(10分)设数列{a n}与数列{b n}为两个生成数列,数列{a n}的前n项和为S n,数列{b n}的前n项和为T n,从第二项开始比较两个数列,设第一个不相等的项为第k项.由于,不妨设a k>0,b k<0,则=,所以,只有当数列{a n}与数列{b n}的前n项完全相同时,才有S n=T n.…(12分)∴共有2n﹣1种情形,其值各不相同.∴S n可能值必恰为,共2n﹣1个.即S n所有可能值集合为.…(13分)。
北京市石景山区2014年一模数学(文科)试题

2014年石景山区高三统一测试数学(文科)本试卷共6页,满分为150分,考试时间为120分钟.请务必将答案答在答题卡上,在试卷上作答无效,考试结束后上交答题卡.第Ⅰ卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}2|20A x x x =-<,{}|10B x x =-≥,那么U A B = ð( )A .{}|01x x <<B .{}|0x x <C .{}|2x x >D .{}|12x x <<2.下列函数中,在(0)+∞,内单调递减,并且是偶函数的是( ) A .2y x = B .1y x =+ C .lg ||y x =-D .2x y =3.直线:40l x -=与圆22:+=4C x y 的位置关系是( )A .相交B .相切C .相离D .无法确定4.双曲线22221x y a b-=(00)a b >>,的渐近线方程是2y x =±,则其离心率为( )A .5B C D 5.下列函数中周期为π且图象关于直线3x π=对称的函数是( ) A .2sin()23x y π=+B .2sin(2)6y x π=-C .2sin(2)6y x π=+D .2sin()23x y π=-6.正三棱柱的左视图如右图所示,则该正三棱柱的侧面积为(7.阅读右面的程序框图,运行相应的程序, 输出的结果为( )8.已知动点()P x y ,在椭圆22:12516x y C +=上,F 为椭圆C 的右焦点,若点M 满足||1MF = 且0MP MF ⋅=,则||PM 的最小值为( )A B .3C .125D .1第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9.i 是虚数单位,计算41ii+=+_________. 10.在等比数列}{n a 中,14=2=16a a ,,则数列}{n a 的通项公式=n a _____________,设2log n n b a =,则数列}{n b 的前n 项和=n S _____________.A .4B .12C .3D .24A .2-B .12C .1-D .211.已知命题p :0x x e ∃∈<R ,,则p ⌝是____________________.12.已知变量x y ,满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,,,则2z x y =+的最大值是_________. 13.一艘轮船在匀速行驶过程中每小时的燃料费与它速度的平方成正比,除燃料费外其它费用为每小时96元. 当速度为10海里/小时时,每小时的燃料费是6元. 若匀速行驶10海里,当这艘轮船的速度为___________海里/小时时,费用总和最小.14.若存在实常数k 和b ,使得函数()f x 和()g x 对其定义域内的任意实数x 分别满足:()f x kx b ≥+和()g x kx b ≤+,则称直线:l y kx b =+为()f x 和()g x 的“隔离直线”.已知函数2()1f x x =-和函数()2ln g x x =,那么函数()f x 和函数()g x 的隔离直线方程为_________.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在△ABC 中,角A B C ,,的对边分别为a b c ,,,且a b c <<2sin b A =. (Ⅰ)求角B 的大小; (Ⅱ)若2a =,b =c 边的长和△ABC 的面积.16.(本小题满分13分)某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如下图.(Ⅰ)求分数在[5060),的频率及全班人数; (Ⅱ)求分数在[8090),之间的频数,并计算频率分布直方图中[8090),间矩形的高; (Ⅲ)若要从分数在[80100),之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90100),之间的概率.17.(本小题满分14分)如图,已知四棱锥A BCDE -,1AB BC AC BE ====,2CD =,CD ⊥平面ABC ,BE ∥CD ,F 为AD 的中点.(Ⅰ)求证:EF ∥平面ABC ; (Ⅱ)求证:平面ADE ⊥平面ACD ; (Ⅲ)求四棱锥A BCDE -的体积.CDBAF E18.(本小题满分13分)已知函数22()2ln (0)f x x a x a =->.(Ⅰ)若()f x 在1x =处取得极值,求实数a 的值; (Ⅱ)求函数()f x 的单调区间;(Ⅲ)若()f x 在[1]e ,上没有零点,求实数a 的取值范围.19.(本小题满分14分)给定椭圆C :22221(0)x y a b a b+=>>,称圆心在原点O椭圆C 的“准圆”.若椭圆C的一个焦点为0)F ,,其短轴上的一个端点到F 的距(Ⅰ)求椭圆C 的方程和其“准圆”方程;(Ⅱ)点P 是椭圆C 的“准圆”上的动点,过点P 作椭圆的切线12l l ,交“准圆”于点M N ,.(ⅰ)当点P 为“准圆”与y求直线12l l ,的方程并证明12l l ⊥; (ⅱ)求证:线段MN 的长为定值.20.(本小题满分13分)对于数列{}n a ,把1a 作为新数列{}n b 的第一项,把i a 或i a -(234i n = ,,,,)作为新数列{}n b 的第i 项,数列{}n b 称为数列{}n a 的一个生成数列.例如,数列12345,,,,的一个生成数列是12345--,,,,.已知数列{}n b为数列1{}()2nn*∈N的生成数列,nS为数列{}nb的前n项和.(Ⅰ)写出3S的所有可能值;(Ⅱ)若生成数列{}n b满足的通项公式为1312(1312nnnn kb kn k⎧=+⎪⎪=∈⎨⎪-≠+⎪⎩N),,,,,求nS.2014年石景山区高三统一测试 高三数学(文科)参考答案一、选择题:本大题共8个小题,每小题5分,共40分.二、填空题:本大题共6个小题,每小题5分,共30分.两空的题目,第一空2分,第二空3分.三、解答题:本大题共6个小题,共80分.应写出文字说明,证明过程或演算步骤.15.(本小题满分13分) 解:2sin b A =,2sin sin A B A =, ………………2分 因为0A π<<,所以sin 0A ≠,所以sin 2B =, ………………4分因为0B π<<,且a b c <<,所以60B =. ………………6分 (Ⅱ)因为2a =,b =所以由余弦定理得22212222c c =+-⨯⨯⨯,即2230c c --=,………………8分解得3c =或1c =-(舍),所以c 边的长为3. ………………10分11=sin 232222ABC S ac B ∆=⨯⨯⨯=. ………………13分16.(本小题满分13分)解:(Ⅰ)分数在[5060), 的频率为0.008100.08⨯=, ………………2分 由茎叶图知:分数在[5060),之间的频数为2,所以全班人数为2250.08=. ………………4分 (Ⅱ)分数在[8090),之间的频数为25223-=; 频率分布直方图中[8090),间的矩形的高为3100.01225÷=.……………7分 (Ⅲ)将[8090),之间的3个分数编号为123a a a ,,, [90100),之间的2个分数编号为12b b ,, ………………8分在[80100),之间的试卷中任取两份的基本事件为: 1213111223()()()()()a a a a a b a b a a ,,,,,,,,,,2122313212()()()()()a b a b a b a b b b ,,,,,,,,,共10个, ………………10分其中,至少有一个在[90100),之间的基本事件有7个, 故至少有一份分数在[90100), 之间的概率是70.710=. ……………13分17.(本小题满分14分)解:(Ⅰ)取AC 中点G ,连结FG ,BG ,F G ,分别是AD ,AC 的中点,FG ∴∥CD ,且112FG DC ==.BE ∥CD , ………………2分FG ∴与BE 平行且相等.∴四边形BEFG 为平行四边形,EF ∴∥BG . ………………3分又EF ⊄平面ABC ,BG ⊂平面ABC .EF ∴∥平面ABC . ………………4分(Ⅱ)ABC ∆ 为等边三角形,G 为AC 的中点,CDBAFEGHBG AC ∴⊥. ………………5分又DC ⊥平面ABC ,BG ⊂平面ABC .DC BG ∴⊥, ………………6分又AC DC C = ,BG ∴⊥平面ADC . ………………7分EF ∥BG ,EF ∴⊥平面ADC , ………………8分 EF ⊂ 平面ADE ,∴平面ADE ⊥平面ADC . ………………10分(Ⅲ)取BC 中点H ,连结AH .AB BC AC == , AH BC ∴⊥.DC ⊥ 平面ABC ,AH ⊂平面ABC DC AH ∴⊥,又BC DC C = ,∴AH ⊥平面BCDE ,AH ∴是四棱锥A BCDE -的高,且AH =, ………………12分11(12)133224BCDE V S AH +⨯=⋅=⨯⨯=梯形. ………………14分18.(本小题满分13分)解:(Ⅰ)22()2ln (0)f x x a x a =->的定义域为(0)+∞,. ………………1分 22()2a f x x x '=-2222x a x -=2()()x a x a x +-=. ………………2分()f x 在1x =处取得极值,(1)0f '∴=,解得1a =或1a =-(舍). ………………3分当1a =时,()01x ∈,,()0f x '<;()1x ∈+∞,,()0f x '>,所以a 的值为1. ………………4分(Ⅱ)令()0f x '=,解得x a =或x a =-(舍). ………………5分当x 在(0)+∞,内变化时,()()f x f x ',的变化情况如下:由上表知()f x 的单调递增区间为()a +∞,,单调递减区间为(0)a ,. ……………8分 (Ⅲ)要使()f x 在[1]e ,上没有零点,只需在[1]e ,上min ()0f x >或max ()0f x <, 又(1)10f =>,只须在区间[1]e ,上min ()0f x >. (ⅰ)当a e ≥时,()f x 在区间[1]e ,上单调递减, 22min ()()20f x f e e a ==->,解得02a <<与a e ≥矛盾. ………………10分(ⅱ) 当1a e <<时,()f x 在区间[1)a ,上单调递减,在区间(]a e ,上单调递增,2m i n ()()(12l n )0f x f a a a ==->, 解得0a <<所以1a <<………………12分(ⅲ)当01a <≤时,()f x 在区间[1]e ,上单调递增,min ()(1)0f x f =>,满足题意. 综上,a 的取值范围为0a << ………………13分 19.(本小题满分14分)解:(Ⅰ)1c a b ==∴= ,∴椭圆方程为2213x y +=, ………………2分准圆方程为224x y +=. ………………3分 (Ⅱ)(ⅰ)因为准圆224x y +=与y 轴正半轴的交点为(02)P ,, 设过点(02)P ,且与椭圆相切的直线为2y kx =+, 所以由22213y kx x y =+⎧⎪⎨+=⎪⎩,,得22(13)1290k x kx +++=. 因为直线2y kx =+与椭圆相切,所以2214449(13)0k k ∆=-⨯+=,解得1k =±, ………………6分 所以12l l ,方程为22y x y x =+=-+,. ………………7分121l l k k ⋅=- ,12l l ∴⊥. ………………8分(ⅱ)①当直线12l l ,中有一条斜率不存在时,不妨设直线1l 斜率不存在,则1l:x =当1l:x =1l与准圆交于点1)1)-, 此时2l为1y =(或1y =-),显然直线12l l ,垂直;同理可证当1l:x =12l l ,垂直. ………………10分②当12l l ,斜率存在时,设点00(,)P x y ,其中22004x y +=. 设经过点00()P x y ,与椭圆相切的直线为00()y t x x y =-+,所以由0022()13y t x x y x y =-+⎧⎪⎨+=⎪⎩,,得2220000(13)6()3()30t x t y tx x y tx ++-+--=. 由0∆=化简整理得 2220000(3)210x t x y t y -++-=, 因为22004x y +=,所以有2220000(3)2(3)0x t x y t x -++-=.设12l l ,的斜率分别为12t t ,,因为12l l ,与椭圆相切,所以12t t ,满足上述方程2220000(3)2(3)0x t x y t x -++-=, 所以121t t ⋅=-,即12l l ,垂直. ………………12分综合①②知:因为12l l ,经过点00()P x y ,,又分别交其准圆于点M N ,,且12l l ,垂直. 所以线段MN 为准圆224x y +=的直径,||4MN =, 所以线段MN 的长为定值. ………………14分 20.(本小题满分13分)解:(Ⅰ)由已知,112b =,1||(2)2n n b n n *=∈≥N ,,∴231148b b =±=±,, 由于11171115111311112488248824882488++=+-=-+=--=,,,,∴3S 可能值为13578888,,,. ………………5分(Ⅱ)∵1312(1312nn n n k b k n k ⎧=+⎪⎪=∈⎨⎪-≠+⎪⎩N),,,,.∴3()n k k *=∈N 时, 12345632313111111111()()()222222222n k k k S --=--+--++-- 14322531363111111111()()()222222222k k k --=+++-+++-+++ 32333333111111[1()][1()][1()]222222*********k k k ---=----- 38111111[1()]()[1()]7824872k k =---=-.11[1()]72n n S ∴=-. 31()n k k =+∈N 时,1n n n S S a -=+111111[1()][15()]72272n n n -=-+=+ ; 32()n k k =+∈N 时,11n n n S S a ++=-1111111[1()][13()]72272n n n ++=-+=+ ;*11(1)3()7215(1)31()7213(1)3 2.()72n n n n n k k S n k k n k k ⎧-=∈⎪⎪⎪∴=+=+∈⎨⎪⎪+=+∈⎪⎩N N N ,,,,, ………………13分【注:若有其它解法,请酌情给分】。
2014年北京市石景山区高考一模数学试卷(文科)【解析版】

则 z=x+2y 的最大值
是
.
13. (5 分) 一艘轮船在匀速行驶过程中每小时的燃料费与它速度的平方成正比, 除燃料费外其它费用为每小时 96 元.当速度为 10 海里/小时时,每小时的燃 料费是 6 元. 若匀速行驶 10 海里, 当这艘轮船的速度为 费用总和最小.
第 2 页(共 19 页)
海里/小时时,
Байду номын сангаас
三、解答题共 6 小题,共 80 分.解答应写出文字说明,演算步骤或证明过程. 15. (13 分)在△ABC 中,角 A,B,C 的对边分别为 a,b,c,且 a<b<c, a=2bsinA. (Ⅰ)求角 B 的大小; (Ⅱ)若 a=2,b= ,求 c 边的长和△ABC 的面积.
16. (13 分)某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图 都受到不同程度的污损,可见部分如图. (Ⅰ)求分数在[50,60)的频率及全班人数; (Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间矩 形的高; (Ⅲ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在 抽取的试卷中,至少有一份分数在[90,100)之间的概率.
A.{x|0<x<1}
(a>0,b>0)的渐近线方程是 y=±2x,
C.
D. 对称的函数是( ) ) ) )
5. (5 分)下列函数中周期为 π 且图象关于直线 x= A.y=2sin( + C.y=2sin(2x+ ) )
B.y=2sin(2x﹣ D.y=2sin( ﹣
6. (5 分)正三棱柱的左视图如图所示,则该正三棱柱的侧面积为(
14. (5 分)若存在实常数 k 和 b,使得函数 f(x)和 g(x)对其定义域上的任 意实数 x 分别满足:f(x)≥kx+b 和 g(x)≤kx+b,则称直线 l:y=kx+b 为 f(x)和 g(x)的“隔离直线” .已知函数 f(x)=x2﹣1 和函数 g(x)=2lnx, 那么函数 f(x)和函数 g(x)的隔离直线方程为 .
北京市石景山区年一模数学文科试题

2014 年石景山区高三统一测试 数学(文科)
本试卷共 6 页,满分为 150 分,考试时间为 120 分钟.请务必将答案答在答题卡上, 在试卷上作答无效,考试结束后上交答题卡.
第Ⅰ卷(选择题 共 40 分)
一、选择题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,选出符合题 目要求的一项.
| MF | 1 且 MP MF 0 ,则| PM | 的最小值为( )
A. 3
B. 3
12
C.
5
D. 1
第Ⅱ卷(非选择题 共 110 分)
二、填空题共 6 小题,每小题 5 分,共 30 分.
9. i 是虚数单位,计算 4 i _________. 1 i
10.在等比数列 an 中, a1=2 ,a4 =16 ,则数列 an 的通项公式 an = _____________,设
离直线方程为_________.
三、解答题共 6 小题,共 80 分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分 13 分)
在△ ABC 中,角 A,B ,C 的对边分别为 a ,b ,c ,且 a b c , 3a 2b sin A . (Ⅰ)求角 B 的大小;
(Ⅱ)若 a 2 , b 7 ,求 c 边的长和△ ABC 的面积.
B. y x 1
C. y lg | x |
D. y 2x
3.直线 l : x 3y 4 0 与圆 C : x2 +y2 =4 的位置关系是( )
A.相交
B.相切
C.相离
D.无法确定
4.双曲线
x2 a2
y2 b2
1 (a
0 ,b
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年北京石景山中考一模数学试卷一、 选择题(本题共32分,每小题4分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.23-的相反数是( ).A .32-B .32C .23-D .232.清明小长假本市150家景区接待游客约5245000人,数字5245000用科学记数法表示为( ).A .35.24510⨯B .65.24510⨯C .70.524510⨯D .3524510⨯3.正五边形的每个内角等于( ).A .72︒B .108︒C .54︒D .36︒4.为了解居民用水情况,晓娜在某小区随机抽查了10户家庭的月用水量,结果如下表:则这10户家庭的月用水量的平均数和众数分别是( ).A .7.8,9B .7.8,3C .4.5,9D .4.5,35.将二次函数2281y x x =--化成2()y a x h k =-+的形式,结果为( ). A .22(2)1y x =-- B .22(4)32y x =-+ C .22(2)9y x =-- D .22(4)33y x =--6.如图,ABC △内接于⊙O ,BA BC =,25ACB ∠=︒,AD 为⊙O 的直径,则DAC ∠的度数是( ).A .25︒B .30︒C .40︒D .50︒7.转盘上有六个全等的区域,颜色分布如图所示,若指针固定不动,转动转盘,当转盘停止后,则指针对准红色区域的概率是( ). A .12 B .13C .14D .168.如图,边长为1的正方形ABCD 中有两个动点P 、Q ,点P 从点B 出发沿BD 作匀速运动,到达点D 后停止;同时点Q 从点B 出发,沿折线BC CD →作匀速运动,P 、Q 两个点的速度都为月用水量(吨)5 6 7 89 10 户数 1 1 2 2 31第6题图 第7题图 红 黄 蓝 红 蓝蓝 O DC B Ay O x 1 2 y O x12 y Ox12 yO x12 A . B .C .D .每秒1个单位,如果其中一点停止运动,则另一点也停止运动.设P 、Q 两点的运动时间为x 秒,两点之间的距离为y ,下列图象中,能表示y 与x 的函数关系的图象大致是( ).二、填空题(本题共16分,每小题4分) 9.分解因式:316=ax ax -__________________.10.如图,AB CD ∥,AC 与BD 相交于点O ,3AB =,若:1:3B O B D =,则CD等于________________.11.如图所示,小明同学在距离某建筑物6米的点A 处测得条幅两端B 点、C 点的仰角分别为60︒和30︒,则条幅的高度BC 为 米(结果可以保留根号).12.在平面直角坐标系xOy 中,已知直线l :y x =,作1(1,0)A 关于y x =的对称点1B ,将点1B 向右水平平移2个单位得到点2A ;再作2A 关于y x =的对称点2B ,将点2B 向右水平平移2个单位得到点3A ;…….请继续操作并探究:点3A 的坐标是 ,点2014B 的坐标是 .三、解答题(本题共30分,每小题5分) 13.计算:011253tan302014--+︒-().第8题图QPCDABABDC6米第11题图OCD BA第10题图yA14.解方程:33155x x x-+=--.15.如图,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,点C 在DE 上. 求证:(1)ABD ACE ≅△△;(2)BDA ADC ∠=∠.16.已知:32x y =,求代数式4923x yx y -+的值.17.如图,一次函数12y kx =+的图象与x 轴交于点(2,0)B -,与函数2my x=(0x >)的图象交于点(1,)A a . (1)求k 和m 的值; (2)将函数2my x=(0x >)的图象沿A 轴向下平移3个单位后交x 轴于点C .若点D 是平移后函数图象上一点,且BCD △的面积是3,直接写出点D 的坐标.ECBADCBAD18.某公司决定从厂家购进甲、乙两种不同型号的显示器共50台,购进显示器的总金额不超过77000元,已知甲、乙型号的显示器价格分别为1000元/台、2000元/台.(1)求该公司至少购买甲型显示器多少台?(2)若要求甲型显示器的台数不超过乙型显示器的台数,问有哪些购买方案?四、解答题(本题共20分,每小题5分)19.如图,在四边形ABCD 中,2AB =,60A C ∠=∠=︒,DB AB ⊥于点B ,45DBC ∠=︒,求BC的长.20.为响应推进中小学生素质教育的号召,某校决定在下午15点至16点开设以下选修课:音乐史、管乐、篮球、健美操、油画.为了解同学们的选课情况,某班数学兴趣小组从全校三个年级中各调查一个班级,根据相关数据,绘制如下统计图.三个班级参加选修课的 初二(5)班参加各类选修课的人数统计图人数分布统计图人数10 9 8 7(1)请根据以上信息,直接补全条形统计图和扇形统计图;(2)若初一年级有180人,请估算初一年级中有多少学生选修音乐史? (3)若该校共有学生540人,请估算全校有多少学生选修篮球课?21.如图,⊙O 是ABC △的外接圆,AB AC =,连结CO 并延长交⊙O 的切线AP 于点P . (1)求证:APC BCP ∠=∠;(2)若3sin 5APC ∠=,4BC =,求AP 的长.22.实验操作(1)如图1,在平面直角坐标系xOy 中,ABC △的顶点的横、纵坐标都是整数,若将ABC △以点()1,1P -为旋转中心,按顺时针方向旋转90︒得到DEF △,请在坐标系中画出点P 及DEF △;BPCO A(2)如图2,在菱形网格图(最小的菱形的边长为1,且有一个内角为60︒)中有一个等边ABC △,它的顶点A 、B 、C 都落在格点上,若将ABC △以点P 为旋转中心,按顺时针方向旋转60︒得到A B C '''△,请在菱形网格图中画出A B C '''△.其中,点A 旋转到点A '所经过的路线长为________.五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.已知关于x 的方程22(1)10mx m x m +-+-=有两个实数根,且m 为非负整数.(1)求m 的值;(2)将抛物线1C :22(1)1y mx m x m =+-+-向右平移a 个单位,再向上平移b 个单位得到抛物线2C ,若抛物线2C 过点(2,)A b 和点(4,21)B b +,求抛物线2C 的表达式; (3)将抛物线2C 绕点(1,)n n +旋转180︒得到抛物线3C ,若抛物线3C 与直线112y x =+有两个交点且交点在其对称轴两侧,求n 的取值范围.24.在矩形ABCD 中,12AD =,8AB =,点F 是AD 边上一点,过点F 作AFE DFC ∠=∠,交射线AB 于点E ,交射线CB 于点G .∠°PCACB 图1 图2xy–5–4–3–2–112345–5–4–3–2–112345CBAO(1)若82FG =,则CFG ∠=_________︒;(2)当以F 、G 、C 为顶点的三角形是等边三角形时,画出图形并求GB 的长;(3)过点E 作EH CF ∥交射线CB 于点H ,请探究:当GB 为何值时,以F 、H 、E 、C 为顶点的四边形是平行四边形.25.在平面直角坐标系xOy 中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义:“水平底”a :任意两点横坐标差的最大值,“铅垂高”h :任意两点纵坐标差的最大值,则“矩面积”S ah =. 例如:三点坐标分别为(1,2)A ,(3,1)B -,(2,2)C -,则“水平底”5a =,“铅垂高”4h =,“矩面积”20S ah ==.(1)已知点(1,2)A ,(3,1)B -,(0,)P t .①若A 、B 、P 三点的“矩面积”为12,求点P 的坐标; ②直接写出A 、B 、P 三点的“矩面积”的最小值. (2)已知点(4,0)E ,(0,2)F ,(,4)M m m ,16(,)N n n,其中0m >,0n >. ①若E 、F 、M 三点的“矩面积”为8,求m 的取值范围;②直接写出E 、F 、N 三点的“矩面积”的最小值及对应n 的取值范围.DABC备用图G E DA B CF2014年北京石景山中考一模数学试卷答案一、选择题(本题共8道小题,每小题4分,共32分)题 号 1 2 3 4 5 6 7 8 答 案DBBACCBA二、填空题(本题共4道小题,每小题4分,共16分)9.(4)(4)ax x x +-; 10.6; 11.43; 12.(3,2),(2013,2014).三、解答题(本题共30分,每小题5分) 13.解:011253tan302014--+︒-() 3=235313-+⨯- =336-.14. 解:方程两边同乘以(5)x -,得,3(5)3x x -+-=-.解得,52x =. 经检验:52x =是原分式方程的解.所以52x =是原方程的解.15.证明:(1)∵BAC DAE ∠=∠,∴BAC DAC DAE DAC ∠-∠=∠-∠. ∴BAD CAE ∠=∠. 在ABD △和ACE △中,∵AB ACBAD EAC AD AE =⎧⎪∠=∠⎨⎪=⎩, ∴ABD ACE ≅△△. (2)∵ABD ACE ≅△△,∴ADB AEC ∠=∠, AD AE =.∴ ADC AEC ∠=∠. ∴ BDA ADC ∠=∠.16.解:由已知得:23x y =, ∴原式6933y yy y-=+12=-.17.解:(1)根据题意,将点(2,0)B -代入12y kx =+, ∴022k =-+. ∴1k =. ∴(1,3)A .将其代入2my x=,可得:3m = (2)3(,2)5或(3,2)-.18.解:(1)设该公司购进甲型显示器x 台, 则购进乙型显示器(50)x -台.依题意可列不等式:10002000(50x)7700x +-≤; 解得:23x ≥ ,∴该公司至少购进甲型显示器23台. (2)依题意可列不等式:50x x -≤, 解得:25x ≤ , ∵23x ≥,∴x 为23,24,25. 答:购买方案有:①甲型显示器23台,乙型显示器27台; ②甲型显示器24台,乙型显示器26台; ③甲型显示器25台,乙型显示器25台.四、解答题(本题共20分,每小题5分) 19. 解:过点D 作DE BC ⊥于点. ∵DB AB ⊥,2AB =,60A ∠=︒, ∴tan 6023BD AB =⨯︒=. ∵45DBC ∠=︒,DE BC ⊥, ∴sin 45=6BE DE BD ==⨯︒ ∵60C A ∠=∠=︒,90DEC ∠=︒, ∴ 2tan60DECE ==︒.∴26BC =+.20.解:(1)条形统计图补充数据:6(图略). 扇形统计图补充数据:20.(2)81804830⨯=(人). (3)()84(6630)3030302015++⨯÷++=.454014415⨯=(人). 21.(1)证明:连结AO 并延长交BC 于D ,交弧BC 于E .∵AP 切⊙O 于点A ,∴EA PA ⊥. ∵AB AC =, ∴AE BC ⊥, ∴BC AP ∥,∴APC BCP ∠=∠ .(2)解:∵AE BC ⊥,∴122CD BC ==.∵3sin 5AO APC PO ∠==, ∴设3OA k =,5OP k =,则3OC OA k ==.∵BC AP ∥ ,∴PAO CDO ∽△△ , ∴PA POCD CO =, ∴523PA kk=, ∴103PA = .22. 解:(1)画出点P ,画出DEF △BPCO AE DECBAD(2)∠°A'C'B'P CA CBA 旋转到点A '所经过的路线长为43l π=.五、解答题(本题共22分,第23题7分,第24题8分,第25题7分)23.解:(1)∵方程22(1)10mx m x m +-+-=有两个实数根,∴0m ≠且0∆≥,则有24(1)-4(1)0m m m --≥且0m ≠∴1m ≤且0m ≠又∵m 为非负整数,∴1m =.(2)抛物线1C :2y x =平移后,得到抛物线2C :2()y x a b =-+,∵抛物线2C 过点(2,)A b ,2(2)b a b =-+,可得2a =,同理:221(4)b a b +=-+,可得3b =,∴2C :()223y x =-+或 2(47)y x x =-+ .(3)将抛物线2C :2(2)3y x =-+绕点(1,)n n +旋转180︒后得到的抛物线3C 顶点为(2,23)n n -,当2x n =时,12112y n n =⨯+=+, 由题意,231n n ->+, 即:4n >.24.解:(1)90︒;(2)正确画图 ;∵四边形ABCD 是矩形,x y –5–4–3–2–112345–5–4–3–2–112345P F ED C B A OE G D A B CF ∴90D ∠=︒.∵FGC △是等边三角形,∴60GFC ∠=︒.∵DFC AFE ∠=∠,∴60DFC ∠=︒ .∵8DC =,∴163sin 603DCFC ==︒.∵FGC △是等边三角形,∴1633GC FC == .∵12BC AD ==,∴163123GB =-.(3)过点F 作FK BC ⊥于点K ,∵四边形ABCD 是矩形,∴90ABC ∠=︒,AD BC ∥,∴DFC KCF ∠=∠,AFG KGF ∠=∠.∵DFC AFG ∠=∠∴KCF KGF ∠=∠∴FG FC =∴GK CK =∵四边形FHEC 是平行四边形∴FG EG =∵FGK EGB ∠=∠,90FKG EBG ∠=∠=︒,∴FGK EGB ≅△△∴1243BG GK KC ====.25.解:(1)由题意:4a =.①当2t >时,1h t =-, K H EG DA B CF则4(1)12t -=,可得4t =,故点P 的坐标为(0,4);当1t <时,2h t =-,则4(2)12t -=,可得1t =-,故点P 的坐标为(0,1)-.②A 、B 、P 三点的“矩面积”的最小值为4.(2)①∵E 、F 、M 三点的“矩面积”的最小值为8,∴04042m m ≤≤⎧⎨≤≤⎩. ∴102m ≤≤. ∵0m >, ∴102m <≤. ②E 、F 、N 三点的“矩面积”的最小值为16,n 的取值范围为48n ≤≤.2014年北京石景山中考一模数学试卷部分解析一、选择题1. 【答案】D 【解析】23-的相反数是23,故选D .2. 【答案】B【解析】5245000用科学记数法表示应为65.24510⨯,故选B .3. 【答案】B【解析】正五边形的内角和为360︒,每个内角等于3601801085︒︒-=︒,或者正五边形的内角和为(52)180540-⨯︒=︒,每个内角等于540=1085︒︒,故选B . FE4. 【答案】A【解析】这组数据中的平均数是7.8,众数是9,故选A .5. 【答案】C【解析】二次函数22222812(44)92(2)9y x x x x x =--=-+-=--,故选C .6. 【答案】C【解析】∵BA BC =,∴25BCA BAC ∠=∠=︒,∵AD 为的直径,∴90ABD ∠=︒,25D C BAC ∠=∠=∠=︒,65DAB ∠=︒,40DAC ∠=︒,故选C .7. 【答案】B 【解析】六个全等的区域红色占了两个,指针对准红色区域的概率是21=63,故选B .8. 【答案】A【解析】当01x ≤≤时,2222(x)(x x)2222y x =+-=-,是单调递增的一次函数; 当12x <≤时,22222(1)(21)(22)2222y x x x x x =-+--+=--+. 故选A .二、填空题9. 【答案】(4)(4)ax x x +-【解析】分解因式:3216(16)(4)(4)ax ax ax x ax x x -=-=+-.故答案为:(4)(4)ax x x +-.10. 【答案】6【解析】∵AB CD ∥,∴=AB OB CD OD ,∵13BO BD =,12BO OD =,3AB =,6CD =. 故答案为:6.11. 【答案】43 【解析】依题可知,63BD =,6233CD ==,43BC BD CD =-=.故答案为:43.12. 【答案】(3,2),(2013,2014)【解析】依题可知,关于y x 对称,点的横纵坐标相互交换.∴1(0,1)B ,2(2,1)A ,2(1,2)B ,3(3,2)A ,3(2,3)B …… 依规律可知,(-1,)n B n n ,2014(2013,2014)B .故答案为:(3,2),(2013,2014).。