初中数学九年级上册 三角函数 练习题
初三三角函数试的题目精选

初三三角函数试题精选一.选择题(共10小题)1.(2016?安顺)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B.C.D.2.(2016?乐山)如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,则下列结论不正确的是()A.B.C.D.3.(2016?攀枝花)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=()A.B.C.D.4.(2016?西宁)如图,在△ABC中,∠B=90°,tan∠C=,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()A.18cm 2B.12cm2C.9cm2D.3cm25.(2016?绵阳)如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosA的值为()A.B.C.D.6.(2016?福州)如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα) B.(cosα,cosα)C.(cosα,sinα) D.(sinα,cosα)7.(2016?重庆)如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为()(精确到0.1米,参考数据:≈1.41,≈1.73,≈2.45)A.30.6 B.32.1 C.37.9 D.39.48.(2016?苏州)如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m9.(2016?重庆)某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()A.8.1米B.17.2米C.19.7米D.25.5米10.(2015?扬州)如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为()A.①②B.②③C.①②③ D.①③二.填空题(共4小题)11.(2016?枣庄)如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tanD=.12.(2016?新疆)如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D 点测得∠ADB=60°,又CD=60m,则河宽AB为m(结果保留根号).13.(2016?舟山)如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=,那么当点P运动一周时,点Q运动的总路程为.14.(2016?岳阳)如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了米.三.解答题(共1小题)15.(2016?厦门)如图,在四边形ABCD中,∠BCD是钝角,AB=AD,BD平分∠ABC,若CD=3,BD=,sin∠DBC=,求对角线AC的长.初三三角函数试题精选参考答案与试题解析一.选择题(共10小题)1.(2016?安顺)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B.C.D.【分析】根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.【解答】解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.【点评】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.2.(2016?乐山)如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,则下列结论不正确的是()A.B.C.D.【分析】根据锐角三角函数的定义,即可解答.【解答】解:在Rt△ABC中,∠BAC=90°,sinB=,∵AD⊥BC,∴sinB=,sinB=sin∠DAC=,综上,只有C不正确故选:C.【点评】本题考查了锐角三角函数,解决本题的关键是熟记锐角三角函数的定义.3.(2016?攀枝花)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=()A.B.C.D.【分析】连接CD,可得出∠OBD=∠OCD,根据点D(0,3),C(4,0),得OD=3,OC=4,由勾股定理得出CD=5,再在直角三角形中得出利用三角函数求出sin∠OBD即可.【解答】解:∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,连接CD,如图所示:∵∠OBD=∠OCD,∴sin∠OBD=sin∠OCD==.故选:D.【点评】本题考查了圆周角定理,勾股定理、以及锐角三角函数的定义;熟练掌握圆周角定理是解决问题的关键.4.(2016?西宁)如图,在△ABC 中,∠B=90°,tan ∠C=,AB=6cm .动点P 从点A 开始沿边AB 向点B 以1cm/s 的速度移动,动点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动.若P ,Q 两点分别从A ,B 两点同时出发,在运动过程中,△PBQ 的最大面积是()A .18cm2B .12cm2C .9cm 2D .3cm2【分析】先根据已知求边长BC ,再根据点P 和Q 的速度表示BP 和BQ 的长,设△PBQ 的面积为S ,利用直角三角形的面积公式列关于S 与t 的函数关系式,并求最值即可.【解答】解:∵tan ∠C=,AB=6cm ,∴=,∴BC=8,由题意得:AP=t ,BP=6﹣t ,BQ=2t ,设△PBQ 的面积为S ,则S=×BP ×BQ=×2t ×(6﹣t ),S=﹣t 2+6t=﹣(t 2﹣6t+9﹣9)=﹣(t ﹣3)2+9,P :0≤t ≤6,Q :0≤t ≤4,∴当t=3时,S 有最大值为9,即当t=3时,△PBQ 的最大面积为9cm 2;故选C .【点评】本题考查了有关于直角三角形的动点型问题,考查了解直角三角形的有关知识和二次函数的最值问题,解决此类问题的关键是正确表示两动点的路程(路程=时间×速度);这类动点型问题一般情况都是求三角形面积或四边形面积的最值问题,转化为函数求最值问题,直接利用面积公式或求和、求差表示面积的方法求出函数的解析式,再根据函数图象确定最值,要注意时间的取值范围.5.(2016?绵阳)如图,△ABC 中AB=AC=4,∠C=72°,D 是AB 中点,点E 在AC 上,DE ⊥AB ,则cosA 的值为()A .B .C .D .【分析】先根据等腰三角形的性质与判定以及三角形内角和定理得出∠EBC=36°,∠BEC=72°,AE=BE=BC.再证明△BCE∽△ABC,根据相似三角形的性质列出比例式=,求出AE,然后在△ADE中利用余弦函数定义求出cosA的值.【解答】解:∵△ABC中,AB=AC=4,∠C=72°,∴∠ABC=∠C=72°,∠A=36°,∵D是AB中点,DE⊥AB,∴AE=BE,∴∠ABE=∠A=36°,∴∠EBC=∠ABC﹣∠ABE=36°,∠BEC=180°﹣∠EBC﹣∠C=72°,∴∠BEC=∠C=72°,∴BE=BC,∴AE=BE=BC.设AE=x,则BE=BC=x,EC=4﹣x.在△BCE与△ABC中,,∴△BCE∽△ABC,∴=,即=,解得x=﹣2±2(负值舍去),∴AE=﹣2+2.在△ADE中,∵∠ADE=90°,∴cosA===.故选C.【点评】本题考查了解直角三角形,等腰三角形的性质与判定,三角形内角和定理,线段垂直平分线的性质,相似三角形的判定与性质,难度适中.证明△BCE∽△ABC是解题的关键.6.(2016?福州)如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα) B.(cosα,cosα)C.(cosα,sinα) D.(sinα,cosα)【分析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.【解答】解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键.7.(2016?重庆)如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为()(精确到0.1米,参考数据:≈1.41,≈1.73,≈2.45)A.30.6 B.32.1 C.37.9 D.39.4【分析】延长AB交DC于H,作EG⊥AB于G,则GH=DE=15米,EG=DH,设BH=x米,则CH=x米,在Rt△BCH中,BC=12米,由勾股定理得出方程,解方程求出BH=6米,CH=6米,得出BG、EG的长度,证明△AEG是等腰直角三角形,得出AG=EG=6+20(米),即可得出大楼AB的高度.【解答】解:延长AB交DC于H,作EG⊥AB于G,如图所示:则GH=DE=15米,EG=DH,∵梯坎坡度i=1:,∴BH:CH=1:,设BH=x米,则CH=x米,在Rt△BCH中,BC=12米,由勾股定理得:x2+(x)2=122,解得:x=6,∴BH=6米,CH=6米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=6+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=6+20(米),∴AB=AG+BG=6+20+9≈39.4(米);故选:D.【点评】本题考查了解直角三角形的应用﹣坡度、俯角问题;通过作辅助线运用勾股定理求出BH,得出EG是解决问题的关键.8.(2016?苏州)如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m【分析】先在Rt△ABD中利用正弦的定义计算出AD,然后在Rt△ACD中利用正弦的定义计算AC即可.【解答】解:在Rt△ABD中,∵sin∠ABD=,∴AD=4sin60°=2(m),在Rt△ACD中,∵sin∠ACD=,∴AC==2(m).故选B.【点评】本题考查了解直角三角形的应用﹣坡度坡角:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=tanα.9.(2016?重庆)某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()A.8.1米B.17.2米C.19.7米D.25.5米【分析】作BF⊥AE于F,则FE=BD=6米,DE=BF,设BF=x米,则AF=2.4米,在Rt△ABF中,由勾股定理得出方程,解方程求出DE=BF=5米,AF=12米,得出AE的长度,在Rt△ACE中,由三角函数求出CE,即可得出结果.【解答】解:作BF⊥AE于F,如图所示:则FE=BD=6米,DE=BF,∵斜面AB的坡度i=1:2.4,∴AF=2.4BF,设BF=x米,则AF=2.4x米,在Rt△ABF中,由勾股定理得:x2+(2.4x)2=132,解得:x=5,∴DE=BF=5米,AF=12米,∴AE=AF+FE=18米,在Rt△ACE中,CE=AE?tan36°=18×0.73=13.14米,∴CD=CE﹣DE=13.14米﹣5米≈8.1米;故选:A.【点评】本题考查了解直角三角形的应用、勾股定理、三角函数;由勾股定理得出方程是解决问题的关键.10.(2015?扬州)如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为()A.①②B.②③C.①②③ D.①③【分析】连接BE,根据圆周角定理,可得∠C=∠AEB,因为∠AEB=∠D+∠DBE,所以∠AEB>∠D,所以∠C>∠D,根据锐角三角形函数的增减性,即可判断.【解答】解:如图,连接BE,根据圆周角定理,可得∠C=∠AEB,∵∠AEB=∠D+∠DBE,∴∠AEB>∠D,∴∠C>∠D,根据锐角三角形函数的增减性,可得,sin∠C>sin∠D,故①正确;cos∠C<cos∠D,故②错误;tan∠C>tan∠D,故③正确;故选:D.【点评】本题考查了锐角三角形函数的增减性,解决本题的关键是比较出∠C>∠D.二.填空题(共4小题)11.(2016?枣庄)如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tanD=2.【分析】连接BC可得RT△ACB,由勾股定理求得BC的长,进而由tanD=tanA=可得答案.【解答】解:如图,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=6,AC=2,∴BC===4,又∵∠D=∠A,∴tanD=tanA===2.故答案为:2.【点评】本题考查了三角函数的定义、圆周角定理、解直角三角形,连接BC构造直角三角形是解题的关键.12.(2016?新疆)如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D 点测得∠ADB=60°,又CD=60m,则河宽AB为30m(结果保留根号).【分析】先根据三角形外角的性质求出∠CAD的度数,判断出△ACD的形状,再由锐角三角函数的定义即可求出AB的值.【解答】解:∵∠ACB=30°,∠ADB=60°,∴∠CAD=30°,∴AD=CD=60m,在Rt△ABD中,AB=AD?sin∠ADB=60×=30(m).故答案为:30.【点评】本题考查的是解直角三角形的应用﹣方向角问题,涉及到三角形外角的性质、等腰三角形的判定与性质、锐角三角函数的定义及特殊角的三角函数值,难度适中.13.(2016?舟山)如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=,那么当点P运动一周时,点Q运动的总路程为4.【分析】首先根据题意正确画出从O→B→A运动一周的图形,分四种情况进行计算:①点P从O→B时,路程是线段PQ的长;②当点P从B→C时(QC⊥AB,C为垂足),点Q从O运动到Q,计算OQ的长就是运动的路程;③点P从C→A时,点Q由Q向左运动,路程为QQ′;④点P从A→O时,点Q运动的路程就是点P运动的路程;最后相加即可.【解答】解:在Rt△AOB中,∵∠ABO=30°,AO=1,∴AB=2,BO==,①当点P从O→B时,如图1、图2所示,点Q运动的路程为,②如图3所示,QC⊥AB,则∠ACQ=90°,即PQ运动到与AB垂直时,垂足为P,当点P从B→C时,∵∠ABO=30°∴∠BAO=60°∴∠OQD=90°﹣60°=30°∴cos30°=∴AQ==2∴OQ=2﹣1=1则点Q运动的路程为QO=1,③当点P从C→A时,如图3所示,点Q运动的路程为QQ′=2﹣,④当点P从A→O时,点Q运动的路程为AO=1,∴点Q运动的总路程为:+1+2﹣+1=4故答案为: 4【点评】本题主要是应用三角函数定义来解直角三角形,此题的解题关键是理解题意,正确画出图形;线段的两个端点看成是两个动点,将线段移动问题转化为点移动问题.14.(2016?岳阳)如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了100米.【分析】根据坡比的定义得到tan∠A=,∠A=30°,然后根据含30度的直角三角形三边的关系求解.【解答】解:根据题意得tan∠A===,所以∠A=30°,所以BC=AB=×200=100(m).故答案为100.【点评】本题考查了解直角三角形的应用:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式三.解答题(共1小题)15.(2016?厦门)如图,在四边形ABCD中,∠BCD是钝角,AB=AD,BD平分∠ABC,若CD=3,BD=,sin∠DBC=,求对角线AC的长.【分析】过D作DE⊥BC交BC的延长线于E,得到∠E=90°,根据三角形函数的定义得到DE=2,推出四边形ABCD是菱形,根据菱形的性质得到AC⊥BD,AO=CO,BO=DO=,根据勾股定理得到结论.【解答】解:过D作DE⊥BC交BC的延长线于E,则∠E=90°,∵sin∠DBC=,BD=,∴DE=2,∵CD=3,∴CE=1,BE=4,∴BC=3,∴BC=CD,∴∠CBD=∠CDB,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠CDB,∴AB∥CD,同理AD∥BC,∴四边形ABCD是菱形,连接AC交BD于O,则AC⊥BD,AO=CO,BO=DO=,∴OC==,∴AC=2.【点评】本题考查了菱形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.。
初中数学三角函数练习题

初中数学三角函数练习题一、填空题1. 在直角三角形ABC中,已知∠A=30°,∠B=90°,那么∠C=______°。
2. 如果sinA=0.6,那么A的大小是______°。
3. tanθ=0.8,那么θ的大小是______°。
4. 已知cotA=-3,那么A的大小是______°。
二、选择题1. 在直角三角形ABC中,已知∠A=45°,则∠B=()A. 30°B. 60°C. 45°D. 90°2. 当sinA=0.8时,A的大小是多少度?()A. 45°B. 30°C. 53°D. 60°3. 如果tanθ=0.6,则θ的大小是()A. 30°B. 45°C. 53°D. 60°4. 已知sinA=0.6,则A的大小是多少度?()A. 30°B. 45°C. 53°D. 60°三、计算题1. 已知直角三角形中∠A=30°,AB=2,求BC的值。
2. 已知sinA=0.6,求cosA的值。
3. 已知sinA=0.8,求cosA的值。
4. 已知sinA=0.6,求tanA的值。
5. 已知tanA=0.6,求cotA的值。
6. 已知cotA=1.5,求tanA的值。
7. 一辆汽车以30°的角度上坡行驶,如果汽车行驶的速度是60 km/h,求汽车沿斜坡向上行驶的速度。
8. 一辆汽车以30°的角度上坡行驶,如果汽车行驶的速度是60 km/h,求汽车垂直于斜坡方向的速度。
9. 一辆汽车上坡行驶,如果汽车沿斜坡方向的速度为30 km/h,垂直于斜坡方向的速度为20 km/h,求汽车行驶的速度。
10. 已知直角三角形中∠A=30°,求cosA、sinA、tanA和cotA的值。
初三数学三角函数(含答案)

则电线杆的高度为 ( A.9 米 B.28 米
)
C. 7 3米
D. 14 2 3 米
19、如图 6,两建筑物的水平距离为 am,从 A 点测得 D 点的俯角为 a,测得 C 点的
俯角为β,则较低建筑物 CD 的高为 ( )
A.a m
B.(a·tanα)m
C. a m tan
D.a(tanα-tanβ)m
24、已知 Rt△ABC 的斜边 AB 的长为 10cm , sinA、sinB 是方程 m(x2-2x)+5(x2+x)+12=0 的两根。 (1)求 m 的值 (2)求 Rt△ABC 的内切圆的面积
25、如图,△ABC 是等腰三角形,∠ACB=90°,过 BC 的中点 D 作 DE⊥AB,垂足为 E,连结 CE,求 sin∠ACE 的值.
1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的 边和角。
依据:①边的关系: a2 b2 c2 ;②角的关系:A+B=90°;③边角关系:三角函
数的定义。(注意:尽量避免使用中间数据和除法)
2、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
铅垂线
视线
A.(cosα,1)
B.(1,sinα) C.(sinα,cosα)
D.(cosα,sinα)
14、如图 4,在△ABC 中,∠C=90°,AC=8cm,AB 的垂直平分线 MN 交 AC 于 D,
连结 BD,若 cos∠BDC= 3 ,则 BC 的长是(
5
A、4cm
B、6cm C、8cm
) D、10cm
tan A cotB cot A tanB tan A 1 (倒数)
(完整版)初中三角函数练习题及答案

三角函数练习1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( ) A 、缩小2倍 B 、扩大2倍 C 、不变 D 、不能确定12、在Rt △ABC 中,∠C=900,BC=4,sinA=54,则AC=( )A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则( )A 、00〈∠A<300B 、300<∠A 〈450C 、450〈∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a:b :c=( )A 、1:1:2B 、1:1:2C 、1:1:3D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB 7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB=23B .cosB=23C .tanB=23D .tanB=328.点(—sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(32,12)B .(-32,12)C .(—32,—12)D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1。
6米,则旗杆的高度约为( )A .6.9米B .8。
5米C .10.3米D .12.0米 10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m(C )150m(D )3100m11、如图1,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米B.163米C.52米 D 。
初三《三角函数》经典习题汇编(易错题、难题)

初三《三角函数》经典习题汇编(易错题、
难题)
初三《三角函数》经典题汇编(易错题、难题)
概述
本文档以初三数学学科的《三角函数》为主题,整理了一些经
典的题,主要包括易错题和难题。
这些题旨在帮助学生加深对三角
函数的理解和应用能力。
题目列表
1. 题目:已知直角三角形的一条直角边为5,斜边为13,求另
一条直角边的长度。
难度:易错题
答案:12
2. 题目:已知角A的正弦值为1/2,求角A的度数。
难度:易错题
答案:30°
3. 题目:已知角B的余弦值为3/5,求角B的度数。
难度:易错题
答案:53.13°
4. 题目:已知角C的正切值为2,求角C的度数。
难度:难题
答案:63.43°
5. 题目:已知直角三角形的一条直角边为8,角A的正弦值为3/4,求斜边的长度。
难度:难题
答案:10
6. 题目:已知角A的弧度为π/6,求角A的正弦值。
难度:难题
答案:1/2
7. 题目:已知角B的弧度为5π/6,求角B的正切值。
难度:难题
答案:√3
结论
通过解答这些经典习题,学生可以巩固对三角函数的基本概念和相关计算方法的掌握。
这些题目既包括易错题,帮助学生强化知识记忆,又包括难题,提高学生的解题能力。
建议学生针对这些题目进行练习,加深对三角函数的理解和应用能力,从而在考试中取得好成绩。
初中数学——三角函数初步练习试卷50

初中数学——三角函数初步练习试卷50一、选择题(共10小题;共50分)1. 在中,,下列结论中错误的是A. B. C. D.2. 如图,以为圆心,半径为的弧交坐标轴于,两点,是上一点(不与,重合),连接,设,则点的坐标是A. B.C. D.3. 如图,,是的切线,切点分别是,,如果,那么等于A. B. C. D.4. 如图,一块矩形木板斜靠在墙边(,点,,,,在同一平面内),已知,,,则点到的距离等于A. B. C. D.5. 如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为和.按照输油中心到三条支路的距离相等来连接管道,则到三条支路的管道总长(计算时视管道为线,中心为点)是6. 如图,在中,,垂足分别为,,,交于点,已知,,则的长是A. B. C. D.7. 如图,在等腰中,,,是上一点,若,则的长为A. B. C. D.8. 如图,在平行四边形中,,,以顶点为圆心,为半径作圆,则边与的位置关系是A. 相交B. 相切C. 相离D. 以上三种都有可能9. 如图,某海监船以海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至处时,测得岛屿恰好在其正北方向,继续向东航行小时到达处,测得岛屿在其北偏西方向,保持航向不变,又航行小时到达处,此时海监船与岛屿之间的距离(即的长)为A. 海里B. 海里C. 海里D. 海里10. 如图,在正方形中,的顶点,分别在,边上,高与正方形的边长相等,连接分别交,于点,,下列说法:①;②连接,,则为直角三角形;③;④若,,则的长为.其中正确结论的个数是A. B. C. D.二、填空题(共6小题;共30分)11. 已知,等腰梯形下底长为,底角的正弦值为,则上底长为.12. 将一副三角尺如图所示叠放在一起,若,则阴影部分的面积是.13. 在中,,,,那么.14. 在中,如果,,,那么的度数为.15. 小明站在处放风筝,风筝飞到处时的线长为,这时测得,若牵引底端离地面,则此时风筝离地面高度为米.(结果保留根号)16. 如图,在中,,,,动点从点出发沿射线方向以的速度运动.设运动的时间为秒,则当秒时,为直角三角形.三、解答题(共6小题;共78分)17. 如图,在中,,,,求的长.18. 如图,,,,求的高的长.19. 如图所示,的直径和弦相交于点,,,,求的长.20. 如图,中,,,是上一点,连接.若,,求的长.21. 如图,在一条笔直公路的正上方处有一探测仪,,,一辆轿车从点匀速向点行驶,测得,秒后到达点,测得.(1)求,两点间的距离(结果精确到);(2)若规定该路段的速度不得超过,判断此轿车是否超速.(参考数据:,)22. 如图,在正方形网格中有两个三角形和,试说明.答案第一部分1. A2. C3. C4. D5. C6. A 【解析】如图所示.设,.解得:由可得.7. A8. A 【解析】如图,作交的延长线于.,,,直线与相交.9. C 【解析】在中,,,由题意,,,,,,,(海里).10. A【解析】①在和中,.,,同理,,,,故①正确;②连将绕点顺时针旋转至位置,得到图②,连接,由旋转知:,,四边形是正方形,,,,,,又,,四边形是正方形,由旋转知:,,,,,.在和中,.,同理,为直角三角形,故②正确;③,,,,,,,故③正确;④,,,,,设正方形的边长为,则,,,,解得,,,作于,则,,,,,,故④正确.综上正确结论的个数是个.第二部分11.13.14.15.16. 或【解析】,,,,.①当为直角时,点与点重合,,.②当为直角时,,,,在中,,在中,,,解得.综上,当或时,为直角三角形.第三部分17. .18. 设,则.在中,,,,解得,即.19. .提示:过作,连接,则,,所以,从而.20. 设,则.在中,,,,(舍去),第11页(共11 页). 在中,,. 21. (1) 因为在中,, 所以 , 因为在中,, 所以 . 所以; 所以 , 两点间的距离为 . (2) 此轿车的速度, 所以此轿车在该路段没有超速. 22. 设小正方形的边长为 ,由勾股定理可知 ; ; ; . ,,,,...。
初中数学三角函数基础练习含答案

三角函数基础练习一.选择题(共40小题)1.如图,△ABC中,∠C=90o,tan A=2,则cos A的值为()A.B.C.D.2.在Rt△ABC中,∠C=90°,sin A=,则sin B的值为()A.B.C.D.3.如图,已知点C从点B出发,沿射线BD方向运动,运动到点D后停止,则在这个过程中,从A观测点C的俯角将()A.增大B.减小C.先增大后减小D.先减小后增大4.在Rt△ABC中,若∠ACB=90°,tan A=,则sin B=()A.B.C.D.5.一艘轮船在A处测得灯塔S在船的南偏东60°方向,轮船继续向正东航行30海里后到达B处,这时测得灯塔S在船的南偏西75°方向,则灯塔S离观测点A、B的距离分别是()A.(15﹣15)海里、15海里B.(15﹣15)海里、5海里C.(15﹣15)海里、15海里D.(15﹣15)海里、15海里6.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan A=()A.B.C.D.7.在Rt△ABC中,∠C=90°,∠B=α,若BC=m,则AC的长为()A.B.m•cosαC.m•sinαD.m•tanα8.如图,在Rt△ABC中,∠C=90°,BC=4,AC=2,则tan A等于()A.B.2C.D.9.如图,测得一商场自动扶梯的长为l,自动扶梯与地面所成的角为θ,则该自动扶梯到达的高度h为()A.l•sinθB.C.l•cosθD.10.如图,在Rt△ABC中,直角边BC的长为m,∠A=40°,则斜边AB的长是()A.m sin40°B.m cos40°C.D.11.如图,在△ABC中,∠ACB=90°,AB=5,AC=3,则tan∠B的值为()A.B.C.D.12.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,则cos A的值是()A.B.C.D.13.如图,在Rt△ABC中,∠CAB=90°,AD⊥BC于点D,BD=2,tan∠C=,则线段AC的长为()A.10B.8C.D.14.如图,梯子AC的长为2.8米,则梯子顶端离地面的高度AD是()A.米B.米C.sinα米D.cosα米15.计算2sin30°﹣2cos60°+tan45°的结果是()A.2B.C.D.116.在Rt△ABC中,∠C=90°,BC=1,AB=4,则sin B的值是()A.B.C.D.17.在△ABC中,∠ACB=90°,AC=1,BC=2,则cos B的值为()A.B.C.D.18.若锐角A满足cos A=,则∠A的度数是()A.30°B.45°C.60°D.75°19.如图,某建筑物的顶部有一块标识牌CD,小明在斜坡上B处测得标识牌顶部C的仰角为45°,沿斜坡走下来在地面A处测得标识牌底部D的仰角为60°,已知斜坡AB的坡角为30°,AB=AE=10米.则标识牌CD的高度是()米.A.15﹣5B.20﹣10C.10﹣5D.5﹣520.在直角三角形中sin A的值为,则cos A的值等于()A.B.C.D.21.在Rt△ABC中,∠C=90°,AB=4,BC=3,则sin∠B的值为()A.B.C.D.22.已知在Rt△ABC中,∠C=90°,sin A=,则∠A的正切值为()A.B.C.D.23.在Rt△ABC中,∠C=90°,sin A=,BC=6,则AB长是()A.4B.6C.8D.1024.已知∠A与∠B互余,若tan∠A=,则cos∠B的值为()A.B.C.D.25.如图,A,B,C是3×1的正方形网格中的三个格点,则tan B的值为()A.B.C.D.26.Rt△ABC中,∠C=90°,AC=,AB=4,则cos B的值是()A.B.C.D.27.如图,在Rt△ABC中,∠C=90°,AB=13,BC=12,AC=5,则下列三角函数表示正确的是()A.sin A=B.cos A=C.tan A=D.tan B=28.如图,△ABC中,∠B=90°,BC=2AB,则sin C=()A.B.C.D.29.已知在Rt△ABC中,∠C=90°,AB=5,AC=4,则cos B的值为()A.B.C.D.30.锐角α满足,且,则α的取值范围为()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°31.如图,在△ABC中,AC=1,BC=2,AB=,则sin B的值是()A.B.C.2D.32.已知cosα=,且α是锐角,则α=()A.75°B.60°C.45°D.30°33.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sin A=B.cos A=C.tan A=D.cos A=34.某人沿着斜坡前进,当他前进50米时上升的高度为25米,则斜坡的坡度是i=()A.B.1:3C.D.1:235.如图,有一斜坡AB的长AB=10米,坡角∠B=36°,则斜坡AB的铅垂高度AC为()A.10sin36°B.10cos36°C.10tan36°D.36.某水库大坝的横断面是梯形,坝内一斜坡的坡度i=1:,则这个斜坡坡角为()A.30°B.45°C.60°D.90°37.如图,在Rt△ABC中,∠C=90°,AC=2,BC=3,则tan A=()A.B.C.D.38.在Rt△ABC中,AB=4,AC=2,∠C=90°,则∠A的度数为()A.30°B.40°C.45°D.60°39.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则cos∠BAC的值为()A.B.C.D.40.在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠B的正切值为()A.3B.C.D.三角函数基础练习参考答案与试题解析一.选择题(共40小题)1.解:∵△ABC中,∠C=90o,∴tan A==2,∴设CB=2k,AC=k,∴AB==k,∴cos A===,故选:B.2.解:∵Rt△ABC中,∠C=90°,sin A=,∴cos A===,∠A+∠B=90°,∴sin B=cos A=.故选:A.3.解:点C从点B出发,沿射线BD方向运动,运动到点D后停止,则在这个过程中,从A观测点C的俯角将增大,故选:A.4.解:如图,∵在Rt△ABC中,∠C=90°,tan A=,∴设AC=2k,BC=k,则AB==k,∴sin B===.故选:D.5.解:过S作SC⊥AB于C,在AB上截取CD=AC,∴AS=DS,∴∠CDS=∠CAS=30°,∵∠ABS=15°,∴∠DSB=15°,∴SD=BD,设CS=x,在Rt△ASC中,∵∠CAS=30°,∴AC=x,AS=DS=BD=2x,∵AB=30海里,∴x+x+2x=30,解得:x=,∴AS=(15﹣15)(海里);∴BS==15(海里),∴灯塔S离观测点A、B的距离分别是(15﹣15)海里、15海里,故选:D.6.解:由图可知:BC=4,AB=3,∠ABC=90°,在Rt△ABC中,tan A==.故选:A.7.解:在Rt△ABC中,∠C=90°,tan B=,∴AC=BC•tan B=m•tanα,故选:D.8.解:在Rt△ABC中,∠C=90°,∴tan A=═2,故选:B.9.解:∵sinθ=,∴h=l•sinθ,故选:A.10.解:∵sin A=,∴AB=,故选:C.11.解:由勾股定理得,BC==4,∴tan∠B==,故选:D.12.解:∵∠C=90°,AB=5,BC=3,∴AC==4,∴cos A==,故选:A.13.解:∵∠CAB=90°,AD⊥BC于点D,∴∠B+∠C=90°,∠B+∠BAD=90°,∴∠BAD=∠C.在Rt△ABD中,∠ADB=90°,BD=2,∵tan∠BAD==,∴AD=2BD=4,∴AB==2.在Rt△ABC中,∠CAB=90°,AB=2,∵tan∠C==,∴AC=2AB=4.故选:D.14.解:在Rt△ACD中,∠ADC=90°,AB=2.8m,∠ACD=α,∴AD=AC•sin∠ACD=2.8sinα=sinα米,故选:C.15.解:2sin30°﹣2cos60°+tan45°=2×﹣2×+1=1﹣1+1=1.故选:D.16.解:由勾股定理得,AC===则sin B==,故选:C.17.解:由勾股定理得,AB===,则cos B===,故选:B.18.解:∵cos A=,∴∠A=30°.故选:A.19.解:过点B作BM⊥EA的延长线于点M,过点B作BN⊥CE于点N,如图所示.在Rt△ABM中,AB=10米,∠BAM=30°,∴AM=AB•cos∠BAM=5米,BM=AB•sin∠BAM=5米.在Rt△ADE中,AE=10米,∠DAE=60°,∴DE=AE•tan∠DAE=10米.在Rt△BCN中,BN=AE+AM=(10+5)米,∠CBN=45°,∴CN=BN•tan∠CBN=(10+5)米,∴CD=CN+EN﹣DE=10+5+5﹣10=(15﹣5)米.故选:A.20.解:∵在直角三角形中sin A的值为,∴∠A=30°.∴cos A=cos30°=.故选:C.21.解:如图:∵∠C=90°,AB=4,BC=3,∴AC==,∴sin∠B=,故选:A.22.解:∵在Rt△ABC中,∠C=90°,sin A==,∴设BC=3x,AB=5x,由勾股定理得:AC==4x,∴tan A===,即∠A的正切值为,故选:D.23.解:∵∠C=90°,sin A==,BC=6,∴AB=BC=×6=10;故选:D.24.解:∵∠A与∠B互余,∴∠A、∠B可看作Rt△ABC的两锐角,∵tan∠A==,∴设BC=4x,AC=3x,∴AB=5x,∴cos∠B===.故选:B.25.解:如图所示,在Rt△ABD中,tan B==.故选:A.26.解:∵∠C=90°,AC=,AB=4,∴BC===1,∴cos B==,故选:D.27.解:A、sin A==,故原题说法正确;B、cos A==,故原题说法错误;C、tan A==,故原题说法错误;D、tan B==,故原题说法错误;故选:A.28.解:∵BC=2AB,∴设AB=a,BC=2a,∴AC==a,∴sin C===,故选:D.29.解:∵∠C=90°,AB=5,AC=4,∴BC==3,∴cos B==.故选:B.30.解:∵,且,∴45°<α<60°.故选:B.31.解:∵在△ABC中,∠ACB=90°,AC=1,BC=2,AB=,∴sin B=.故选:B.32.解:∵cosα=,且α是锐角,∴α=30°.故选:D.33.解:如图所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sin A=,故A错误;cos A=,故B正确;tan A=;故C错误;cos A=,故D错误;故选:B.34.解:由题意得:某人在斜坡上走了50米,上升的高度为25米,则某人走的水平距离s==25,∴坡度i=25:25=1:.故选:A.35.解:由题意可得:sin B=,即sin36°=,故AC=10sin36°.故选:A.36.解:∵某水库大坝的横断面是梯形,坝内一斜坡的坡度i=1:,∴设这个斜坡的坡角为α,故tanα==,故α=30°.故选:A.37.解:在Rt△ABC中,∠C=90°,tan A==,故选:B.38.解:在Rt△ABC中,AB=4,AC=2,∴cos A===,则∠A=45°.故选:C.39.解:过点C作CD⊥AB于点D,∵AD=3,CD=4,∴由勾股定理可知:AC=5,∴cos∠BAC==,故选:C.40.解:在Rt△ABC中,tan B==,故选:B.。
初三的三角函数练习题

初三的三角函数练习题在初三的数学学习中,三角函数是一个重要的知识点。
通过练习题的实际操作,可以帮助学生更好地掌握三角函数的相关概念和计算方法。
下面是一些适合初三学生的三角函数练习题,希望能够对同学们的学习有所帮助。
1. 已知直角三角形中,一个角的余弦值为0.6,求此角的正弦值和余割值。
解:根据余弦函数的定义,我们知道余弦值等于对边与斜边的比值。
设直角三角形的斜边为1,对边为0.6,那么根据正弦函数的定义,我们可以算出此角的正弦值为0.8(正弦值等于对边与斜边的比值)。
又根据余割函数的定义,余割值等于斜边与对边的比值,所以此角的余割值为1.67。
2. 在直角三角形ABC中,∠C=30°,AB=6,BC=3,求角A的正切值和余 cosec 值。
解:根据三角函数的定义,正切值等于对边与邻边的比值,余cosec 值等于斜边与对边的比值。
在三角形ABC中,∠C=30°,BC=3,所以对边AC=√(AB²-BC²)=√(6²-3²)=√27,根据正切函数的定义,角A的正切值为tan(A)=AC/BC=√27/3=√(27/3)=√9=3。
根据余 cosec 函数的定义,角A的余 cosec 值为cosec(A)=AC/AB=√27/6=√(27/6)=√(9/2)=(3/√2)=3√2/2=3√2/2。
3. 若sin(x)=-0.5,且x属于第二象限,求cos(x)的值。
解:在第二象限中,sin(x)为负值,且sin(x)=-0.5,所以可以得到cos(x)=√(1-sin²(x))=√(1-(-0.5)²)=√(1-0.25)=√0.75=√(3/4)=√3/2。
4. 已知角A的正弦值为0.8,且角A的余弦值为x,求x的取值范围。
解:根据正弦函数的定义,正弦值等于对边与斜边的比值。
设直角三角形的斜边为1,则对边为0.8。
根据余弦函数的定义,余弦值等于邻边与斜边的比值,所以邻边为√(1-0.8²)=√(1-0.64)=√0.36=0.6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一学期第二次月考数学试卷 一、选择题(每小题3分,共36分) 姓名________________ 1.反比例函数k y x =的图象在每一象限内y 随x 的增大而减小,这个函数的图象位于( ) A. 第一、二象限 B. 第三、四象限 C. 第一、三象限 D. 第二、四象限
2.已知一元二次方程02=++c bx ax ,若0=++c b a ,则该方程一定有一个根为( )
A. 0
B. 1
C. -1
D. 2
3.如图(1)放置的一个机器零件,其主视图如图(2)所示,则其俯视图是( )
(1) (2)
4.关于x 的一元二次方程(k +1)+2x -1=0有两个不等的实数根,则k 的取值范围是( )
.2.2A k B k ≥->-且1.2.2k C k D k ≠->-≥-且1k ≠-
5.对于任意的矩形,下列说法一定正确的是( )
A .对角线垂直且相等
B .四边都互相垂直
C .四个角都相等
D .是轴对称图形,但不是中心对称图形
6.四边形ABCD 中,AC 、BD 相交于点O ,能判别这个四边形是正方形的条件是( )
A. OA =OB =OC =OD ,AC ⊥BD
B. AB ∥CD ,AC =BD
C. AD ∥BC ,∠A =∠C
D. OA =OC ,OB =OD ,AB =BC
7.在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,
“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的
三角形与“帅”、“相”、“兵”所在位置的格点构成的三角形相似( )
A .①处
B .②处
C .③处
D .④处
8. 某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x .根据题意列方程,则下列方程正确的是( )
A .2500(1+x )2=9100
B .2500(1+x%)2=9100
C .2500(1+x )+2500(1+x )2=9100
D .2500+2500(1+x )+2500(1+x )2=9100
9.在△ABC 中,∠A 和∠B 均为锐角,且┃2sinA -3┃+(tanB -1)2=0,则∠C=( ).
A.105°
B.75°
C.90°
D.135°
10. 如图所示,在直角平面坐标系Oxy 中,点A 、B 、C 为反比例函数y =(k >0)上不同的三点,连接O A 、A. B. C. D.
O B 、OC ,过点A 作AD ⊥y 轴于点D
,过点B 、C 分别作BE ,CF 垂直x 轴于点E 、F ,OC 与BE 相交于点M ,记△AO D 、△BOM 、四边形CMEF 的面积分别为S 1、S 2、S 3,则( )
A .S 1=S 2+S 3
B .S 1>S 2=S 3
C .S 3>S 2>S 1
D .S 1S 2<S 3
2
第10题 第11题 第12题 第13题
11.如图,在∆ABC 中,点D 为BC 边上的一点,且2AD AB ==,AD AB ⊥,过点D 作DE AD ⊥,DE 交AC 于点E ,若1DE =,则∆ABC 的面积为( )
A .42
B .4
C .25
D .8
12.如上右图,正方形ABCD 中,AB =6,E 为AB 的中点,将△ADE 沿DE 翻折得到△FDE ,延长EF 交BC 于G ,FH ⊥BC ,垂足为H ,连接BF 、DG .以下结论:①BF ∥ED ;②△DFG ≌△DCG ;③△FHB ∽△EAD ;④tan ∠GEB =;⑤S △BFG =2.6;其中正确的个数是( )
A.2 B .3 C .4 D .5
二、填空(每小题3分,共12分)
13.小强同学从1-,0,1,2,3,4这六个数中任选一个数,满足不等式21<+x 的概率是______.
14.如图,在平面直角坐标中,一次函数y =﹣4x +4的图象与x 轴、y 轴分别交于A 、B 两点.正方形ABCD 的顶点C.D 在第一象限,顶点D 在反比例函数y =(k ≠0)的图象上.若正方形ABCD 向左平移n 个单位后,顶点C 恰好落在反比例函数的图象上,则n 的值是 .
15.在如下左图所示的正方形网格中,A 、B 、C 都是小正方形的顶点,经过点A 作射线CD ,则 cos ∠DAB 的值等于_________.
16.如上右图,在Rt △ABC 中,△ABC =90°,C (0,-6),CD =3AD ,点A 在x
k y =
上,且y 轴平分∠ACB , 则k =_ .
三.解答题(共52分)
17.(5分)计算 2028sin 4522(3.14)π-+--+-
E
D A
B C
18.(6分)解方程:(1)()2
23620x x --+= (2) 2x 2
-4x -1=0.
19.(7分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
请根据以上信息回答:
(1) 本次参加抽样调查的居民有多少人? (1分)
(2)将两幅不完整的图补充完整;(2分)
(3)若居民区有8000人,请估计爱吃D 粽的人数;(1分)
(4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.(3分)
20.(7分)如图,某船向正东方向航行,在A 处望见灯塔C 在东北方向,前进到B 处,望见灯塔C 在北偏西30°方向,又航行了半小时到达D 处,望见灯塔C 恰好在西北方向,若船速为每
小时20海里,求A ,D 两点间的距离.(结果保留根号)
21.(8分)如图,∠ABD =∠BCD =90°,DB 平分∠ADC ,过点B 作BM ∥CD 交AD 于M .连接CM 交DB 于N .
(1)求证:BD 2=AD •CD ;(4分)
(2)若CD =6,AD =8,求MN 的长.(4分)
22.(9分)如图,在平面直角坐标系中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m≠0)的图
象相交于第一、象限内的A(3,5),B(a,﹣3)两点,与x轴交于点C.
(1)求该反比例函数和一次函数的解析式;(4分)
(2)在y轴上找一点P使PB﹣PC最大,求PB﹣PC的最大值及点P的坐标;(3分)
(3)直接写出当y1>y2时,x的取值范围.(2分)
23.(10分)如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B(8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.
(1)直接写出y关于t的函数解析式及t的取值范围:;(3分)
(2)当PQ=3时,求t的值;(3分)
(3)连接OB交PQ于点D,若双曲线y=(k≠0)经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.(4分)。