八年级数学北师大版上册必考的定义、定理、公式、方法最全汇总!
北师大版八年级上册知识点整理

第一章勾股定理勾股定理:如果直角三角形两直角边分别为a ,b ,斜边为c ,那么a 2 + b 2 = c 2 。
即直角三角形两直角边的平方和等于斜边的平方.勾股定理的应用条件:在直角三角形中才可以运用例:在∆ABC 中,两直角边分别是3和4,则斜边为5.因为32+42=9+16=25=52勾股逆定理:如果三角形的三边长a ,b ,c 满足a 2 +b 2=c 2 ,那么这个三角形是直角三角形.例:在∆ABC 中,AC=5,BC=12,AB=13.∵AC 2+BC 2=52+122=169=132=AB 2,∴∠C=90°勾股数:满足a 2 +b 2=c 2的三个正整数,称为勾股数.常见勾股数:3,4,5;6,8,10;5,12,13;8,15,17;7,24,25.第二章实数有理数和无理数统称为实数整数(例如0,-4,9)有理数(例:-2,0,3,2.14,23 )分数(例如1.37,-0.25,25)实数 正无理数(例:√2,Π,1.010010001...)无理数(无限不循环小数)负无理数(例:-√3,-1.123456789...)数轴:具有原点、单位长度、正方向的直线叫数轴例:数轴上的点与实数是一一对应的,即数轴上的每一个点都对应一个实数,每一个实数都能在数轴上找到对应的点。
相反数:a 与-a 互为相反数的两数和为0(a 与b 互为相反数,则a+b=0)例:2与-2;-√3与√3倒数:b 与1b互为倒数的两数积为1(a 与b 互为倒数,则 ab=1) 例:-3与-13;√2与√22绝对值(到原点的距离):正数的绝对值是它本身(例:|3|=3;|√3|=√3)负数的绝对值是它的相反数(例:|-2|=2;|-√3|=√3)0的绝对值是0算数平方根:若a ≥0,x ≥0,x 2=a,则a a 的算术平方根;即a a 。
平方根:若a ≥0,x 2=a ,则x=a a 的平方根;即a a 。
八年级数学上册北师大版概念定义总结

八年级数学上册北师大版概念定义总结
八年级数学上册北师大版涉及的概念定义总结如下:
1. 数与代数
- 数的分类:自然数、整数、有理数、实数
- 数的运算:加法、减法、乘法、除法
- 代数表达式:包含变量、常数和运算符的表达式
- 代数式的运算:合并同类项、提取公因式、分配率
2. 平面图形
- 点、线、线段、射线、角、等边三角形、等腰三角形、直角三角形、直线的定义和性质
- 多边形的定义和性质:正多边形、正方形、矩形、菱形、平行四边形、长方形
- 平行线与垂直线的判定与性质:平行线的定义、平行线的判定、垂线的定义、垂线的性质
3. 空间图形
- 立体图形的定义:球体、棱柱、棱锥、棱台、正方体、长方体
- 空间图形的性质:表面积、体积、棱和顶点数
4. 几何变换
- 平移:向量的概念、平移的定义和性质
- 翻转:对称轴的概念、翻转的定义和性质
- 旋转:中心、角度、旋转的定义和性质
5. 函数与方程式
- 方程式:等式的定义、方程式的解、一元一次方程、一元一次方程的解法
- 函数:自变量与因变量的关系、函数的定义域与值域、函数的图像
- 一元一次函数:函数的解析式、函数的图像、函数的性质。
(完整)八年级数学上册知识点复习总结(北师大版),推荐文档

北师大版《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
北师大版数学八年级上册全册各章知识点总结

北师大版《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理(1)直角三角形两直角边a ,b 的平方和等于斜边c的平方,即222c b a =+(2)勾股定理的验证:测量、数格子、拼图法、面积法,如青朱出入图、五巧板、玄图、总统证法……(通过面积的不同表示方法得到验证,也叫等面积法或等积法)(3)勾股定理的适用范围:仅限于直角三角形2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数a ,b ,c ,称为勾股数。
常见的勾股数有:(6,8,10)(3,4,5)(5,12,,13)(9,12,15)(7,24,25)(9,40,41)……规律:(1),短直角边为奇数,另一条直角边与斜边是两个连续的自然数,两边之和是短直角边的平方。
即当a 为奇数且a <b 时,如果b+c=a 2那么a,b,c 就是一组勾股数.如(3,4,5)(5,12,,13)(7,24,25)(9,40,41)……(2)大于2的任意偶数,2n(n >1)都可构成一组勾股数分别是:2n,n 2-1,n 2+1如:(6,8,10)(8,15,17)(10,24,26)……4、常见题型应用:(1)已知任意两条边的长度,求第三边/斜边上的高线/周长/面积……(2)已知任意一条的边长以及另外两条边长之间的关系,求各边的长度//斜边上的高线/周长/面积……(3)判定三角形形状: a 2 +b 2>c 2锐角~,a 2 +b 2=c 2直角~,a 2 +b 2<c 2钝角~判定直角三角形a..找最长边;b.比较长边的平方与另外两条较短边的平方和之间的大小关系;c.确定形状(4)构建直角三角形解题例1. 已知直角三角形的两直角边之比为3:4,斜边为10。
求直角三角形的两直角边。
解:设两直角边为3x ,4x ,由题意知:()()34100916100251004222222x x x x x x +=+===,,, ∴x=2,则3x=6,4x=8,故两直角边为6,8。
北师大版数学八年级上册知识点总结(最新最全)

北师大版《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
第二章 实数一、实数的概念及分类 1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
北师大版数学八年级上册知识点归纳总结

北师大版数学八年级上册知识点归纳总结第一章勾股定理1.勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。
2.勾股定理的逆定理如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。
3.勾股数满足的三个正整数,称为勾股数。
常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)第二章实数1.实数的概念及分类①实数的分类②无理数无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:a.开方开不尽的数,如√7 ,3√2等;b.有特定意义的数,如圆周率π,或化简后含有π的数,如π/?+8等;c.有特定结构的数,如0.1010010001…等;d.某些三角函数值,如sin60°等2.实数的倒数、相反数和绝对值①相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。
②绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
|a|≥0。
0的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
③倒数如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
0没有倒数。
④数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
⑤估算3.平方根、算数平方根和立方根①算术平方根一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a 的算术平方根。
特别地,0的算术平方根是0。
性质:正数和零的算术平方根都只有一个,0的算术平方根是0。
八年级数学上册_知识点总结(北师大版)
《数学》(八年级上册)知识点总结(北师大版)第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
最新北师大版八年级上册数学全册知识点大全
《数学》(八年级上册)知识点总结(北师大版)第一章 勾股定理1、勾股定理-----已知直角三角形,得边的关系直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理-----由边的关系,判断直角三角形如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数a ,b ,c ,称为勾股数。
常见的勾股数有:(6,8,10)(3,4,5)(5,12,,13)(9,12,15)(7,24,25)(9,40,41)……规律:(1)、短直角边为奇数,另一条直角边与斜边是两个连续的自然数,两边之和是短直角边的平方。
即当a 为奇数且a <b 时,如果2b c a +=,那么a,b,c 就是一组勾股数. 如:(3,4,5)(5,12,,13)(7,24,25)(9,40,41)……(2)大于2的任意偶数,2n(n >1)都可构成一组勾股数分别是:222,1,1n n n -+如:(6,8,10)(8,15,17)(10,24,26)……第二章 实数1. 无理数的引入。
无理数的定义无限不循环小数。
20200002233..无理数的表示算术平方根定义如果一个非负数的平方等于,即那么这个非负数就叫做的算术平方根,记为,算术平方根为非负数平方根正数的平方根有个,它们互为相反数的平方根是负数没有平方根定义:如果一个数的平方等于,即,那么这个数就叫做的平方根,记为立方根正数的立方根是正数负数的立方根是负数的立方根是定义:如果一个数的立方等于,即,那么这个数就叫做的立方根,记为x a x a x a a a a x a a a x a x a x a a =≥⎧⎨⎪⎪⎩⎪⎪=±⎧⎨⎪⎪⎩⎪⎪=⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪30.实数及其相关概念概念有理数和无理数统称实数分类有理数无理数或正数负数绝对值、相反数、倒数的意义同有理数实数与数轴上的点是一一对应实数的运算法则、运算规律与有理数的运算法则运算规律相同。
北师大版八年级(上)数学知识点归纳总结
第一章 勾股定理第1节 探索勾股定理一、勾股定理的内容直角三角形的两条直角边的平方和等于斜边的平方。
如果用a 、b 和c 分别表示直角三角形的两条直角边和斜边,那么a 2+b 2=c 2。
【说明】①勾股定理在很多国家文献中被称为毕达哥拉斯定理,我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,所以又称其为勾股定理。
②勾股定理揭示的是直角三角形三边长度的数量关系,因此它只适用于直角三角形。
③勾股定理公式的推广a 2 =c 2-b 2 =(c +b )(c -b )b 2 =c 2-a 2 =(c +a )(c -a )二、勾股定理的证明1、证法①如图①所示,在正方形网格中有一个直角三角形和三个分别以它的三边为边的正方形。
通过观察可知,正方形A 的面积等于16,正方形B 的面积等于9,正方形C 的面积等于25,即S 正方形A +S 正方形B =S 正方形C由此面积关系,可以得出这个直角三角形三条边之间的关系是:a 2+b 2=c 22、证法②如图②所示,用硬纸板做成两个全等的直角三角形,两条直角边分别为a 、b ,斜边为c ,然后再用硬纸板做成一个腰长为c 的等腰直角三角形。
用这三个直角三角形拼成了一个直角梯形ABCD 。
∵1()()2ABCD a b a b =++S 梯形21()2a b =+221(2)2a ab b =++ 又∵ADE BEC CDE ABCD =++S S S S V V V 梯形2111222ab abc =++21(2)2ab c =+ ∴22211(2)(2)22a ab b ab c ++=+ ∴a 2+b 2=c 23、证法③如图③所示,用硬纸板做成四个全等的直角三角形,两条直角边分别为a 、b ,斜边为c ,然后再用硬纸板做成一个边长为c 的小正方形。
用这四个直角三角形和小正方形拼成了一个大的正方形。
∵222()()()2a b a b a b a ab b =++=+=++S 大正方形 又∵2214422ab c ab c =+=⨯+=+S S S 大正方形直角三角形小正方形 ∴22222a ab b ab c ++=+∴a 2+b 2=c 2 第2节 一定是直角三角形吗一、直角三角形的判别条件1、利用角来判别(定义法)有一个角为直角的三角形叫做直角三角形。
新版北师大版八年级数学上册知识点全面总结
新版北师大版八年级数学上册知识点全面总结第一章勾股定理1 •勾股定理:直角三角形两直角边的平方和等于斜边的平方;即a2 b2 c2。
2 •勾股定理的证明:用三个正方形的面积关系进行证明(两种方法) 。
3 •勾股定理逆定理:如果三角形的三边长 a , b , c满足a2 b2 c2,那么这个三角形是直角三角形。
满足a2 b2 c2的三个正整数称为勾股数。
常见勾股数:(3、4、5) (6、8、10) (5、12、13) (& 15、17)第二章实数1 •平方根和算术平方根的概念及其性质:(1)概念:如果x2 a,那么x是a的平方根,记作:.a ;其中,a叫做a的算术平方根。
(2)性质:①当a > 0时, > 0;当a vo时,a .a2a。
2 .立方根的概念及其性质:(1 )概念:若x3 a,那么x是a的立方根,记作:3 a ;(2 )性质:①需3a :②Va a :③旷=需3 .实数的概念及其分类:(1)概念:实数是有理数和无理数的统称;(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。
无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。
4 .与实数有关的概念:在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是----------- 对应的。
因此,数轴正好可以被实数填满。
5•算术平方根的运算律:f ag. b , ag) ( a》0, b》0);第三章图形的平移与旋转1 •平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。