22.3 实际问题与二次函数(第3课时)
九年级数学上册第二十二章《二次函数》22.3实际问题与二次函数第3课时建立适当坐标系解决实际问题试

2018年秋九年级数学上册第二十二章《二次函数》22.3 实际问题与二次函数第3课时建立适当坐标系解决实际问题试题(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年秋九年级数学上册第二十二章《二次函数》22.3 实际问题与二次函数第3课时建立适当坐标系解决实际问题试题(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年秋九年级数学上册第二十二章《二次函数》22.3 实际问题与二次函数第3课时建立适当坐标系解决实际问题试题(新版)新人教版的全部内容。
第3课时建立适当坐标系解决实际问题知识要点基础练知识点1“抛物线”型建筑问题1。
某涵洞是抛物线形,它的截面如图所示。
现测得水面宽AB=4 m,涵洞顶点O到水面的距离为1 m,根据图中的平面直角坐标系,你可推断点A的坐标是(2,—1),点B的坐标为(—2,—1),则涵洞所在的抛物线的解析式为y=-x2.2.如图,一桥拱呈抛物线状,桥的最大高度是16米,跨度是40米,在线段AB上离中心M处5米的地方,桥的高度是15米。
知识点2“抛物线”型运动问题3.小明学习了这节课后,课下竖直向上抛一个小球做实验,小球上升的高度h(m)与运动时间t(s)的函数解析式为h=at2+bt,图象如图所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是(B)A。
第3秒 B.第3.9秒C.第4.5秒D。
第6。
5秒4。
某市府广场喷泉的喷嘴安装在平地上.有一喷嘴喷出的水流呈抛物线状,喷出的水流高度y (m)与喷出水流离喷嘴的水平距离x(m)之间满足y=—x2+2x.(1)喷嘴喷出的水流的最大高度是多少?(2)喷嘴喷出水流的最远距离是多少?解:y=—x2+2x=—(x—2)2+2。
22.3.3实际问题与二次函数③

y(件)
25
20
10
…
观察表格,
(1)根据学过的函数有关知识 求 日销售量 y 与 销售价 x 的函数关系式。(6分) (2)要使每日的销售利润最大,每件产品的销售 价应定为多少元?此时每日销售利润是多少元?( 6分)
解:(1)根据表格可知,日销售量 y 与销售价 x 的一 次函数,设这个一次函数解析式为 y kx 时每日获得最大销售利 润为225元。 12分
3、有一经销商,按市场价收购了一种活蟹1000千克, 放养在塘内,此时市场价为每千克30元。据测算,此后 每千克活蟹的市场价,每天可上升1元,但是,放养一天 需各种费用支出400元,且平均每天还有10千克蟹死去, 假定死蟹均于当天全部售出,售价都是每千克20元(放 养期间蟹的重量不变). ⑴设x天后每千克活蟹市场价为P元,写出P关于x的函数 关系式.
B
C
5.如图,在平面直角坐标系中,四边形OABC为菱 形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴 的直线l从y轴出发,沿x轴正方向以每秒1个单位长 度的速度运动,设直线l与菱形OABC的两边分别交 于点M、N(点M在点N的上方). (1)求A、B两点的坐标; (2)设△OMN的面积为S,直线l运动时间为t秒 (0<t<6),试求S 与t的函数表达式; (3)在题(2)的条件下,t为何值时,S的面积最大? 最大面积是多少?
即:Q= -10x2+900x+30000
③设总利润为W=Q-30000-400x=-10x2+500x 即:W= -10(x-25)2+6250 ∴当x=25时,总利润最大,最大利润为6250元。
4.用一块宽为1.2m的长方形铁板弯起两边做一 个水槽,水槽的横断面为底角120º 的等腰梯 形。要使水槽的横断面积最大,它的侧面AB 应该是多长? D A
2017年秋九年级数学上册 22.3 实际问题与二次函数(第3课时)教案 (新版)新人教版

实际问题与二次函数教学内容22.3 实际问题与二次函数(3).教学目标1.根据不同条件建立合适的直角坐标系.2.能够从实际问题中抽象出二次函数关系,并运用二次函数及性质解决最小(大)值等实际问题.教学重点1.根据不同条件建立合适的直角坐标系.2.将实际问题转化成二次函数问题.教学难点将实际问题转化成二次函数问题.教学过程一、导入新课复习二次函数y =ax 2的性质和特点,导入新课的教学.二、新课教学探究3 下图中是抛物线形拱桥,当拱顶离水面2m 时,水面宽4 m .水面下降1 m ,水面宽度增加多少?教师引导学生审题,然后根据条件建立直角坐标系.怎样建立直角坐标系呢? 因为二次函数的图象是抛物线,建立适当的坐标系,就可以求出这条抛物线表示的二次函数.为解题简便,以抛物线的顶点为原点,以抛物线的对称轴为y 轴建立直角坐标系. 教师可让学生自己建立直角坐标系,然后求出二次函数的解析式.设这条抛物线表示的二次函数为y =ax 2.由抛物线经过点(2,-2),可得这条抛物线表示的二次函数为y =-21x 2.当水面下降1m 时,水面宽度就增加26-4 m .三、巩固练习 一个涵洞成抛物线形,它的截面如右图所示,现测得,当水面宽AB =1.6 m 时,涵洞顶点与水面的距离为2.4 m .这时,离开水面1.5 m 处,涵洞宽ED 是多少?是否会超过1 m ?分析:根据已知条件,要求ED 的宽,只要求出FD 的长度.在如右图的直角坐标系中,即只要求出D 点的横坐标.因为点D在涵洞所成的抛物线上,又由已知条件可得到点D 的纵坐标,所以利用抛物线的函数关系式可以进一步算出点D 的横坐标.2.让学生完成解答,教师巡视指导.3.教师分析存在的问题,书写解答过程.解:以AB 的垂直平分线为y 轴,以过点O 的y 轴的垂线为x 轴,建立直角坐标系. 这时,涵洞的横截面所成抛物线的顶点在原点,对称轴为y 轴,开口向下,所以可设它的函数关系式为y =ax 2 (a <0) ①因为AB 与y 轴相交于C 点,所以CB =AB 2=0.8(m ),又OC =2.4 m ,所以点B 的坐标是(0.8,-2.4).因为点B 在抛物线上,将它的坐标代人①,得-2.4=a ×0.82所以a =-154因此,函数关系式是 y =-154x 2 ②∵OC =2.4 m ,FC =1.5 m ,∴OF =2.4―1.5=0.9(m ).将y =-0.9代入②式得-0.9=-154x 2 解得 x 1=56,x 2=―56. 涵洞宽ED =256≈0.98<1.四、课堂小结今天你学习了什么?有什么收获?五、布置作业习题22.3 第6、7题.。
22.3实际问题与二次函数-拱桥问题解析

试一试:
如图所示,有一座抛物线型拱桥,在正常水位 AB时,水面宽20米,水位上升3米,就达到警戒 线CD,这时水面宽为10米。
(1)求抛物线型拱桥的解析式。
(2)若洪水到来时,水位以每小时0.2米的速度 上升,从警戒线开始,在持续多少小时才能达到 拱桥顶?
抛物线的顶点在象限内,对称轴平行于_y__轴, 抛物线的形式为____y_=_a_(_x_-_h_)_2+_k.
探究1:
如图是某公园一圆形喷水池,水流在各方向沿形状相
同的抛物线落下,如果喷头所在处A距地面1.25米,水流路
线最高处B距地面2.25米,且距水池中心的水平距离为1米.
以A处的竖直方向为y轴,水平方向为x轴建立直角坐标系,
该抛物线的解析式为 y= -(x-1)2 +2.25 ,如果不考虑其他
因素,那么水池的半径至少要 2.5 米,才能使喷出的水流
不致落到池外。
y
. 1 BB.(1,2.25 ) .AA(0,1.25)
1.25 2.25
O
Cx
探究2:
如图的抛物线形拱桥,当水面在 l时,拱桥顶离水面
2 m,水面宽 4 m,水面下降 1 m, 水面宽度增加多少?
所以,水面下降1m,水面的
宽度为2 6 m.
∴水面的宽度增加了 2 6 4 m
y
(0,0)
●
0
解:设这条抛物线表示的二次函数为
y a(x 2)2 2
(2,2)
由抛物线经过点(0,0),可得
(4, 0)
a1
●
2
x 所以,这条抛物线的解析式为:
y 1 (x 2)2 2
22.3实际问题与二次函数(三)

22.3实际问题与二次函数(三)一、课前导学1.以抛物线的顶点为原点,以抛物线的对称轴为y 轴建立直角坐标系时,可设这条抛物线的关系式为______________.2. 如果抛物线经过原点,可设这条抛物线的关系式为________________.3. 如果抛物线的顶点在y 轴上,可设这条抛物线的关系式为________________.二、自主探究,合作交流问题:下图是抛物线拱桥,当其拱顶离水面m 2,水面宽m 4,水面下降m 1,水面宽度增加多少?三、自主探究,交流展示☆探究1:一个涵洞成抛物线形,它的截面如图,现测得,当水面宽m AB 6.1 时,涵洞顶点与水面的距离为m 4.2.这时,离开水面m 5.1处,涵洞宽ED 是多少?是否会超过m 1?4m2m图26.3.2☆探究2:如图,有一个抛物线形的水泥门洞.门洞的地面宽度为m 8,两侧距地面m 4高处各有一盏灯,两灯间的水平距离为m 6.求这个门洞的高度.(精确到m 1.0)、☆探究3:隧道的截面由抛物线和长方形构成,长方形的长是8m ,宽是2m ,抛物线可以用y=-x 2+4表示.(1)一辆货运卡车高4m ,宽2m ,它能通过该隧道吗?(2)如果隧道内设双行道(中间隔离带宽度忽略不计),那么这辆货运车是否可以通过?为安全起见,你认为隧道应限高多少比较适宜?为什么?(第13题)☆练检巩固:1. 拱桥呈抛物线形,其函数关系式为241x y -=,当拱桥下水位线在AB 位置时,水面宽为12m ,这时水面离桥拱顶端的高度h 是( )A .m 3B .m 62C .m 34D .m 92.一座拱桥的轮廓是抛物线(如图①所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m .(1)将抛物线放在所给的直角坐标系中(如图②所示),其关系式y =ax 2+c 的形式,请根据所给的数据求出a 、c 的值;(2)求支柱MN 的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m ,高3m 的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.图①3. 要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心3m ,水管应多长?☆能力提升:1.某学校九年级的一场篮球比赛中,如图,队员甲正在投篮,已知球出手时离地面高920米,与篮圈中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行轨迹为抛物线,篮圈距地面3米.(1)建立如图2的平面直角坐标系,问此球能否准确投中?(2)此时,若对方队员乙在甲面前1米处跳起盖帽拦截,已知乙的最大摸高为3.1米,那么他能否获得成功?。
人教版初中数学22.3 实际问题与二次函数(第3课时) 课件

① 能够将实际距离准确 的转化为点的坐标;
② 选择运算简便的方法
课后作业
作业 内容
22.3 实际问题与二次函数/
教材作业 从课后习题中选取 自主安排 配套练习册练习
2. 如图,小李推铅球,如果铅球运行时离地面
的高度y(米)关于水平距离x(米)的函数解析式
为y
1 8
x2
1 2
x
32,那么铅球运动过程中y
最高点离地面的距离为 2 米.
O
x
课堂检测
22.3 实际问题与二次函数/
3. 某公园草坪的防护栏是由100段形状相同的抛物线形组成
的,为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢
的支柱,防护栏的最高点距底部0.5m(如图),则这条防护
栏需要不锈钢00m
C.160m
D.200m
课堂检测
22.3 实际问题与二次函数/
能力提升题
某工厂要赶制一批抗震救灾用的大型活动板房.如图,板房一 面的形状是由矩形和抛物线的一部分组成,矩形长为12m,抛物 线拱高为5.6m. (1)在如图所示的平面直角坐标系中,求抛物线的表达式.
81.5=a•4502+0.5.
y
解得
a
81 4502
1. 2500
故所求表达式为 y
1
x2 0.5(450 x 450).
2500
-450
O
450 x
课堂检测
22.3 实际问题与二次函数/
(2)计算距离桥两端主塔分别为100m,50m处垂直钢索的长.
y 1 3502 0.5 49.5(m).
2500
y
当x=450﹣50=400(m)时,得
223 实际问题与二次函数(第3课时)(教案)

备课人:王 帅 审核人:胡哲 授课时间:2015年10月 日
一、新知探究 : 3]:图中是抛物线形拱桥,当拱顶离水 2 m 时,水面宽 4 m . 水面下降 1 m 水面宽度增加多少? 想一想:二次函数的图象是抛物线,建立适当的坐标系,就可以求出这条抛物线表示的二次函数.从而求出水面下降
1 m 时,水面宽度增加多少?
②可设这条抛物线表示的二次函数为:
【归纳】(1)用二次函数知识解决拱桥类的
实际问题一定要建立适当的直角坐标系.解题简便.
教学内容 课前预习:1.函数y=ax 2
条_______,它的______,对称轴是______,当时,开口向上,当a______O
抛物线y=2
1x 的顶点坐标是有一座抛物线拱桥,正常水位时桥下水面20米,拱顶距离水面如图26-3-12所示的直角坐标系中,求(3)你学到了哪些思考问题的方法?1.能力培养
2.学案中课后作业部分.
22.3 实际问题与二次函数(第例3: 习题。
实际问题与二次函数—教学设计及点评(获奖版)

22.3 实际问题与二次函数(第3课时)一、内容与内容解析1. 内容构建二次函数模型,利用二次函数的图象与性质解决抛物线形问题.2. 内容解析二次函数是描述现实世界变量关系的重要数学模型,运用二次函数可以解决许多实际问题,例如生活中的抛物线形问题.本节课是在学生学习二次函数的图象和性质的基础上,借助二次函数图象和性质研究抛物线形的实际问题.通过探究抛物线形拱桥问题,引导学生分析问题和解决问题,在解决问题的过程中将数学模型思想逐步细化,体会运用函数观点解决实际问题的作用,体会建立函数模型的过程和方法.基于以上分析,确定本节课的重点是:从实际问题中抽象出抛物线并通过建立平面直角坐标系解决实际问题.二、目标和目标解析1. 目标(1)能够从抛物线形问题中建立二次函数模型.(2)能够利用二次函数模型解决抛物线形问题,体会二次函数在解决实际问题中的作用.2. 目标解析达成目标(1)的标志是:学生会借助平面直角坐标系得到二次函数模型,并体会适当建系可以优化解题.达成目标(2)的标志是:学生通过经历探索抛物线形问题,进一步体验如何从实际问题中抽象出二次函数模型,结合二次函数已有知识综合运用来解决解决实际问题.三、教学问题诊断分析学生已经学习了二次函数的定义、图象和性质,学习了列方程、不等式和函数解决实际问题,这为本节课的学习奠定了基础,但运用二次函数的知识解决实际问题要求学生能选取适当的平面直角坐标系的二次函数模型分析问题和解决问题,对于学生来说,完成这一过程难度较大.基于以上分析,本节课的难点:将实际问题转化成二次函数问题.四、教学过程设计1. 创设情境引出问题情境:展示蕴含抛物线的建筑南宁大桥、南宁永和大桥、凌铁大桥、柳州官塘大桥等,引出课题.设计意图:结合生活背景,让学生体会抛物线与实际生活的联系,激发学生的学习兴趣.2. 复习旧知,做好铺垫设计意图:学生体会解析式与图象的对应关系,感受抛物线与坐标系相对位置不一样,它们所对应的解析式也不一样,体会抛物线(形)与函数解析式(数)的对应关系,为解决探究3中的问题做好铺垫.3. 从形入手,探究问题探究3:如图是抛物线形拱桥,当拱顶离水面2 m,水面宽 4 m. 水面下降 1 m,水面宽度增加多少?问题1:同学们通过审题,你发现了哪些重要信息?教师结合希沃白板,将重要信息涉及的图形,从原图中分离出来.问题2:求水面宽度增加多少,需要进行计算,这些计算与抛物线形密切相关,我们应该如何处理?设计意图:引导学生通过建立直角坐标系,构建数学模型(二次函数模型),并体会直角坐标系是数形结合的重要数学工具.活动:小组合作:运用所学知识,解决这道实际问题.(要求每组有2种不同的建立直角坐标系方法)师生活动:小组汇报,教师点评(结合课本进行点评,注意书写过程中建系是否有文字说明,建系文字说明是否严谨,待定系数法书写是否规范,结论书写是否规范)设计意图:展示学生学生的解题思路,并对学生书写中的易错点进行点评分析.4. 适当建系,优化解题问题3:以上5种不同的建系方法,你觉得哪种简单?为什么?师生活动:学生回答,老师总结.①5种建系方法不同,但结果是相同的,建立不同坐标系,所得到的解析式复杂程度也不一样,由此可见,建立适当的坐标系,可以使抛物线的解析式简单,从而减少运算量;②建立直角坐标系的基本原则:关注图形的对称性,以对称轴为坐标轴;关注特殊点,以特殊点为坐标原点.设计意图:引导学生总结归纳,对解决问题的基本策略进行反思,让学生积累和总结经验,培养学生概括和归纳的能力,养成良好的数学思维习惯.5. 总结提升,提炼方法问题4:你能总结解决抛物线形问题的一般方法和解决步骤吗?抛物线形问题二次函数模型线段长实际问题的解设计意图:使学生对解决此类问题有一个系统化的步骤,强化数学与实际生活的紧密联系,加深“数形结合思想”和“数学建模思想”在解决问题中的重要作用.6. 巩固训练,拓展思维某公园草坪的防护栏是由100段形状相同的抛物线形组成,为了牢固起见,每段护栏中需要间距4dm 加设一根不锈钢的支柱,防护栏的最高点距底部5dm(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A、50mB、100mC、160mD、200m设计意图:巩固本节课所学内容,再次体会通过建立二次函数模型解决实际问题的重要性,加深对二次函数的认识,体会数学与实践的联系.7. 小结(1)这节课学习了用什么知识解决哪类问题?(2)解决问题的一般步骤是什么?应注意哪些问题?转译数学方法回译实际问题数学问题数学模型数学模型的解实际问题的解设计意图:通过小结,归纳提升,加强学习反思,帮助学生养成系统整理知识的习惯.8. 作业布置某桥梁建筑公司需在两山之间的峡谷上架设一座公路桥,桥下是一条宽100m的河流,河面距所要架设的公路桥的高度是50m,根据各方面的条件分析,专家认为抛物线是最好的选择,按照专家的建议,设计一座横跨峡谷的公路桥.设计意图:考察学生对本节课所学内容的理解和掌握程度,体会二次函数模型的应用价值.建立直角坐标系线段与坐标相互转化待定系数法抽象人教版《实际问题与二次函数(第3课时)》课例点评南宁市天桃实验学校吴立志本节课教学有六个环节:创设情境,引出问题环节结合生活背景,让学生体会抛物线与实际生活的联系;复习旧知,做好铺垫环节学生体会解析式与图象的对应关系;从形入手,探究问题环节引导学生通过建立直角坐标系,构建数学模型(二次函数模型);适当建系,优化解题环节引导学生总结归纳,让学生积累和总结经验;总结提升,提炼方法环节使学生对解决此类问题有一个系统化的步骤;巩固训练,拓展思维环节巩固本节课所学内容,加深对二次函数的认识,体会数学与实践的联系;教学过程设计合理,课堂结构完整,教学思路清晰,过程循序渐进,为“抛物线形”的产生提供自然合理的背景,激发学生深入思考,获得解决问题的方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.小结
(1)这节课学习了用什么知识解决哪类问题? (2)解决问题的一般步骤是什么?应注意哪些问 题? (3)你学到了哪些思考问题的方法?用函数的思想 方法解决抛物线形拱桥问题应注意什么?
5.布置作业
教科书习题 22.3 第 3 题.
解: 设抛物线的解析式为y=ax2+bx+c, 根据题意可知 抛物线经过(0,0),(20,16)和(40,0)三点 可得方程组
2.探究“拱桥”问题
问题2 图中是抛物线形拱桥,当拱顶离水面 2 m时,水面 宽 4 m . 水面下降 1 m,水面宽度增加多少?
2.探究“拱桥”问题
(1)求宽度增加多少需要什么数据? (2)表示水面宽的线段的端点在哪条曲线上? (3)如何求这组数据?需要先求什么? (4)图中还知道什么? (5)怎样求抛物线对应的函数的解析式?
l
2.探究“拱桥”问题
问题3 如何建立直角坐标系?
l
2.探究“拱桥”问题
问题4 解决本题的关键是什么?
3.应用新知, 巩固提高
问题5 有一座抛物线形拱桥,正常水位时桥下水面宽度为 20 m,拱顶距离水面 4 m. (1)如图所示的直角坐标系中,求出这条抛物线表 示的函数的解析式; (2)设正常水位时桥下的水深为 2 m,为保证过往 船只顺利航行,桥下水面的宽度不得小于 18 m.求水深 超过多少 m 时就会影响过往船只在桥下顺利航行. y O x C D h B A 20 m
九年级
上册
22.3 实际问题与二次函数 (第3课时)
1.复习利用二次函数解决实际问题的方法
问题1 解决上节课所讲的实际问题时,你用到了什么知识? 所用知识在解决生活中问题时,还应注意哪些问题?
比一比
有图形放在坐标系里(如图所示),求抛 物线的解析式.